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Abstract: Background: Ovarian cancer encompasses a diverse range of neoplasms originat-
ing in the ovaries, fallopian tubes, and peritoneum. Despite being one of the commonest
gynaecological malignancies, there are no validated screening strategies for early detec-
tion. A diagnosis typically relies on imaging, biomarkers, and multidisciplinary team
discussions. The accurate interpretation of CTs and MRIs may be challenging, especially
in borderline cases. This study proposes a methodological pipeline to develop and evalu-
ate deep learning (DL) models that can assist in classifying ovarian masses from CT and
MRI data, potentially improving diagnostic confidence and patient outcomes. Methods: A
multi-institutional retrospective dataset was compiled, supplemented by external data from
the Cancer Genome Atlas. Two classification workflows were examined: (1) whole-volume
input and (2) lesion-focused region of interest. Multiple DL architectures, including ResNet,
DenseNet, transformer-based UNeST, and Attention Multiple-Instance Learning (MIL),
were implemented within the PyTorch-based MONAI framework. The class imbalance was
mitigated using focal loss, oversampling, and dynamic class weighting. The hyperparame-
ters were optimised with Optuna, and balanced accuracy was the primary metric. Results:
For a preliminary dataset, the proposed framework demonstrated feasibility for the multi-
class classification of ovarian masses. The initial experiments highlighted the potential of
transformers and MIL for identifying the relevant imaging features. Conclusions: A repro-
ducible methodological pipeline for DL-based ovarian mass classification using CT and
MRI scans has been established. Future work will leverage a multi-institutional dataset to
refine these models, aiming to enhance clinical workflows and improve patient outcomes.

Keywords: ovarian cancer; deep learning; CT imaging; MRI; artificial intelligence;
multiple-instance learning; transformer-based models

1. Introduction
Ovarian cancer (OC) is a heterogeneous group of neoplasms originating in the ovaries,

fallopian tubes, and peritoneum. The commonest histological subtype is epithelial ovarian
carcinoma, but there are extensive morphological variations within the disease spectrum,
including benign, borderline, and malignant lesions. OC is the seventh most common
female malignancy and a leading cause of death from gynaecological cancer worldwide,
accounting for 5% of all female cancer deaths and 3% of overall cancer deaths [1–3].

There are no validated screening strategies for the early detection of ovarian cancer. In
2016, a UK randomised controlled trial (RCT) consisting of 202,000 women concluded that
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there was insufficient evidence to recommend screening [4]. The lack of effective screening
combined with an often late clinical presentation with non-specific symptoms, such as
abdominal pain, bloating, and fatigue, leads to a high rate of morbidity and mortality. In
the UK, roughly 70% of patients present with advanced disease and distant metastases [1].

The assessment of ovarian masses largely relies on imaging, biomarker measurements,
and multidisciplinary team (MDT) discussion. Imaging is fundamental for ovarian cancer
diagnosis and management, helping to distinguish benign adnexal lesions from potential
malignancies and identifying metastatic disease.

Ultrasonography is the primary imaging modality for the initial evaluation of ovarian
masses. A transvaginal ultrasound is an accessible, real-time modality that provides de-
tailed visualisation of ovarian lesions. The International Ovarian Tumor Analysis (IOTA)
criteria may be used to classify masses based on their morphological features, blood flow,
and simple sonographic rules [5]. These rules allow for the confident identification of
approximately 75% of adnexal masses, with a sensitivity of around 90% and a specificity of
around 95% [6]. Inconclusive and malignant cases warrant further evaluation. The Risk
of Malignancy Index (RMI) was introduced as a scoring system combining ultrasound
findings, serum CA-125 levels, and menopausal status, and is widely used in clinical
practice to quantify the likelihood that an adnexal mass is malignant [7]. An RMI above
200 prompts a referral to a gynaecologic oncology specialist multidisciplinary team for
further care. Using such an ultrasound-based initial triage helps ensure that women with
likely benign masses are monitored or managed conservatively, whereas those with incon-
clusive or high-risk features are promptly directed to appropriate further investigations
and specialist management.

In cases where the ultrasound findings are indeterminate or suggestive of a malignancy,
computed tomography (CT) and magnetic resonance imaging (MRI) are the subsequent
imaging modalities of choice. A CT of the abdomen and pelvis allows for the assessment of
disease extent and an MRI, whilst not routinely used for initial assessments, is a valuable
problem-solving tool for characterizing masses due to its superior soft-tissue contrast.

Whilst a histopathological diagnosis is the gold standard for confirming a malignancy,
the point at which a biopsy is obtained may vary (Supplemental Figure S1) [8]. If a
suspected malignant lesion is deemed resectable based on the imaging findings, the patient
may go straight to surgery, and tissue diagnosis is established intraoperatively. If the
patient is not suitable for surgery, if there is any doubt about operability, or if neoadjuvant
chemotherapy may be suitable, a tissue diagnosis is used to confirm the malignancy and
subtype. Therefore, the imaging findings and blood results may heavily direct the decision
to proceed with a primary cytoreductive surgery.

The interpretation of imaging can be challenging and somewhat dependent on the
expertise of the radiologist. This is especially true in borderline cases where the findings
may be ambiguous, leading to dilemmas during MDT meetings, where decisions about
further management, such as the type and extent of surgery, rely heavily on accurate
imaging interpretation.

The current treatment options include surgery, radiotherapy, and chemotherapy, which
have seen only slight improvements in patient survival rates over the years. Surgery
risks complications, which can be mitigated in some patients, particularly in those with
low-risk/benign lesions where an operation can be avoided. Therefore, a more accu-
rate method of lesion classification to guide surgical decision-making could significantly
improve patient outcomes.

Advancements in artificial intelligence (AI) and deep learning (DL) are ushering in a
new era of medical diagnostics. These cutting-edge technologies have shown considerable
promise for enhancing diagnostic accuracy across various healthcare domains, particularly
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in imaging [9–11]. The ability to process vast amounts of data and identify intricate patterns
mean that these techniques could significantly aid in the accurate classification of ovarian
lesions [11–14]. This potential enhancement in diagnostics could provide clinicians with
invaluable insights to make informed treatment decisions. However, it is important to note
that these technologies are still undergoing exploration and research, and their transition
to clinical use necessitates further validation.

The aim of this study was to develop a methodological pipeline to evaluate AI-assisted
diagnosis and phenotyping of ovarian masses using CT and MR imaging data routinely
acquired for staging or detailed lesion assessment. A growing body of literature has
demonstrated the potential of radiomics in ultrasounds for ovarian lesion classification [12].
In this paper, however, we focus on CT and MRI, since these modalities are routinely used
for staging or further characterisation when the ultrasound findings are equivocal. The
methodological framework will be used to develop and train DL models by utilising the
pre-treatment imaging data to differentiate between benign, malignant, and borderline
ovarian lesions. Two methodological approaches have been designed, incorporating both
classification without segmentation and classification with a 3D region of interest (ROI)
bounding box around the primary lesion. Pipelines utilising both traditional convolutional
neural network (CNN)-based architectures and models available through the Medical
Open Network for Artificial Intelligence (MONAI) have been developed. The primary goal
was to establish a reproducible and clinically relevant process for training and evaluating
DL models. The integration of an AI-assisted clinical decision support system providing
enhanced imaging interpretations may help guide optimal treatment decision-making.

