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A B S T R A C T

Centella asiatica (L.) Urban (also known as “gotu kola”) is a perennial plant, used in traditional medicine for 
promoting resilience to central nervous system (CNS) disorders. C. asiatica is a tropical medicinal herb from the 
Apiaceae family and is native to Southeast Asian countries. The chemical composition and contaminant profile of 
commercial C. asiatica is variable. The goal of this study was to guide the future cultivation of organically grown 
C. asiatica for obtaining optimized plant materials for pre-clinical studies and clinical trials. Optimized plant 
materials in this case are defined as producing similar amounts of biologically active components as previously 
studied material. In this study, C. asiatica cultivars were grown in Central Oregon and their phytochemical 
compositions were examined. Four different cultivars were grown in climate-controlled greenhouses over three 
different vegetative propagation periods. Aerial parts of the plant were collected at four different harvest times: 
8, 10, 12, and 14 weeks from growth initiation. The phytochemical composition of each cultivar was analyzed by 
liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). Global metabolomic profiles 
allowed cultivar-specific compositional differences to be distinguished and production trends of phytochemical 
constituents to be analyzed using multinomial Bayesian hierarchical clustering and Self-Organizing Maps. Pro
duction trends of known bioactive phytoconstituents are reported here and will inform cultivation and harvest 
strategies to obtain C. asiatica materials of desired composition for preclinical and clinical studies. The 
computational methods for analyzing cultivar-specific and time-course dependent metabolomic profiles can be 
applied to other medicinal plant cultivation efforts to optimize cultivation and harvest practices.

1. Introduction

The therapeutic use of plants by humans reaches back approximately 
60,000 years (Yuan et al., 2016). Traditional Chinese medicine, Ayur
veda, Kampo, traditional Korean medicine, and Unani are different 
cultural medicinal practices that use herbal products for the treatment of 

diseases (Yuan et al., 2016). Centella asiatica (L.) Urban is a perennial 
plant belonging to the Apiaceae family reputed to have numerous health 
benefits in cosmetology, hepatoprotection, and neuroprotection (Orhan, 
2012, Bylka et al., 2013, Intararuchikul et al., 2019). C. asiatica contains 
several classes of bioactive phytochemicals, including pentacyclic tri
terpenes (TTs), caffeoylquinic acids (CQAs), and flavonoids (Gray et al., 
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2018). CQAs and related secondary metabolites (di-CQAs, tri-CQAs, 
tetra-CQAs) are reported to have antioxidant and antiviral properties 
as well as to improve cognition and memory (Gray et al., 2018, Mat
thews et al., 2020, Gray et al., 2024). The biosynthetic routes leading to 
di-caffeoylquinic acid and derivatives include the shikimic acid and 
phenylpropanoid pathways (Magaña et al., 2021). Pentacyclic triterpe
noids (TTs) from C. asiatica, commonly referred to as centelloids and 
produced via the isoprenoid biosynthesis pathway, have been reported 
to be neuroactive (Aharoni et al., 2005, James and Dubery, 2009, Sou
myanath et al., 2010, Gershenzon and Kreis, 2018, Wu et al., 2020). 
Several factors can affect the production of these phytochemicals, such 
as harvest season, cultivation practices, processing method, growing 
region, and genetic variation (Long et al., 2012, Rahajanirina et al., 
2012, Alqahtani et al., 2015).

For clinical uses, a standardized growing and harvesting protocol is 
important to ensure the consistent quality of plant material (Wright 
et al., 2022). Standardization using marker compound fingerprinting is 
recommended by the World Health Organization (WHO), European 
Medicines Agency (EMEA), and US Food and Drug Administration 
(USFDA) (Gajbhiye et al., 2016). Herein, we investigate an untargeted 
metabolomics-based analysis with novel data analysis approaches, along 
with the absolute quantification of phytochemical markers, to assist in 
the choice of plant variety and harvest time for future production.

C. asiatica is an important biologically active botanical. Our previous 
investigations demonstrated that an aqueous extract of C. asiatica 
(CAW), that is prepared by refluxing an aqueous suspension of the aerial 
parts, attenuates cellular oxidative stress (Gray et al., 2017) and im
proves cognition in an in vivo aged mouse model (Gray et al., 2024), and 
provides protection against β-amyloid toxicity both in vitro (Gray et al., 
2017), and in an in vivo transgenic mouse model (Matthews et al., 2020). 
In recent phase-I human pharmacokinetics trials of CAW, aglycone tri
terpenoids and mono- and di-CQAs were present and quantifiable in 
plasma and urine (Wright et al., 2023).

