
Physics and Imaging in Radiation Oncology 33 (2025) 100710 

A
2
B

Contents lists available at ScienceDirect

Physics and Imaging in Radiation Oncology

journal homepage: www.sciencedirect.com/journal/physics-and-imaging-in-radiation-oncology

Original research article

Deep learning combining imaging, dose and clinical data for predicting
bowel toxicity after pelvic radiotherapy
Behnaz Elhaminia a,∗, Alexandra Gilbert b , Andrew Scarsbrook b , John Lilley c ,
Ane Appelt b,1, Ali Gooya d,1

a Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Schools of Computing and Medicine, University of Leeds, Leeds, UK
b Leeds Institute of Medical Research at St James’s University Hospital, University of Leeds, Leeds, UK
c Leeds Cancer Centre, St James’s University Hospital, Leeds, UK
d School of Computing Science, University of Glasgow, Glasgow, UK

A R T I C L E I N F O

Keywords:
Radiotherapy toxicity
Deep learning
Toxicity prediction
Convolutional network
Attention
Pelvic radiotherapy

A B S T R A C T

Background and Purpose: A comprehensive understanding of radiotherapy toxicity requires analysis of
multimodal data. However, it is challenging to develop a model that can analyse both 3D imaging and clinical
data simultaneously. In this study, a deep learning model is proposed for simultaneously analysing computed
tomography scans, dose distributions, and clinical metadata to predict toxicity, and identify the impact of
clinical risk factors and anatomical regions.
Materials and methods : A deep model based on multiple instance learning with feature-level fusion and
attention was developed. The study used a dataset of 313 patients treated with 3D conformal radiation therapy
and volumetric modulated arc therapy, with heterogeneous cohorts varying in dose, volume, fractionation,
concomitant therapies, and follow-up periods. The dataset included 3D computed tomography scans, planned
dose distributions to the bowel cavity, and patient clinical data. The model was trained on patient-reported
data on late bowel toxicity.
Results: Results showed that the network can identify potential risk factors and critical anatomical regions.
Analysis of clinical data jointly with imaging and dose for bowel urgency and faecal incontinence improved
performance (area under receiver operating characteristic curve [AUC] of 88% and 78%, respectively) while
best performance for diarrhoea was when analysing clinical features alone (68% AUC).
Conclusions: Results demonstrated that feature-level fusion along with attention enables the network to
analyse multimodal data. This method also provides explanations for each input’s contribution to the final
result and detects spatial associations of toxicity.
1. Introduction

The majority of patients undergoing pelvic radiotherapy experience
various side effects after radiotherapy (RT), (mainly bowel, urinary
and sexual dysfunction) and report that it affects their quality of life
[1,2]. The damage caused by RT to normal tissues depends on various
factors and the correlation between these factors and the risk of late
toxicity is not well understood [3–5]. Developing RT-induced toxicity
prediction models is essential in mitigating their consequences. Such
models can detect various factors associated with toxicity, helping
clinicians personalising treatment and minimising the effect of it [6].

Normal tissue toxicity prediction is a large and active field of
research. Traditional models rely on dose-volume histogram (DVH)
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data, aiming to condense dose-volume information into a numerical
expression representing the risk of specific toxicities. They simplify the
3D/4D dose distribution into a 1D representation [7]. To incorporate
spatial dose information, various Normal Tissue Complication Proba-
bility (NTCP) models have been proposed. Examples include spatial
feature methods [8], spatial-scale methodologies [9], and dose surface
maps methods [10].

With the emergence of machine learning (ML), many studies have
employed ML methodologies for toxicity prediction [11,12]. However,
these models also rely on 1D input data. Deep learning, a subset of
ML, has shown significant potential for integrating complex 3D spatial
information in toxicity prediction. Most prior studies have used single-
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Table 1
Candidate clinical features considered for toxicity prediction. .