2. Materials and Methods
2.1. Ethical Approval

Formal approval for the use of real-world patient data in this study was granted by the
UK Integrated Research Application System (IRAS), reference number 277122 (RCD-Onc:
Enhancing understanding and prediction of cancer outcomes with baseline characteristics
from routinely collected data) [15]. This approval was conferred on 3 December 2019
and permitted both retrospective and prospective data usage. An additional institutional
data access committee approval (Ref: LTH22020 RCD-Onc) ensured that any patients who
opted out of research via the UK National Data Opt-Out service [16] were excluded from
the dataset prior to analysis. Under this National Data Opt-Out policy, secondary use of
anonymised patient data is permitted (e.g., research and planning) unless they explicitly
opt out. Therefore, no individual signed consent forms exist for this study. All relevant
approvals and governance are in place via IRAS/HRA approval and through adherence to
the National Data Opt-Out policy.

2.2. Patient Selection

Internal cohort patient selection is illustrated in Figure 1. Patient characteristics are
detailed in Tables 1 and 2. Patient characteristics for the external validation cohort are
detailed in Tables 3 and 4.

Cohort 1: patients undergoing CT and/or MRI for investigation of ovarian masses
between January 2005 and December 2021 were identified retrospectively from a single
institution (Leeds Teaching Hospitals NHS Trust).

Cohort 2: data for external validation were retrospectively identified from patients un-
dergoing CT and/or MRI for investigation of ovarian masses at multiple regional hospitals
between January 2005 and December 2021.

Cohort 3: a separate external validation CT data cohort was obtained from the Cancer
Genome Atlas (TGCA-OV dataset).
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Table 1. CT patients (n = 1545; median age = 64 years; range, 18–96).

Diagnosis n %

M
al

ig
na

nt
(n

=
92

2)

High-grade serous carcinoma 540 35.0
Endometrioid carcinoma 94 6.1

Clear cell carcinoma 75 4.9
Mucinous carcinoma 70 4.5

Mixed carcinoma 34 2.2
Carcinosarcoma 26 1.7

Unclassified malignant (NOS) 20 1.3
Adult granulosa cell tumour 14 0.9
Neuroendocrine carcinoma 8 0.5
Squamous cell carcinoma 6 0.4

Malignant teratoma 6 0.4
Germ cell tumour, nonseminomatous 5 0.3

Undifferentiated carcinoma 4 0.3
Dysgerminoma 4 0.3
Yolk sac tumour 4 0.3
Other malignant 4 0.3

Sertoli–Leydig cell tumour 2 0.1
Malignant Brenner tumour 1 0.1

Sex cord–gonadal stromal tumour, NOS 1 0.1
Mixed germ cell tumour 1 0.1

Leiomyosarcoma (mesenchymal) 1 0.1
Endometrial stromal sarcoma (mesenchymal) 1 0.1

Gastrointestinal stromal sarcoma (mesenchymal) 1 0.1

Bo
rd

er
lin

e
(n

=
12

4)

Mucinous borderline tumour 63 4.1
Serous borderline tumour 58 3.8

Clear cell borderline tumour 1 0.1
Endometrioid borderline tumour 1 0.1

Gonadoblastoma 1 0.1

Be
ni

gn
(n

=
49

9)

Non-neoplastic cyst 354 22.9
Neoplasm, benign (NOS) 85 5.5

Fibroma (sex cord–stromal) 9 0.6
Benign teratoma (mature) 8 0.5

Adenofibroma, NOS 7 0.5
Adult granulosa cell tumour 7 0.5

Mucinous cystadenoma 7 0.5
Cystadenoma, NOS 6 0.4
Serous cystadenoma 6 0.4

Brenner tumour (benign) 3 0.2
Carcinoid tumour (monodermal) 2 0.1

Struma ovarii (monodermal) 2 0.1
Adenoma, NOS 1 0.1

Leiomyoma (mesenchymal) 1 0.1
Leydig cell tumour (sex cord–stromal) 1 0.1
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Table 2. MRI patients (n = 987; median age = 52 years; range, 18–96).

Diagnosis n %

M
al

ig
na

nt
(n

=
19

2)

High-grade serous carcinoma 63 6.4
Endometrioid carcinoma 28 2.8

Mucinous carcinoma 28 2.8
Clear cell carcinoma 10 1.0

Adult granulosa cell tumour 10 1.0
Unclassified malignant (NOS) 9 0.9

Mixed carcinoma 6 0.6
Yolk sac tumour 5 0.5

Malignant teratoma 5 0.5
Dysgerminoma 4 0.4

Germ cell tumour, nonseminomatous 4 0.4
Carcinosarcoma (including MMMT) 3 0.3

Neuroendocrine carcinoma 3 0.3
Squamous cell carcinoma 2 0.2

Malignant Brenner tumour 2 0.2
Undifferentiated carcinoma 2 0.2

Granular cell carcinoma 2 0.2
Leiomyosarcoma (mesenchymal) 1 0.1

Adenosarcoma (mixed epithelial–mesench.) 1 0.1
Pseudomyxoma peritonei 1 0.1

Gynandroblastoma (sex cord–stromal) 1 0.1
Juvenile granulosa cell tumour 1 0.1

Sertoli–Leydig cell tumour 1 0.1

Bo
rd

er
lin

e
(n

=
99

)

Serous borderline tumour 54 5.5
Mucinous borderline tumour 42 4.3

Other borderline 2 0.2
Endometrioid borderline tumour 1 0.1

Be
ni

gn
(n

=
69

6)

Non-neoplastic cyst (tumour like) 530 53.7
Neoplasm, benign (NOS) 98 9.9

Dermoid cyst/mature teratoma 17 1.7
Adenofibroma, NOS 8 0.8
Cystadenoma, NOS 8 0.8
Serous cystadenoma 8 0.8

Mucinous cystadenoma 7 0.7
Fibroma (sex cord–stromal) 5 0.5

Other benign entities 5 0.5
Adult granulosa cell tumour 3 0.3
Serous adenofibroma, NOS 3 0.3

Adenoma, NOS 2 0.2
Brenner tumour (benign) 2 0.2
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Table 3. External CT patients from 55 centres (n = 1922; median age = 63 years; range, 18–95).