The goal of this study was to develop a comprehensive and integrated 
phytochemical analysis strategy to assist in the production of consistent 
plant material for preparing CAW material for use in future preclinical 
and clinical studies. In previous work, we used liquid chromatography 
high resolution tandem mass spectrometry (LC-HRMS/MS) to obtain 
chemical profiles of aqueous methanolic extracts of C. asiatica and 
identified or tentatively assigned ~100 C. asiatica metabolites (Magana 
et al., 2020). In this work, we developed a suite of novel analytical and 
data-driven approaches to differentiate C. asiatica plant varieties grown 
in climate-controlled greenhouses in Central Oregon, USA, which yield 
measurable quantities of neuroactive compounds for sustainable access 
to reproducible research materials.

We used dimensionality reduction and clustering techniques to 
evaluate variations in the chemical compositions of four C. asiatica 
cultivars. In addition to the commonly used principal component anal
ysis (PCA) (Brown, 1991, Brandolini et al., 2006), we applied singular 
value decomposition (SVD) (Kalman, 2002), which is, in theory, the 
same as PCA, and the non-linear reduction technique of uniform mani
fold approximation and projection (UMAP) (McInnes et al., 2018), 
demonstrating that the choice of algorithm and implementation has an 
effect on biochemical conclusions and that testing multiple algorithms 
ensures that conclusions are supported in a thorough manner. We also 
applied Independent Component Analysis (ICA) (Hyvärinen et al., 2001) 
to obtain an alternative picture of independent sources of variation and 
enhance the reliability of the conclusions drawn from our untargeted 
metabolomics data. We found that the genetic variations of the 
C. asiatica cultivars led to varied chemical compositions detectable by 
these algorithms. We used feature-based molecular networks (FBMN) to 
summarize the variation of the phytochemical constituents in a 
cultivar-dependent manner (Wang et al., 2016). To investigate the time 
course production of metabolites, a novel implementation of unsuper
vised multinomial Bayesian hierarchical clustering (BHC) (Savage et al., 
2009) was performed alongside Self-Organizing Maps (SOM) (Kohonen, 

1982, Wittek et al., 2017). This study provides a metabolomic-centric 
framework for the controlled cultivation of C. asiatica varieties to 
guide and optimize cultivar selection, growth conditions, and harvest 
times.

2. Materials and methods

2.1. Chemicals

LC-MS grade methanol, water, and formic acid were purchased from 
Fisher Scientific (Hampton, NH, USA). Twelve authentic non-deuterated 
standards were purchased from Cayman Chemical (Ann Arbor, MI, 
USA). The compounds 4-O-caffeoylquinic acid (cryptochlorogenic acid, 
4-CQA), 5-O-caffeoylquinic acid (5-CQA), 1,3-dicaffeoylquinic acid 
(1,3-DiCQA), 1,5-dicaffeoylquinic acid (1,5-DiCQA), 3,4-dicaffeoyl
quinic acid (isochlorogenic acid B, 3,4-DiCQA), 4,5-dicaffeoylquinic 
acid (isochlorogenic acid C, 4,5-DiCQA), and madecassoside (MS) had a 
purity of ≥ 98 %. The compounds 3-O-caffeoylquinic acid (chlorogenic 
acid, 3-CQA), 3,5-dicaffeoylquinic acid (isochlorogenic acid A, 3,5- 
DiCQA), asiaticoside (AS), madecassic acid (MA), and asiatic acid 
(AA) had a purity of ≥ 95 %. Digoxin-d3 was used as an internal standard 
and was purchased from Cayman Chemical (Ann Arbor, MI, USA) with 
purity of ≥ 99 %. Digoxin-d3 is toxic if inhaled or ingested, caution 
should be taken while working with digoxin-d3.

2.2. Greenhouse cultivation of C. asiatica

Cuttings of four cultivars of Centella asiatica were acquired from four 
different commercial sources and grown in climate-controlled green
houses at Oregon’s Wild Harvest (OWH), Bend, OR, USA. Cultivars were 
propagated at multiples times during the year (Table 1). The aerial parts 
of the plant material were harvested after 8, 10, 12 and 14 weeks 
(Table 2), dried in a stainless food dehydrator at 50 ◦C (STX Interna
tional Dehydra 1200W-XLS) to 5–10 % moisture, and stored at -20 ◦C 
until analysis.