Feature Mean(std)/number of patients Missing data Description

Diagnosis
Cancer type anal:94, rectal:74,

endometrial:48, cervical:97
0 value in {1, . . . ,4}

Demographic
Age 60 (13) 0 patient age (in years) rounded to the

nearest integer.
Gender female:238, male:75 0 1 for male 2 for female
BMI 28 (5) 59/313 kg/m2 rounded to the nearest integer.
Current smoker yes:48, no:203 62/313 binary value in {0,1}

Comorbidities
Diabetes yes:25, no:287 1 binary value in {0,1}
Cardiac yes:101, no:211 1 binary value in {0,1}
Previous surgery yes:136, no:176 1 binary value in {0,1}

Medication intake
ACE Inhibitors yes:38, no:273 2/313 binary value in {0,1}
Statins yes:54, no:257 2/313 binary value in {0,1}

Treatment
Concurrent chemo yes:206, no:107 0 binary value in {0,1}
Received surgery yes:117, no:196 0 binary value in {0,1}
Received VMAT yes:19, no:294 0 binary value in {0,1}
Time since radiotherapy 2.45 (1.2) 0 years after treatment
Recurrence yes:47, no:266 0 binary value in {0,1}
Total prescribed dose 44.9 (10.4) 0 total irradiated in Gy

Dose metrics
VBowelBag10 Gy 7.2 (6.3) 10/313 % of bowel bag received 10 Gy dose
VBowelBag20 Gy 11.2(10.3) 10/313 % of bowel bag received 20 Gy dose
VBowelBag30 Gy 7.2 (6.8) 10/313 % of bowel bag received 30 Gy dose
VBowelBag40 Gy 16.8 (14.8) 10/313 % of bowel bag received 40 Gy dose
VBowelBag50 Gy 2.2 (4.1) 10/313 % of bowel bag received 50 Gy dose
VBowelBag60 Gy 0.5 (3.4) 10/313 % of bowel bag received 60 Gy dose

Abbreviations: std, standard deviation; BMI, body mass index; ACE, angiotensin-converting enzyme; VMAT, volumetric
modulated arc therapy. Note: all VBowelBagXGy are converted to equivalent dose in 2 Gy per fraction (EQD2).
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or multichannel 3D convolutional neural networks (CNNs) to pro-
cess dose distributions [13,14] and incorporate other image modalities
like computed tomography (CT) scans [15–17], magnetic resonance
imaging MRI [18], and positron emission tomography PET scans [19].

Some research has employed various combinations of data, such
as 1D features from DVH, clinical features, and genomic or radiomics
eatures [20–24]. Although many studies have used data fusion tech-

niques to combine image data and clinical variables [25,26], relatively
few focus specifically on toxicity prediction by analysing dose data
combined with clinical features. Ibragimov et al. [27] used a CNN
o analyse 3D dose distributions and clinical features for predicting
iver stereotactic body radiation therapy outcomes. Welch et al. [28]
eveloped a pipeline that combines clinical data with dose distribution,

CT scans, and contour data to predict locoregional failure. In our
revious study, we proposed a CNN approach to predict radiotherapy

outcomes [29]. However, it only focused on analysing imaging data and
planned dose distributions, discarding the analysis of clinical variables.

In this work, we aimed to enhance and refine the previous model
by incorporating clinical data. We proposed an attention-based feature
fusion approach to include clinical data and identify the significance of
each clinical feature. To achieve a comprehensive evaluation, this work
investigated three key aspects: (i) Does including clinical data improve
the model’s performance? (ii) Does the significance of input data vary
depending on the specific bowel symptom being predicted? (iii) How do
different combinations of data affect prediction with different models?

2. Materials and methods

2.1. Dataset

A cross-sectional dataset comprised of 313 patients treated cu-
ratively with pelvic radiotherapy for anal, rectal, endometrial, and
2 
cervical cancer were used in the study. Patients were recruited during
follow-up appointments at least one year after radiotherapy and three
bowel issues were evaluated: bowel urgency, diarrhoea, and faecal
incontinence. CT scans, 3D dose distributions and contour structure
sets for organs in the pelvis were collated. Based on Radiation Therapy
Oncology Group(RTOG) guidelines [30], the intestinal cavity structure
was contoured as ‘bowel bag’ encompassing both large and small bowel
regions for each patient and considered as the organ at risk for all three
toxicities included in this study. The National Research Ethics Service
eeds East Committee approved the data collection study following
thical review with reference number 13-YH-0156. Further use of data
or the current project was provided by the LeedsCAT research database
ith reference 19-YH-0300. A total of 22 clinical features relevant

o bowel urgency, diarrhoea, and faecal incontinence were selected
ased on prior research that reported potential connections between
adiotherapy and bowel toxicity [31–34]. Furthermore, an expert in