Diagnosis n %

M
al

ig
na

nt
(n

=
16

79
)

High-grade serous carcinoma 1075 55.9
Endometrioid carcinoma 130 6.8

Mucinous carcinoma 128 6.7
Clear cell carcinoma 99 5.2

Mixed carcinoma 52 2.7
Unclassified malignant (NOS) 49 2.5

Carcinosarcoma (including MMMT) 43 2.2
Adult granulosa cell tumour 29 1.5

Squamous cell carcinoma 14 0.7
Neuroendocrine carcinoma 12 0.6

Teratoma, malignant 9 0.5
Undifferentiated carcinoma 6 0.3

Dysgerminoma 6 0.3
Pseudomyxoma peritonei 5 0.3

Malignant Brenner tumour 4 0.2
Mesenchymal tumours 4 0.2

Yolk sac tumour 3 0.2
Germ cell tumour, nonseminomatous 3 0.2

Adenosarcoma (mixed epithelial–mesench.) 3 0.2
Transitional cell carcinoma 2 0.1
Lymphoma/plasmacytoma 2 0.1

Granular cell carcinoma 1 0.1

Bo
rd

er
lin

e
(n

=
18

5)

Mucinous borderline tumour 98 5.1
Serous borderline tumour 68 3.5

Other uncertain/borderline 6 0.3
Sex cord–gonadal stromal tumour, NOS (borderline) 5 0.3

Clear cell borderline tumour 4 0.2
Borderline Brenner tumour 4 0.2

Be
ni

gn
(n

=
58

)

Neoplasm, benign (NOS) 24 1.2
Serous cystadenoma 7 0.4
Struma ovarii, NOS 6 0.3

Mucinous cystadenoma 5 0.3
Adenofibroma, NOS 4 0.2
Cystadenoma, NOS 3 0.2

Fibroma, NOS 2 0.1
Sertoli cell tumour, NOS (benign) 2 0.1

Serous adenofibroma, NOS 2 0.1
Benign teratoma 2 0.1

Leiomyoma 1 0.1



J. Pers. Med. 2025, 15, 76 7 of 27

Table 4. External MRI patients from 37 centres (n = 337; median age = 55 years; range, 18–92).

Diagnosis n %

M
al

ig
na

nt
(n

=
16

3)

High-grade serous carcinoma 76 22.6
Mucinous carcinoma 18 5.3

Endometrioid carcinoma 16 4.7
Clear cell carcinoma 12 3.6

Adult granulosa cell tumour 9 2.7
Carcinosarcoma 8 2.4

Mixed carcinoma 5 1.5
Unclassified malignant 5 1.5

Squamous cell carcinoma 2 0.6
Malignant teratoma 2 0.6

Dysgerminoma 2 0.6
Germ cell tumour, NOS 2 0.6

Undifferentiated carcinoma 1 0.3
Neuroendocrine carcinoma 1 0.3

Gastrointestinal stromal sarcoma (mesenchymal) 1 0.3
Yolk sac tumour 1 0.3

Gynandroblastoma 1 0.3
Malignant Brenner tumour 1 0.3

Bo
rd

er
lin

e
(n

=
84

) Serous borderline tumour 35 10.4
Mucinous borderline tumour 21 6.2

Unclassified borderline 18 5.3
Borderline Brenner tumour 4 1.2
Sex cord–stromal borderline 3 0.9
Neuroendocrine borderline 2 0.6

Endometrioid borderline tumour 1 0.3

Be
ni

gn
(n

=
90

)

Neoplasm, benign (NOS) 45 13.4
Benign cyst (tumour-like lesion) 10 3.0

Fibroma (sex cord–stromal) 8 2.4
Benign teratoma (mature) 8 2.4

Struma ovarii (monodermal) 5 1.5
Adenofibroma (benign epithelial) 4 1.2

Mucinous cystadenoma 2 0.6
Cystadenoma, NOS 2 0.6
Sertoli cell tumour 2 0.6

Serous adenofibroma 1 0.3
Leiomyoma (mesenchymal) 1 0.3

Sex cord–stromal, benign (NOS) 1 0.3
Thecoma (sex cord–stromal) 1 0.3

Gold standard or “ground truth” pathology diagnoses for all patients, including
controls, were corroborated using the final histopathological report. Imaging findings
were validated by subspecialty Consultant Radiologist radiology reports and specialist
Gynaecology MDT discussion notes available from the regional electronic patient records
(PPM+, Leeds, UK).
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Figure 1. Patient selection flow diagram.

2.3. Exclusion Criteria

Patients were excluded from this study if imaging was of poor quality or incomplete.
For CTs, this included artefacts and incomplete (truncated) scan data. For MRIs, this
included motion artefacts, scans with incomplete pelvic region coverage, or instances
where only part of the scan volume was covered in a single pass. Patients who had already
undergone ovarian surgery or commenced chemotherapy or radiotherapy prior to imaging
were excluded.

2.4. Inclusion Criteria

Patients were required to have pre-operative imaging available.
Imaging data for selected patients were extracted from the institutional PACS (Picture

Archiving and Communication System) (Enterprise Imaging, AGFA Healthcare, Belgium).

2.5. Selection of Representative Sample for Model Development

A total of 500 CT scans and 200 MRI scans were chosen for the preliminary dataset for
model development. The proportion of each diagnosis was kept at the same ratio as that
of the full dataset to ensure accurate representation, as well as to allow for testing of class
imbalance compensation methodologies.

2.6. Imaging Protocol
2.6.1. CT

Portal venous phase contrast-enhanced CT scans of the abdomen and pelvis were
acquired using multiple scanners over the course of this study (Tables 5 and 6). All images
were reconstructed with manufacturer-specific iterative algorithms.
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Table 5. Internal CT and MRI scanners (n = number of scans; T = Tesla).

Modality Manufacturer Model n Field Strength (T)

CT

General Electric

Revolution HD 295 –

LightSpeed VCT 174 –

LightSpeed Ultra 61 –

Revolution EVO 6 –

Optima CT660 4 –

Discovery 690 3 –

HiSpeed CT/i 1 –

Philips Mx8000 29 –

Siemens

Sensation 64 670 –

SOMATOM Definition 130 –

Sensation 16 116 –

SOMATOM Definition AS+ 21 –

SOMATOM Force 21 –

SOMATOM Drive 7 –

SOMATOM AR.STAR 4 –

SOMATOM PLUS 4 2 –

Sensation Open 1 –

MRI Siemens

Symphony 411 1.5

Aera 328 1.5

Avanto 215 1.5

Magnetom Sola 33 1.5

Table 6. External CT and MRI scanners (n = number of scans; T = Tesla).

Modality Manufacturer Model n Field Strength (T)

CT General Electric

Optima CT660 235 –

LightSpeed VCT 81 –

LightSpeed Ultra 19 –

LightSpeed16 8 –

Revolution EVO 8 –

LightSpeed Pro 16 6 –

Discovery 710 1 –

Discovery CT750 HD 1 –

LightSpeed Plus 1 –

LightSpeed Pro 32 1 –

Revolution HD 1 –
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Table 6. Cont.