Voucher Samples: Voucher samples of dried aerial plant material 
from each cultivar are stored in the BENFRA laboratories at Oregon 
Health & Science University (cultivar/plant material code names: BEN- 
CA-6, 9, 10, 11 and 12).

2.3. DNA barcoding analysis of C. asiatica varieties

DNA was extracted from the aerial plant material of the cultivar 
samples using the DNeasy Mini Kit (Qiagen) according to the manu
facturer’s instructions. To amplify the Internal Transcribed Spacer (ITS) 
genomic region a previously published protocol, Primer Basic Local 

Table 1 
Start dates of cultivation and first harvest date (week 8) of the four C. asiatica 
cultivars in three groups each, corresponding to three propagation periods.

Cultivar Plant Material 
Code

Group Start Date 
(Planted)

1st Harvest Date 
(Week 8)

Mountain 
Valley

CA− 9 1 6/18/2021 8/13/2021

Mountain 
Valley

CA− 9 2 8/12/2021 10/7/2021

Mountain 
Valley

CA− 9 3 9/9/2021 11/4/2021

Hawaii CA− 10 1 3/23/2021 5/17/2021
Hawaii CA− 10 2 4/22/2021 6/16/2021
Hawaii CA− 10 3 6/18/2021 8/13/2021
White Cloud CA− 11 1 4/22/2021 6/16/2021
White Cloud CA− 11 2 6/18/2021 8/13/2021
White Cloud CA− 11 3 8/12/2021 10/7/2021
9EZ CA− 12 1 6/18/2021 8/13/2021
9EZ CA− 12 2 8/12/2021 10/7/2021
9EZ CA− 12 3 9/9/2021 11/4/2021
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Alignment Search Tool – BLAST, was used (Altschul et al., 1990, Ye 
et al., 2012). The designed primers consisted of a 5’ adapter sequence 
(pJet) facilitating direct sequencing with universal pJet primers of single 
PCR products. Primers (Table S1) were synthesized by Integrated DNA 
Technologies (Coralville). Extracted DNA was diluted to 1:10 and sub
jected to amplify the ITS region with the designed primers. Amplifica
tion consisted of two rounds of PCR. The first PCR consisted of a 25-μL 
reaction mixture containing 2 μL of a 1:10 DNA dilution, 1 × PCR re
action buffer, 0.2 mM dNTP mixture, 0.2 μM of each forward and reverse 
primers CentITSF and CentITSR, 1.5 mM MgCl2, and 1 U of Platinum Taq 
DNA Polymerase (Invitrogen). The first PCR program consisted of an 
initial denaturation step at 94 ◦C for 3 min, followed by 10 cycles at 94◦C 
for 80 sec, 58◦C for 25 sec and 72◦C for 1 min. The second PCR consisted 
of a 25-μL reaction mixture as mentioned above using 1 μL of the first 
PCR as a template and pJet forward/reverse primers. The second PCR 
program consisted of 35 cycles with denaturation at 94◦C for 30 sec, 
65◦C for 20 sec, and 72◦C for 1 min, with a final extension at 72◦C for 
3 min. After amplification, aliquots of 10 µL were analyzed by electro
phoresis on 1.5 % borate agarose gel and visualized under UV light. PCR 
products were compared to the molecular size standard 1 kb plus DNA 
ladder (Invitrogen). The resulting PCR products were cloned into Vector 
pCR4-TOPO TA (Invitrogen) and transferred into E. coli according to the 
manufacturer’s instructions. Eight transformants per cloning event were 
subjected to colony PCR using M13F and M13R primers. The PCR 
products of four transformants per DNA were sequenced with M13 
forward and reverse primers at Genewiz/Azenta. Derived sequences 
were trimmed and subjected to homology search against the National 
Center for Biotechnology Information (NCBI) nucleotide database using 
BLAST available in Geneious Prime 2023.2.1 (Biomatters. LTD) 
(Altschul et al., 1990). Sequence alignment is shown in Figure S1. 
Additionally, a neighbor-joining consensus tree was built with the 
Tamura-Nei Distance model without an outgroup, bootstrap 500 repli
cates, available in Geneious Prime 2023.2.1.