patient-reported outcomes after pelvic RT (Dr Alexandra Gilbert) re-
viewed and further refined the selection. Features were subdivided into
cancer type, demographic, comorbidities, medications, treatment and
dose metrics (calculated from dose volume histograms, DVHs). Treat-
ment features included treatment type (3D conformal radiation therapy
(3DCRT) vs volumetric modulated arc therapy (VMAT)), concurrent
chemotherapy treatment (chemo), surgery, time since radiotherapy,
and recurrence status of the tumour. Medication use (statins and ACE
inhibitors) at the time of questionnaire completion was also included
(please see Supplementary Material A for more information about
the dataset). Dose metrics also included the total received dose and
relative bowel bag volume. Ten patients with missing dose data were
emoved from the study. In total, 175 of 240 patients reported bowel

urgency, 101 of 305 reported diarrhoea, and 84 of 303 reported faecal
incontinence. Details of the clinical features are shown in Table 1.



B. Elhaminia et al. Physics and Imaging in Radiation Oncology 33 (2025) 100710 
Fig. 1. The schematic illustration of the MIL-Att network analysing CT scans, dose distributions, and clinical data. Input data are pre-processed and fed into the MIL-Att network.
The output of attention modules is used to detect clinical risk factors, anatomical regions associated with and importance of CT images and dose distributions. The output of the
network predicts the toxicity occurrence.
Fig. 2. Comparison of prediction performance for various models. Green bars show the different models trained with the same clinical metadata. Abbreviations: AUC: area under
the receiver operating characteristic curve; LR: logistic regression; RBF: radial basis function; MIL-Att: multiple instance learning network with attention; MIL-Att-M: network trained
with clinical data; MIL-Att-I: network trained on CT and dose data; MIL-Att-C: network trained with combination of clinical data, CT scans and dose distributions.
2.2. Neural network for multimodal data fusion

We previously presented a two-path network focusing solely on
CT imaging and dose distribution data for predicting bowel urgency
toxicity [29]. In this work, we expanded and modified our previous
network to perform data fusion, enabling simultaneous analysis of
clinical data and 3D data. The model already included two attention
modules, named 𝛼 and 𝛽. The 𝛼 attention highlighted the importance
of different bowel bag regions, while the 𝛽 attention indicated the
significance of each image data. The higher value of attention weights
represented greater importance for the corresponding input. The new
architecture incorporated a new attention module and a convolutional
block for feature-level fusion. The attention, a fully-connected network,
3 
processed 22 clinical features and generated a ranking (𝛾 weights)
indicating the impact of each clinical factor on the prediction.

All the images and clinical data were preprocessed for registra-
tion and normalisation before being fed to the network (please see
Supplementary Material B for details). The clinical features were then
weighted by their ranks and concatenated with the image features. To
prevent the network from being biased toward the higher-dimensional
image features, their size was reduced through a new linear module. A
concatenation of weighted features from clinical data and imaging data
was used as the final feature for the prediction. Fig. 1 illustrates the
general architecture of our model. Detailed explanations of the model
formulation, training process and measures to avoiding overfitting are
provided in the Supplementary Material C.
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Fig. 3. Attention map generated by proposed model. A: example for patient specific attention map; B: the attention atlas generated based on the whole population.
Fig. 4. Quantitative evaluation of image association. The 𝑦-axis shows the average of the 𝛽 attention weights for each slice within the bowel bag for both CT and dose distributions.
The higher value of attention weight shows higher importance for toxicity prediction. The numbering of slices begins at the caudal end of the bowel bag and increases toward
the cranial end.
2.3. Analysing different data combination

One of the objectives of this study was to explore how multimodal
analysis affects the prediction performance. We evaluated the perfor-
mance of the proposed model with different input analyses: (i) only
clinical features; training model only with the numerical (metadata)
data (MIL-Att-M). (ii) spatial features; training model with CT scans
and planned dose distributions (image data) only (MIL-Att-I). (iii)
both clinical and spatial paths (combined) were trained (MIL-Att-C).
Additionally, we analysed three conventional ML models – logistic re-
gression, SVM, and random forest – for toxicity prediction using clinical
features, comparing their performance with our proposed model. The
SVM used linear, RBF, and polynomial kernels, and the RF model had
100 trees.

We randomly selected 20 patients with and 20 without toxicity for
testing, using the rest for training and validation. All models were
tested on the unseen test set. To evaluate the network’s prediction
performance, accuracy and AUC were evaluated on the test data for
all three types of toxicity.