Modality Manufacturer Model n Field Strength (T)

CT

Philips

Mx8000 44 –

Brilliance 64 3 –

Brilliance 16P 2 –

Brilliance 40 1 –

Ingenuity CT 1 –

Siemens

Somatom Definition AS+ 330 –

Somatom Definition AS 223 –

Sensation 40 196 –

Volume Zoom 131 –

Somatom Definition Edge 118 –

Sensation 16 91 –

Sensation 64 83 –

Emotion 16 50 –

Sensation 4 41 –

Emotion 6 10 –

Somatom go.All 7 –

Spirit 4 –

SOMATOM Definition Flash 1 –

Somatom go.Top 1 –

Symbia T16 1 –

Toshiba

Aquilion 145 –

Aquilion ONE 31 –

Aquilion Prime SP 28 –

Aquilion PRIME 16 –

Asteion 2 –

MRI

General Electric

Signa HDxt 3 1.5

Optima MR450w 3 1.5

Discovery MR450 3 1.5

Signa HDx 1 1.5

Philips

Intera 48 1.5

Ingenia 34 1.5

NT Intera 30 1.5

Achieva 27 1.5

Siemens

Aera 99 1.5

Avanto 51 1.5

Avanto_fit 26 1.5

SymphonyTim 6 1.5

Symphony 3 1.5

Magnetom Sola 2 1.5

Amira 1 1.5
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2.6.2. MRI

Pelvic MRI studies were obtained using multiple scanners over the course of this study
(Tables 5 and 6). T2-weighted, T1-weighted, fat-saturated T1-weighted, and diffusion-
weighted imaging (DWI) sequences were utilised.

2.7. Model Implementation

All code was written in Python 3.9.

2.8. Image Extraction and Preprocessing

CT and MRI scans were preprocessed to ensure imaging data standardisation prior to
analysis. The workflow was categorised into distinct stages (Figure 2).
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CT and MRI scans were exported from PACS in Digital Imaging and Communications
in Medicine (DICOM) format. Although DICOM is the standard format for storing and
transmitting medical imaging data, it is not ideal for ML and DL tasks for several reasons.

DICOM contains detailed metadata, including sensitive patient information, study
details, and acquisition parameters. Additionally, DICOM divides each imaging slice
into separate 2D files, creating inconsistencies in data handling. In contrast, the NIfTI
(Neuroimaging Informatics Technology Initiative) format offers a streamlined approach
by consolidating the data into unified 3D volumes, which simplifies data handling and
subsequent integration with ML and DL libraries. NIfTI also helps improve data consis-
tency by standardising image dimensions and voxel sizes, and absence of patient-specific
information mitigates privacy concerns.

The dcm2niix (https://github.com/rordenlab/dcm2niix (v1.0.20240202), accessed
date: 22 January 2025) library [17–20] was employed for DICOM to NIfTI conversion.
Key metadata were preserved in a JavaScript Object Notation (JSON) sidecar file for each
NIfTI file, containing key acquisition parameters, patient information, and scanner details
extracted from the DICOM header. Using the “wholeBody_ct_segmentation” model from
the Medical Open Network for Artificial Intelligence (MONAI) framework Model Zoo
(https://monai.io/model-zoo.html (v1.4.0), accessed date: 22 January 2025) each 3D CT
volume was subjected to automated sacrum segmentation. Once identified, scans were
cropped to retain the sacrum along with 150 cm of cranial extension above its most superior
portion. Pelvic MRI scans did not require any cropping.

With the “NiBabel” Python library (https://nipy.org/nibabel/gettingstarted.html
(v3.2.2), accessed date: 22 January 2025), each imaging study was reoriented to a standard
reference frame. A fixed range of intensities was applied to maximise soft-tissue contrast
for CT scans. For MRI data, ComBat harmonisation was applied by adjusting the intensity
distributions across different scanners to match a common reference distribution, thereby
correcting for scanner-specific biases (https://github.com/Jfortin1/neuroCombat, accessed
date: 22 January 2025). Each 3D scan then underwent resizing to a uniform shape and
intensity normalisation to ensure consistency in input size and voxel values. The “Scikit-

https://github.com/rordenlab/dcm2niix
https://monai.io/model-zoo.html
https://nipy.org/nibabel/gettingstarted.html
https://github.com/Jfortin1/neuroCombat
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Learn” library (https://scikit-learn.org (v1.5.2), accessed date: 22 January 2025) was used
to split data for model training, validation, and testing.

To improve generalizability and increase sample variety, data augmentation was ap-
plied. This included random transformations, such as random affine transformations, flip-
ping, and elastic deformations to increase the variety of samples (Supplemental Table S1).
Class imbalance was tackled in part with minority class oversampling. At the end of these
steps, data were standardised, balanced, and augmented, and ready to be fed into a deep
learning model as PyTorch tensors.

Itk-Snap (http://www.itksnap.org (v4.0.1), accessed date: 22 January 2025) was used
to draw a spherical region of interest (ROI) encompassing the lesion in the 3D scan data.
The segmented ROI could then be passed into the existing model architectures as the
primary input for training, allowing models to focus on the most pertinent features within
the specified region. The ROI could be exported in the standard Neuroimaging Informatics
Technology Initiative file format (.nii), and used as an additional input for the DL networks.

To help interpret data, the “Matplotlib” (v3.10.0) Python library was used to visu-
alise output data (Figure 3). “TensorBoard” (https://www.tensorflow.org/tensorboard
(v2.18.0), accessed date: 22 January 2025) was also employed to collect and present a range
of performance metrics. “TensorBoard” facilitates tracking and comparison of different
model runs, providing clear insights into training progress and results with an interactive
dashboard (Figure 4).

“Pandas” (v2.2.3) and “NumPy” (v1.26.4) Python libraries were utilised to organise
and analyse imaging data. “Pandas” enabled creation of structured data frames and
“NumPy” was used to create data arrays.
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2.9. Model Architectures

DL encompasses a multitude of architectures designed to handle complex image
classification tasks. Radiologists are often asked to differentiate between benign, borderline,
and malignant ovarian masses, a crucial, yet challenging task. Beyond this differentiation,
an emerging interest is to determine if these architectures can also discriminate between
pathological ovarian cancer subtypes. This level of detail could provide an additional layer
of precision in diagnosis and management.

All models were implemented using the PyTorch-based (v2.5.1+cu124) MONAI (v1.4.0)
framework. This provides a suite of tools optimised for handling complex healthcare data,
including CT and MRI. These tools include optimised data transformation and preprocess-
ing utilities, aside from network architectures that are well suited for working with 3D
volumetric data. MONAI also hosts the Model Zoo, a repository of pre-trained models.
MONAI provides a strong foundation for both whole-volume and ROI-based analyses.