2.4. Preparation of plant material extracts

The dried plant material was processed to a fine powder in a blade 
grinder. A suspension was prepared containing 0.5 mg/mL or 0.05 mg/ 
mL plant material powder by adding in 70 % aq. (v/v) MeOH containing 
0.1 % formic acid and 1 µg/mL of the internal standard digoxin-d3 Plant 
material debris was removed by centrifugation.

2.5. Preparation of cultivar-specific samples and pooled samples

Each cultivar was represented in three propagation periods and was 
harvested at four time points, each time with three biological replicates, 
resulting in 36 samples for each cultivar (Table 2). In total, there were 
143 samples for four cultivars, due to the loss of one of the samples. For 
analysis purposes, the samples were divided into two categories:

a) Cultivar samples: For a given cultivar, samples came from three 
groups (1, 2, 3) corresponding to propagation periods, four harvest 
points (8, 10, 12, 14 weeks), three biological replicates (a, b, c). Thus, 
samples were labeled with the cultivar number (CA-9, 10, 11 or 12) 
followed by propagation group, harvest week, and replicate letter e.g. 
CA-9–1–8a, CA-9–1–8b, CA-9–1–8c.

b) Pooled samples: for each of the four cultivars, pool samples were 
created by mixing extracts from all harvest week samples of the three 
groups, and a full pool sample was created by mixing the four cultivar 
pools and an extract from the control sample CA-6 (a commercial 
C. asiatica with a mixed origin). Pool samples were created using ex
tracts made at 0.5 and 0.05 mg/mL original plant material (Fig. 1).

i) CA-9-Pool (all replicates from all harvest weeks and all propaga
tion periods)

ii) CA-10-Pool (all replicates from all harvest weeks and all propa
gation periods)

iii) CA-11-Pool (all replicates from all harvest weeks and all propa
gation periods)

iv) CA-12- Pool (all replicates from all harvest weeks and all prop
agation periods)

v) Full Pool: CA-9-Pool + CA-10-Pool + CA-11-Pool + CA-12-Pool 
+ CA-6.

Pooled samples served three purposes, a) quality control, b) 
normalization, and c) analysis of the metabolite differences between 
cultivars. To maintain linearity of response for phytochemicals at 
different abundances, pool samples and cultivar samples were prepared 
at two concentrations: 0.5 mg/mL and 0.05 mg/mL.

2.6. Preparation of standard solutions

Each standard stock solution of reference CQA and TT compounds 
was prepared at 1 mg/mL concentration in 95 % ethanol. A mixture of 
standards was prepared by mixing each standard in 95 % ethanol at a 
final concentration of 50 µg/mL. A mixture of standards was produced 
by diluting the standard stock solutions and 70 % methanol containing 
0.1 % formic acid and the internal standard digoxin-d3. The final con
centration of this solution is 10 µg/mL of each standard with 1 µg/mL 
digoxin-d3 as internal standard. Calibration curves were obtained by 
making a series of concentrations 1, 5, 10, 25, 50, 100, 250, 500, 1000, 
2500, 5000, 10,000 ng/mL for all standards in 70 % methanol con
taining 0.1 % formic acid and 1 µg/mL digoxin-d3. An extracting solu
tion (70 % methanol containing 0.1 % formic acid and 1 µg/mL digoxin- 
d3) was used to extract phytochemicals from plant material samples. A 

Table 2 
Experimental design accounting for three propagation periods per cultivar, four 
harvest points for each propagation group (weeks 8, 10, 12 & 14) and 3 replicate 
samples at each harvest.

Variety 
code/ 
cultivar

Origin Number of 
propagation 
periods 
(groups)

Harvest 
times 
(weeks)

Number of 
Biological 
replicates

Number 
of 
samples

CA9 Mountain 
Valley

3 8, 10, 
12, 14

3 35a

CA10 Hawaii 3 8, 10, 
12, 14

3 36

CA11 White Cloud 3 8, 10, 
12, 14

3 36

CA12 9EZ 3 8, 10, 
12, 14

3 36

CA-6* Commercial 
Product

1 1 1 1

* CA-6 is a commercial plant material of Centella asiatica (mixed origin) ac
quired through OWH (batch number X090016) from the supplier Organic India 
(batch number UFU0070), and was used as reference material; a – one replicate 
lost during sample preparation.

Fig. 1. Pool samples were prepared by combining timepoints from each 
cultivar as well as combining all cultivar pools into a Full pool sample. Samples 
were used for cultivar comparison as well as quality control during LC-HRMS/ 
MS data acquisition.
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simplified version of the entire workflow is shown in Fig. 2.