3. Results

3.1. Toxicity prediction

For bowel urgency and faecal incontinence, jointly analysing CT,
planned dose distributions and clinical data improved the accuracy and
AUC of the prediction model (see Fig. 2). Analysing only CT scans and
planned dose distributions for bowel urgency and faecal incontinence
resulted in accuracies of 80% and 70%, respectively. These numbers
increased to 85% and 75% when clinical data were added. In contrast,
for diarrhoea, training both network paths resulted in a lower AUC than
the training clinical features path. The comparison of different models
for the same clinical data showed that LR and MIL-Att-M performed
slightly better than SVM and RF models.
4 
3.2. Analysis of attention maps

Evaluation of the attention weights 𝛼 revealed that the attention
map varied across different toxicities (see Fig. 3.A). Further exami-
nation of the atlas for each toxicity indicated that for bowel urgency
the weights were concentrated on the inferior and right iliac fossa of
the bowel bag. Faecal incontinence was predicted by attention weights
in the postero-inferior region (i.e. corresponding to the anorectum),
while no clear anatomical region could be identified from the attention
weights for prediction of diarrhoea (see Fig. 3.B).

Analysing importance of each CT and dose slice showed that for
bowel urgency and diarrhoea, dose slices were more associated,
whereas for faecal incontinence, CT slices from the caudal pelvis (slice
number < 15) gained more attention (see Fig. 4).

3.3. Detecting risk factors (𝛾 weights)

Comparison between the deep learning model and ML models in
analysing clinical risk factors showed that for bowel urgency and
faecal incontinence, the top ten features had a number of overlapping
elements: BMI and cancer type were included almost in the first five
important features for all the models. For diarrhoea, dose metrics were
prominent for the ML models, while MIL-Att-C only added two to the
top 10 list (see Fig. 5).

4. Discussion

We proposed an expansion of our previously published study to
analyse different combinations of CT imaging, dose distributions, and
clinical data to predict bowel-related toxicities. This work has three
key novelties and distinctions compared to our previous work. Firstly,
the network was expanded and modified to incorporate clinical fea-
tures for multimodal data fusion. Secondly, a third attention module
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Fig. 5. Analysis of risk factors. For clarity, only the top 15 features from each model are presented. The 𝑥 axis presents the importance of features. The differences in the range
of values for feature importance arises from the different computation methods used for each model. Abbreviations: BMI, body mass index; VMAT, volumetric modulated arc
therapy; RT, radiotherapy; ACE, angiotensin-converting enzyme. MDI, mean decrease of impurity. Note: total dose denotes the total prescribed dose..
was employed, to determine the significance of each clinical factor
individually. To the best of our knowledge, this study is the first
attempt to utilise a deep network for detecting the importance of
clinical risk factors in RT toxicity prediction. Lastly, this study analysed
three distinct types of bowel toxicity. This more comprehensive evalu-
ation demonstrated the proposed model’s capability to detect different
toxicities, reinforcing its reliability in toxicity prediction.

The results showed that the proposed feature-level fusion of CT
scan, dose, and clinical data enhanced the prediction performance for
both bowel urgency and faecal incontinence. Moreover, incorporat-
ing attention modules into the model allowed visual explanations for
toxicity distribution and detection of potential risk factors. In par-
ticular, the model demonstrated a potential differential spatial dose
dependence for different bowel symptoms, likely reflecting diverse
underlying pathophysiology.
5 
Before this work, several studies reported deep learning models that
incorporate imaging and clinical data for RT outcome prediction [27,
28]. However, the specific significance of each data type in these
models remains undetermined, and it is unclear which combination of
data is optimal for prediction and why. There are also other studies
that compared different combinations of data for deep learning and
ML approaches [35–37], but these studies either cannot detect the data
importance or they directly incorporate 3D dose data into the deep
learning models.

Analysis of attention module 𝛼 indicates the anatomical association
of toxicity. For bowel urgency, anterior and right iliac fossa regions of
the bowel bag were highlighted with a higher possibility of toxicity.
The anterior region is the location of most small bowel loops, i.e. rep-
resenting general irradiation of small bowel. The right iliac fossa region
plausibly reflects the dose received to the terminal ileum/caecal region.
This area is usually affected in Crohn’s disease and is considered to be
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involved in bowel symptoms including urgency [38]. This region is not
urrently considered an avoidance structure in standard radiotherapy
rocedures, highlighting the need for further investigation in future
esearch. This finding was consistent with our previous work (which
onsidered only CT and dose, without clinical factors [29]). The gen-

erated atlas for faecal incontinence showed attention weights focused
n the postero-inferior pelvis. From a clinical perspective, this pattern
s intuitive and reflects symptom development in relation to anorectal
oxicity.