2.10. CNN-Based Architectures (DenseNet and ResNet)

CNNs are designed to learn spatial hierarchies of features automatically and adaptively
from images. The architecture consists of an input layer, several hidden layers, and an
output layer. Hidden convolutional layers employ filters to detect patterns, such as edges
and shapes, through a series of convolutional, pooling, and fully connected layers. CNNs
can capture hierarchical patterns in data, making them exceptionally efficient for image
classification tasks.

These architectures permit extraction of a wide range of imaging features, which
may increase the precision of imaging analysis. Radiological images often contain hidden
features that can influence diagnostic outcomes. The layered structure of these networks is
adept at understanding these hierarchies. These architectures have displayed promising
performances in various prior studies [21–32], making them promising candidates for the
classification of ovarian masses.
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2.11. DenseNet

DenseNets are a variation of CNNs, utilising dense connections between layers, with
each layer receiving feature maps from all preceding layers. This promotes feature reuse,
improving efficiency and reducing the number of parameters (and mitigating the risk of
overfitting). DenseNets can be particularly advantageous in medical imaging, where data
size is often limited compared to conventional big data.

2.12. ResNet

ResNets introduce the concept of skip connections or shortcut connections. These con-
nections allow a network to skip layers during forward and backward passes, addressing
the vanishing gradient problem often encountered in deeper networks. ResNets enable
the capture of more intricate features because of the residual blocks containing these skip
connections. This can be beneficial when trying to discern nuanced differences between
ovarian pathological subtypes.

2.13. Transformer-Enhanced Architecture—UNeST (Universal Network with Nested Transformer)

UneST architecture is built on the foundation of UNet architecture. Traditional UNet
architectures employ a U-shaped structure with a contracting path to capture features
and an expanding path to achieve localisation. UNeST architecture enhances this by
integrating nested transformer layers, adding powerful attention mechanisms to a network.
The transformer layers can model long-range dependencies, allowing the architecture to
understand global relationships within an image. This results in a robust solution for detail
localisation and global context.

2.14. Multiple-Instance Learning (MIL)

DL models are typically trained using single-instance learning, where each instance
in a training set is labelled. However, a single 3D volume may contain multiple distinct
regions (patches), which collectively determine its label. Multiple-Instance Learning (MIL)
considers a “bag” of patches with one label, allowing a model to make inferences based
on collective information by focusing on specific informative regions rather than whole
images. This approach can reduce computational load.

MONAI offers 2D MIL utilities; we implement a custom 3D MIL pipeline to fully
leverage volumetric imaging data for ovarian mass classification. Recent advances, such
as Attention MIL [33–36], have shown improved focus on relevant regions of interest for
classification tasks compared to conventional MIL. Attention MIL incorporates attention
layers within the MIL framework that help the model highlight and weigh the most relevant
instances within a bag. This is particularly beneficial when subtle details in certain areas
may significantly impact diagnosis.

2.15. Optimizing Hyperparameters

Hyperparameters control the learning process of an algorithm. Choosing opti-
mal hyperparameters is critical to refining a network’s performance. “Optuna” (v4.1.0)
(https://optuna.org, accessed date: 22 January 2025) is a Python hyperparameter optimisa-
tion library which can be implemented for PyTorch-based models to systematically tune
parameters through an automated search process. Hyperparameters include batch_size
(the number of samples processed simultaneously in each training step), learning rate
(how aggressively the model updates its weights), and weight decay (a factor that helps
control overfitting).

https://optuna.org
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2.16. Handling Class Imbalance

As previously described, minority class oversampling was used to ensure adequate
exposure during training. Focal loss from MONAI was also employed, which leverages
two key parameters, alpha to prioritise minority classes and gamma to emphasise hard-
to-classify samples. A dynamic class weighting strategy was applied after each training
epoch, where “minority_acc_threshold” checked if there were any class lags in accuracy,
and “minority_boost_factor” magnified the weight of that class in the loss function, which
effectively penalised the model for misclassifying minority classes.

2.17. Classification Tasks

Two classification tasks were evaluated using both CT and MRI data, with and without
including the ROI:

1. Three-way classification to differentiate between benign, borderline, and malignant lesions.
2. Four-way classification of lesions into one of the following histological subtypes:

benign, high-grade serous, other epithelial, and non-epithelial.

2.18. Model Overview

Please refer to Supplemental Table S2 for a list of software tools and Supplemental
Table S3 for a layer-by-layer breakdown of the proposed models.

2.19. ResNet
Model Architecture

Figure 5 illustrates the 3D ResNet architecture. It begins with convolutional blocks,
each comprising a Conv3D layer followed by batch normalisation and a Rectified Linear
Unit (ReLU) activation function, which work together to identify and transform spatial
features in the data.
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The core of DenseNet includes a sequence of dense and transition blocks. Dense 
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average pooling layer.

Transition blocks are used between dense blocks to reduce spatial dimensions and 
channel depth. Dense blocks comprise a batch normalisation layer, a Conv3D layer, and 
an average pooling layer.
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flattened feature vector. DenseNet concludes with a dense layer producing the classifica-
tion probabilities using softmax activation.

Figure 5. Schematic of the 3D ResNet architecture. The pipeline begins with a Conv 7 × 7 and
a 3D MaxPool operation to reduce the spatial resolution, followed by multiple ResBlocks (each
comprising 1 × 1 and 3 × 3 × 3 convolutions, batch normalisation, ReLU activations, and skip
connections). A global AvgPool layer then condenses the volumetric features into a single vector,
which is passed to an FC layer for final classification. The inset illustrates the typical ResBlock
layout with Conv–BN–ReLU sequences, skip connections, and a final post-addition ReLU. Conv:
convolution; BN: batch normalisation; ReLU: Rectified Linear Unit; AvgPool: global average pooling;
FC: fully connected.
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The architecture then progresses to encoder blocks, which consist of a convolutional
block with a MaxPooling3D layer. This reduces the size of the feature maps, simplifies
the data, and prepares them for deeper layers. This structure allows for the extraction of
increasingly complex features at varying resolutions.

After passing through a series of encoder blocks, the data flow through one final
convolutional block before reaching the GlobalAveragePooling3D layer, which condenses
all the spatial information into a single flattened vector. The data then pass through
a dense layer, culminating in another dense layer that generates the final classification
probabilities using softmax activation. The softmax function converts raw output into
probabilities for each class, allowing the model to make predictions based on the class with
the highest probability.

2.20. DenseNet
Model Architecture

Figure 6 illustrates the 3D DenseNet. The convolutional base layer begins with a
Conv3D layer, which extracts preliminary spatial features. This is followed by batch
normalisation and an ReLU activation function. A MaxPooling3D layer then downsamples
the feature maps.
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Figure 7 illustrates the 3D UNeST classifier model. The architecture consists of a U-
Net backbone, which begins with several convolutional layers and skip connections. A 
GlobalAveragePooling3D layer condenses the spatial information into a single feature 
vector, effectively reducing the dimensionality.
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Figure 6. Schematic of 3D DenseNet architecture. The pipeline begins with a Conv 7 × 7 for initial
feature extraction, followed by a 3D MaxPool to reduce spatial resolution. A series of dense blocks
(purple) and transition blocks (orange) then iteratively expand and reduce the feature dimensions.
Each dense block comprises successive Conv–BN–ReLU operations, concatenating outputs from all
preceding layers, while each transition block (Conv 1 × 1 + AvgPool) reduces feature map size and
channels. A global AvgPool layer aggregates the final volumetric features into a single vector, which
is passed to a fully connected (FC) layer for classification. The insets illustrate the typical internal
layout of a dense block and transition block.

The core of DenseNet includes a sequence of dense and transition blocks. Dense blocks
consist of multiple convolutional layers, where every new layer receives the concatenated
output of all the preceding layers, ensuring direct passage of gradients during training.
Transition blocks are used between dense blocks to reduce spatial dimensions and chan-
nel depth; they comprise a batch normalisation layer, a Conv3D layer, and an average
pooling layer.

Transition blocks are used between dense blocks to reduce spatial dimensions and
channel depth. Dense blocks comprise a batch normalisation layer, a Conv3D layer, and an
average pooling layer.
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After all the dense and transition blocks are complete, the model employs a batch
normalisation layer, ReLU activation, and a GlobalAveragePooling3D layer to generate a
flattened feature vector. DenseNet concludes with a dense layer producing the classification
probabilities using softmax activation.

2.21. UNeST

Figure 7 illustrates the 3D UNeST classifier model. The architecture consists of a
U-Net backbone, which begins with several convolutional layers and skip connections.
A GlobalAveragePooling3D layer condenses the spatial information into a single feature
vector, effectively reducing the dimensionality.
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Figure 7. Schematic of 3D UNesT architecture. The 3D input volume is passed through a 3-level NesT
to produce multi-scale feature maps {x1,x2,x3,x4}{x1,x2,x3,x4}, as well as a final feature map, xx. Each
intermediate NesT output is fed into a corresponding encoder block (encoder1–encoder4encoder1–
encoder4), comprising 3D convolutions (with BN/ReLU) and/or upsampling, yielding encoded
features enc0–enc3enc0–enc3. The final NesT output, xx, is further processed by an additional encoder
(e.g., encoder10) to expand feature depth. In the decoder phase, skip connections fuse the encoder
outputs with transposed convolution layers (decoder5–decoder1) to reconstruct intermediate 3D
representations. A classification head (global average pooling followed by a dense layer and softmax)
aggregates the final 3D representation to produce class probabilities. NesT: nested transformer;
BN: batch normalisation; dec: decoder; enc: encoder; ReLU: Rectified Linear Unit; AvgPool: global
average pooling.

This vector then flows through a classification head that consists of a sequence of fully
connected layers. These utilise dropout and ReLU activation for regularisation and non-
linear transformation. Ultimately, these culminate in a dense layer with softmax activation
to produce the classification probabilities.

2.22. Attention MIL

Figure 8 demonstrates the Attention MIL classifier. In this model, data are organised
into multiple bags. This structure enables the model to focus on the most relevant regions
within an image. Each bag is assigned a single label that reflects the overall characteristic
of the image. Within each bag, there are multiple patches, which are localised segments of
the original image. An attention mechanism is employed in each of these patches to allow
the model to focus on the most informative regions within each image.
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2.23. Model Training

Figure 8. Schematic of the 3D attention-based Multiple-Instance Learning (MIL) pipeline. The
pipeline starts with a 3D input volume (CT or MRI) split into multiple patches (forming a “bag”). Each
patch is processed by a 3D ResNet3D ResNet-50 (Residual Network) to extract the patch-level feature
embedding, which is then flattened spatially. These embeddings are passed through an attention block
comprising an MLP (Multi-Layer Perceptron) and a softmax over NN patches to yield the attention
weights. The weighted sum of the patch embeddings is computed according to these attention
weights, producing a single aggregated feature vector. Finally, this aggregated representation is fed
into an FC (fully connected) layer for the final classification. 3D: three-Dimensional; ResNet: Residual
Network; MLP: Multi-Layer Perceptron; FC: fully connected.

The classifier begins by extracting features from each 3D patch in a bag using a
Conv3D layer with ReLU activation, followed by adaptive average pooling. The pooling
layer ensures that every patch in the bag has a standardised representation. Next, the
attention-weighted patches are aggregated to form a single vector that represents the entire
bag by multiplying each patch’s feature vectors by its corresponding attention weight. This
allows the model to identify the most pertinent patches while minimizing the influence of
less relevant patches. The aggregated vector then flows into a classification layer, which
uses dense, fully connected layers with softmax activation to produce class probabilities.
The classification label is output for the entire bag, making it effective for weakly supervised
whole-image classification tasks.

2.23. Model Training

Training is executed over up to 100 epochs (complete cycles through the training
dataset) and different batch sizes (number of training samples processed together). The
total number of epochs are determined by the early stopping mechanism, which stops
the training if additional cycles are not causing an improvement in the loss function.
During each epoch, performance metrics are logged. Monitoring and logging are crucial
for in-depth analysis and understanding of model performance, enabling identification of
trends and potential areas for improvement. Optuna is used to systematically explore the
hyperparameter search space to pinpoint the most promising combinations for optimal
performance (Supplemental Table S4).

2.24. Model Compilation

Loss Function: Each model employs focal loss as the loss function. This choice is
effective for tasks where there is class imbalance.

Optimiser: The Adaptive Moment Estimation (ADAM) optimiser is used across all
three models. Initiated with a learning rate based on optimal hyperparameter settings, the
ADAM optimiser has adaptability and effectiveness at complex model training. It adjusts
learning rate dynamically, facilitating efficient convergence to optimal solutions.
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Performance Metric: For all models, balanced accuracy is chosen as the primary
evaluative metric. This metric quantifies average accuracy of each individual class rather
than simply weighting them by frequency.

2.25. Callbacks and Learning Rate Scheduling
2.25.1. Model Checkpointing

The model weights are saved in PyTorch Tensors (pt) format after each epoch if there
is an improvement in validation performance to preserve the best state of the model. The
pt file can also be used for model inference or for future fine-tuning of the model.

2.25.2. Early Stopping

To prevent overfitting and to ensure training efficiency, EarlyStopping is employed
in all three models. This callback ceases training if there is no noticeable improvement in
validation loss over a set number of consecutive epochs. EarlyStopping ensures that the
model does not learn the noise in the training data, thus maintaining its ability to generalise.