For diarrhoea, the atlas did not demonstrate a clear correlation
with a particular anatomical area. This may reflect the fact that di-
arrhoea is a heterogeneous concept to patients, made up of multiple
bowel symptoms such as urgency, stool consistency, frequency and
ncontinence. These multi-dimensional symptoms may have different
nderlying mechanisms and therefore may be associated with different
arts of the bowel and not a region-specific symptom.

Previous studies have demonstrated the effectiveness of combining
different modalities such as CT, MRI or PET [15–18], but they often
lack clarity on how these modalities exert their influence. In contrast,
our model with attention module 𝛽 reveals the significance of each
2D slice. The analysis of 𝛽 weights revealed varying importance across
different slides, indicating distinct impacts of the anatomical structure
in CT and spatial information in dose on toxicity prediction. A detailed
nalysis is in Supplementary Material D.

Incorporating the attention module 𝛾 into the network enabled the
model to identify which clinical variables were more important for the
final prediction, a capability absent in previous studies with similar ob-
jectives [27,28]. The analysis of 𝛾 weights and importance coefficients
of conventional ML models showed that they more or less selected the
same set of features as the top 15 important ones. However, the ML
models found dose features more important for the final prediction
ompared to the MIL-Att network. This suggests that the dose metrics
which do not include spatial information) are generally associated
ith toxicity, and because the neural network extracts dose metrics

eparately from dose distributions, the 𝛾 weights for these features do
ot gain high values in the MIL-Att-C model.

Analysis of multimodal data for diarrhoea suggests that the toxicity
ight be more associated with candidate clinical variables than dose or
T scans. Overall, the network had the lowest accuracy for prediction
f diarrhoea symptoms. This may suggest patient-reported diarrhoea
escribes a more complex issue – one combining stool consistency as

well as frequency and urgency – and therefore reflects a more complex
aetiology that is dependent on many factors. This will likely be reflected
in a less reliable relationship between anatomical dose distribution and
the risk of diarrhoea, as reported in this series.

Comparing models trained with clinical data alone, LR and our MIL-
Att-M network slightly outperformed other methods, including RF and
SVM with different kernels. This might be due to the small dataset
and SVM and RF potentially misrepresenting the decision boundary.
As probabilistic models, MIL-Att-M and LR performed better, suggest-
ing that clinical features alone determine a probability rather than a
efinitive outcome.

Several limitations should be noted. First, our dataset had lim-
ted size, creating challenges in model generalisation. Ideally, k-fold
alidation would have been used, but this was not feasible (see Supple-
entary Material E). Instead, DeLong’s test was conducted for statistical

valuation, with results in Supplementary Material F. Second, there
re limitations related to the data itself: some patients underwent

brachytherapy, which was not captured in the external beam dose
distribution, potentially introducing bias. Future studies should con-
sider both external beam radiotherapy and brachytherapy for a more
comprehensive assessment. Additionally, treatments occurred over a
decade ago, and the median follow-up period was only two years,
factors which may affect the results. Validation with newer datasets
and longer follow-up would therefore be beneficial. Furthermore, most
patients received 3D conformal radiation therapy (3DCRT) rather than
6 
volumetric modulated arc therapy (VMAT). Since newer methods such
as VMAT and intensity-modulated radiation therapy (IMRT) have been
associated with reduced toxicity compared to 3DCRT, training the
model on a more balanced dataset that includes newer treatment tech-
niques could improve generalisation. Finally, the study analysed only
the planned dose distributions, which may differ from the delivered
dose. For a highly mobile organ like the bowel, spatial dose-dependence
may actually reflect spatial variation between planned and delivered
doses to specific anatomical substructures. It is also worth noting that
the analysis of 𝛾 weights showed associations with clinical features but
did not clarify the impact of different classes. For example, while BMI
was identified as a risk factor, it remains unclear whether a high or low
BMI has a greater influence on side effects. Further analysis is needed
to address this question.

In conclusion, this study introduced a novel model for multimodal
ata fusion to predict bowel-related toxicities following pelvic radio-
herapy. The proposed framework offered a clinical tool for radiother-
py outcome prediction which can visualise the spatial impact of dose
nd image information, as well as evaluate clinical risk factors.
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