2.25.3. Learning Rate Scheduling

An adaptive learning rate scheduler is used in each model’s training process. For
the initial 10 epochs, the learning rate is kept constant, providing stability in the early
stages of learning. After the 10th epoch, learning rate is reduced by half. This gradual
reduction allows for more refined adjustments to the model’s learning, particularly as it
starts converging towards optimal performance. The scheduler plays a key role in balancing
the speed and accuracy of learning, adapting the training dynamics as the model evolves.

2.25.4. Performance Metrics

Metrics are essential to assess the performance of ML and DL models. They provide
quantitative insights into model behaviour, highlighting strengths and pitfalls. The metrics
include the following:

1. Loss (Training and Validation)

# Definition: Loss, synonymous with the cost or objective function, measures
how closely model prediction aligns with actual data. A diminutive loss value
indicates better alignment of prediction with true values.

# Training Loss: demonstrates the loss computed on the training dataset, signify-
ing the model’s fit to the data.

# Validation Loss: Calculated using the validation dataset, it is a barometer for
the model’s potential performance on unfamiliar data. An escalating validation
loss juxtaposed with a diminishing training loss usually flags overfitting.

2. Accuracy (Training and Validation)

# Definition: accuracy represents the fraction of predictions that are correct,
making it particularly lucid for classification tasks.

■ Accuracy = (Number of Correct Predictions)/(Total Predictions)

# Training Accuracy: Quantifies the correct predictions made on the training set.
Elevated training accuracy can be deceptive if the model is overfitting.

# Validation Accuracy: denotes the correct predictions made on the validation
set, hinting at probable performance on new data.

3. Balanced Accuracy (Validation)

# Unlike standard accuracy, balanced accuracy is the average accuracy of each
individual class rather than simply weighting them by frequency. By doing so,
minority classes are afforded the same significance as majority classes, more
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accurately reflecting model performance across all classes, and preventing the
dominant class from skewing the overall evaluation metric.

4. Confusion Matrix

# Definition: This matrix is instrumental in classification for comprehending
algorithmic performance, especially when multiple classes are at play. It
meticulously juxtaposes predictions against true values.

■ True Positive (TP): both actual and predicted classes are positive.
■ True Negative (TN): both actual and predicted classes are negative.
■ False Positive (FP): predictions are positive, but reality is negative.
■ False Negative (FN): predictions are negative, yet reality is positive.

# This matrix can be further mined to deduce metrics like precision, recall,
and F1-score.

2.25.5. Saving Performance Metrics

Metrics like loss and accuracy, charted over epochs, are collated into a CSV file. This
facilitates retrospective analysis and discernment of the model’s training trajectory.

2.25.6. Plotting Performance Graphs

Loss and accuracy graphs are plotted to visualise per epoch convergence, overfitting,
and to visualise the model’s learning progression.

2.26. Grad-CAM (Gradient-Weighted Class Activation Mapping)

Grad-CAM is a visualisation technique that highlights regions within an image that
play a significant role in a model’s predictions. The heatmap pinpoints areas of importance
and provide insights into the decision-making process of DL models. This is valuable
for improving interpretability and allows end users to visualise which parts of an image
contributed most to a specific prediction (Figure 9, Supplemental Video).

To generate the heatmap using Grad-CAM, first, a convolution layer is chosen. The
image is processed through the model up to this chosen layer, and the feature maps are
extracted. A subsequent backward pass calculates the gradient of the target prediction in
relation to the feature maps, revealing how much each spatial location in the feature map
contributed to the model’s output. The gradients are globally averaged for each feature
map, creating a set of weights.

In summary, while metrics provide a quantitative assessment of model performance,
heatmaps provide information on qualitative aspects. These visual tools aim to demystify
the decision-making process of models by highlighting areas of the image that most influ-
ence the models’ predictions. Saliency maps, while invaluable for providing insights into
model behaviour, come with their challenges. They can produce ambiguous or misleading
visualisations, particularly for complex medical images where the distinction between
relevant and irrelevant features is not always clear. Additionally, their interpretability
is often contingent on the expertise of the viewer, which can vary widely among clin-
icians. When applied carefully, saliency maps aim to enhance our understanding and
trust in AI diagnostics, offering a window into the otherwise opaque workings of deep
learning models.
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Figure 9. Grad-Cam visualisation: the upper image demonstrates a “hot” (red) malignant lesion and
the lower image demonstrates “hot” (red) regions of omental disease.

2.27. Model Evaluation and Visualisation

After completion of training, performance metrics are organised into DataFrames.
These metrics are then exported as common separated values (.csv) files for future reference
and in-depth analysis. This method of storage enables a comprehensive evaluation of
the models’ progression throughout the training epochs, providing valuable insights into
their behaviour and effectiveness. It also assists in making informed decisions regarding
potential adjustments to models’ architectures or hyperparameters. Models’ architectures,
along with their learned weights, are preserved in pt format. The pt file is also used for
inference purposes whilst validating the models.

For testing the ROI models, the test data have a spherical ROI drawn over the lesion of
interest using itk-Snap. This ensures that both the training and testing phases are focused
on the specified ROI, allowing for a consistent and targeted evaluation of the models’
performance on the crucial areas of interest.

3. Results
A total of 1545 CT patients met the inclusion and exclusion criteria; the median age

at the time of the scan was 64 years (range, 18–96 years). Among the different diagnoses,
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serous adenocarcinoma (29.7%, n = 459) and cysts (22.9%, n = 354) were predominant
(Figure 1, Table 1).

For the MRI patient group, 987 participants met the inclusion and exclusion criteria.
The median age at the time of the scan was lower than that for the CT group, at 52 years
(range, 18–96 years). The MRI group predominantly consisted of patients diagnosed with
cysts (53.7%, n = 530). The neoplasm benign category also had a significant representation
(10%, n = 98). In contrast to the CT patients, serous adenocarcinoma constituted 5.5%
(n = 54) of the MRI cohort (Figure 1, Table 2).

For the external CT dataset, 1922 participants from 55 centres met the inclusion and
exclusion criteria (median age, 63; range, 18–95 years). The majority were diagnosed with a
malignant disease (87.3%, n = 1679), with serous adenocarcinoma representing the largest
subset (45.2%, n = 868). Borderline neoplasms accounted for 9.6% (n = 185), while benign
lesions comprised 3.0% (n = 58) (Table 3).

For the external MRI dataset, 337 participants from 37 centres were included. The
median age at the time of the scan was slightly lower at 55 years (range, 18–92 years).
Malignant pathologies formed 48.4% (n = 163) of the diagnoses, followed by serous adeno-
carcinoma (17.2%, n = 58). Borderline tumours (24.9%, n = 84) and benign findings (26.7%,
n = 90) made up the remainder of the cohort (Table 4).

The TGCA-OV dataset [37,38] comprised 143 CT scans from six U.S. centres, exclu-
sively featuring cases of serous adenocarcinoma. The median patient age at the time of
imaging was 61 years (range, 38–82 years).

4. Discussion
The goal of this study was to establish a framework for incorporating deep learning

models into CT and MR imaging for ovarian mass classification. Class imbalance was ad-
dressed by employing oversampling, focal loss, and balanced accuracy, and by introducing
a dynamic class weighting strategy in each training epoch. All the relevant hyperparame-
ters, including alpha, gamma, minority_acc_threshold, and minority_boost_factor, were
tuned using Optuna. Balanced accuracy was used as the final evaluation metric for accuracy
given the class imbalance.

Recognising the intricacies and challenges of ovarian mass classification, the primary
focus was to detail the methodology for distinguishing between benign, malignant, and
borderline lesions.

To test the feasibility of developing these models, a methodological approach was
undertaken using a preliminary dataset. It is essential to understand that deep learning, by
its nature, often requires expansive datasets to realise its full potential. The results from this
preliminary study, given the limited dataset, should be approached with caution. While
they offer initial insights into the models’ structures and potentials, they may not robustly
represent the models’ eventual diagnostic capacities. As a larger dataset is evaluated and
the models are refined, it is anticipated that we will obtain more reflective and clinically
pertinent outcomes. The provisional findings, though indicative of potential pathways,
might not be definitive or sufficiently useful for broader clinical applications. Future work
will utilise the complete dataset to improve the accuracy and reliability of these models
for diagnosis.

While the preliminary dataset is limited, this work aligns with recent efforts in the field
that show promise for AI-assisted diagnosis in gynaecological oncology [39,40]. Several
studies have also reported improved diagnostic accuracy and decision support using AI
in radiology, highlighting the potential of deep learning in medical imaging for complex
classification tasks [9,41,42].
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Projects such as MONAI provide specialised frameworks and a comprehensive selec-
tion of tools. This streamlines data preprocessing, model building, and evaluation, making
code more accessible and optimised specifically for imaging.

Deep learning models must be rigorously validated prior to clinical deployment.
Attention-based techniques like Attention MIL could be explored to refine a model’s
ability to focus on the relevant regions of interest. This strategy has shown efficacy in
histopathological imaging and could potentially translate well to radiology applications.

By enhancing both the model architectures and dataset scope, further studies could em-
power AI models to provide substantial clinical decision support, especially in pre-surgical
planning and multidisciplinary team (MDT) discussions, giving healthcare professionals a
powerful tool in their diagnostic arsenal.

Several limitations of this study warrant mention. Firstly, the primary focus on the
methodological framework means that the full dataset has not been exhaustively analysed.
As a result, potential challenges, especially those related to the quality and consistency of or
anomalies in the CT and MRI scans, might remain unidentified. Secondly, the preliminary
evaluations we conducted were based on a limited dataset. Given the nature of deep
learning, which often benefits from vast amounts of data to achieve optimal accuracy,
the outcomes obtained from this restricted dataset might not be wholly representative
or generalizable.

Furthermore, the computational demands associated with implementing and de-
ploying models like CNNs, ResNet, and DenseNet should not be understated. The true
magnitude of these demands, both in terms of processing power and memory, will likely
become clearer once the entire dataset is curated and subsequently subjected to rigorous
model training and validation. As we integrate the full dataset and develop more complex
models, concerns related to scalability and the optimisation of the training process might
arise. Ensuring that these models integrate seamlessly into clinical workflows without
compromising efficiency will be an additional challenge to address.

5. Conclusions
This study presents a preliminary framework to introduce AI into the diagnostic

process for ovarian masses, focusing on using CNN, transformer, and MIL PyTorch models.
While a comprehensive analysis and validation of these models have not been under-

taken, the methodological insights presented provide a foundation for planned future work
in this domain. These pipelines were established and tested on a local PC workstation;
however, the analysis of the complete dataset will require high-performance computing on
a server equipped with NVIDIA Graphics Processing Units. The eventual objective will
be to gauge the potential of these AI models for supplementing pre-surgical assessments
and influencing multidisciplinary team (MDT) discussions by providing more precise
imaging interpretations.

The methodologies laid out in this paper are designed to set the stage for further
research, emphasizing the integration of AI and imaging techniques to potentially enhance
the diagnosis of and treatment decisions for ovarian masses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm15020076/s1, Figure S1: Flowchart outlining the diagnostic
and management pathways for suspected malignant pelvic masses, showing how imaging findings
influence the timing of tissue biopsy and surgical intervention; Table S1: Data augmentation steps;
Table S2: Software tools, versions, and references, listing the primary software tools and libraries used
throughout this study, including their version references and principal functions; Table S3: A layer-by-
layer breakdown and comparative summary of four different 3D neural network architectures—3D
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ResNet-50, 3D DenseNet-121, a typical 3D U-Net (UNest), and an MIL Attention Model; Table S4:
Hyperparameter search space.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two dimensional
3D Three dimensional
ADAM Adaptive Moment Estimation
AI Artificial intelligence
AvgPool Global average pooling
BN Batch normalisation
CNN Convolutional neural network
ComBat Combating batch effects when combining batches
Conv Convolution
CSV Comma-separated values
CT Computed tomography
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dec Decoder
DenseNet Dense convolutional network
DICOM Digital Imaging and Communications in Medicine
DL Deep learning
DWI Diffusion-weighted imaging
enc Encoder
EnsureTyped Ensure Type (dictionary-based) Transform
FC Fully connected
FN False Negative
FP False Positive
GPU Graphics processing unit
Grad-CAM Gradient-weighted Class Activation Mapping
IRAS Integrated Research Application System
JSON JavaScript Object Notation
Matplotlib A Python library for data visualisation
MaxPooling3D Three-dimensional max-pooling layer
MDT Multidisciplinary team
MIL Multiple-Instance Learning
ML Machine learning
MLP Multi-Layer Perceptron
MONAI Medical Open Network for Artificial Intelligence
MRI Magnetic resonance imaging
NesT Nested transformer
NIfTI Neuroimaging Informatics Technology Initiative
NOS Not otherwise specified
NumPy A Python library for numerical computations
OC Ovarian cancer
PACS Picture Archiving and Communication System
pt PyTorch tensor file format
PyTorch A Python-based deep learning framework
Rand3DElasticd Random 3D elastic (dictionary-based) transform
RandAdjustContrastd Random adjust contrast (dictionary-based) transform
RandAffined Random affine (dictionary-based) transform
RandFlipd Random flip (dictionary-based) transform
RandGaussianNoised Random Gaussian noise (dictionary-based) transform
RandZoomd Random zoom (dictionary-based) transform
RCT Randomised controlled trial
ReLU Rectified Linear Unit
ResNet Residual Network
ROI Region of interest
T Tesla
Tanh Hyperbolic tangent activation function
TCGA-OV The Cancer Genome Atlas Ovarian dataset
TN True Negative
TP True Positive
UNeST Universal network with nested transformer
UNet U-shaped encoder–decoder network architecture
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