2.7. LC-HRMS/MS method

High-performance liquid chromatography (HPLC) was performed on 
a Shimadzu Nexera Ultra-HPLC system using an Intersil Phenyl-3 col
umn (100 mm × 2.1 mm ID, 2 µm particle size, 100 Å pore size; GL 
Sciences, Torance, CA, USA). During gradient elution, the mobile phase 
consisted of water containing 0.1 % v/v formic acid as solvent A, and 
methanol containing 0.1 % v/v formic acid as solvent B. The chro
matographic program was as follows: 0–0.1 min, 2 % B; 0.1–2.5 min, 
2–15 % B; 2.5–3.0 min, 15–25 % B; 3.0–5.0 min, 25–35 % B; 
5.0–6.0 min, 35–100 % B; 6.0–7.0 min, 100 % B return to 2 % B from 
7.1 to 8.1 min. The column was held at 55 ◦C, and the flow rate was 
0.8 mL/min. A 3 µL aliquot of each sample was injected for LC-HRMS/ 
MS analysis. Data was collected using an untargeted data dependent 
acquisition (DDA) method on an AB SCIEX TripleTOF 5600 mass spec
trometer equipped with a Turbo V ionization source. The desolvation 
gas temperature was kept constant at 550 ◦C. The instrument was 
operated in negative ionization mode. The MS1 and MS/MS scan ranged 
from m/z 70–1300 Table 3.

2.8. LC-MRM-MS method

An LC-MRM-MS method was used to obtain absolute quantitation of 
12 phytochemical markers (Figure S2) on a Waters Xevo TQ-XS mass 
spectrometer coupled to a Waters Acquity UPLC I-Class system (Waters, 
Milford, MA). An Intertsil Phenyl-3 column (100 mm × 2.1 mm ID, 2 µm 
particle size, 100 Å pore size; GL Science, Torrance, CA, USA) was used 
to separate the CQAs and TTs. Gradient elution was identical to the LC- 
HRMS/MS method. The column temperature was held at 55 ◦C, with a 
flow rate of 0.8 mL/min. Injection volume for each sample was 1 μL. 
Desolvation and cone gas flow was maintained at 1000 L/h and 150 L/h 
respectively. Electrospray ionization was performed in negative mode. 
Spray voltage and desolvation gas temperature were held constant at 
2300 V and 600 ◦C.

2.9. Data analysis

For investigation of cultivar pool composition, a feature table con
sisting of retention time and abundances associated with untargeted 
features were obtained from 0.5 mg/mL and 0.05 mg/mL concentration 
data using Progenesis QI software. Principal component analysis (PCA), 
singular value decomposition (SVD), independent component analysis 
(ICA), and uniform manifold approximation and projection (UMAP) was 
performed with the feature table in R using the packages prcomp 
(Härdle et al., 2024), SVD (Kalman, 2002), ICA (Hyvärinen et al., 2001), 
and UMAP (McInnes et al., 2018). For time-course analysis, MultiQuant 
(Sciex) was used to integrate the peak areas of 12 marker compounds, 
the internal standard digoxin-d3, and a set of 82 metabolites that were 
identified by accurate mass only (no retention time or fragmentation 
matching). These additional 82 masses are tentatively identified mo
lecular features in C. asiatica that have been described previously 
(Magana et al., 2020). The method performance data for marker com
pounds and tentatively assigned molecular features are provided in the 
Supporting Information, Tables S2 to S5.

Time course data was initially split into early and late production 
subdivisions for clustering, but in the end utilization of a multinomial 
model with unsupervised Bayesian hierarchical clustering (BHC) 
(Savage et al., 2009) as well as self-organizing maps (SOM) (Kohonen, 
1982, Wittek et al., 2017) allowed for data to be analyzed across the 
time range directly. Normalization was carried out with replicate pool 
samples with support vector regression (SVR) using the MetNormalizer 
R package (Shen et al., 2016). An overview of the data analysis approach 
is shown in Fig. 3.

Cosine similarity-based MS/MS clustering was used to generate 
molecular networks from both 0.50 mg/mL and 0.05 mg/mL data 
(0.05 mg/mL network not shown). Molecular networks are available 
publicly at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1786 
994c61db4463a93f7c6ddc113d21 on the Global Natural Products 

Fig. 2. Experimental design used for LC-HRMS/MS-based metabolomics of 
plant extracts (QTOF, quadrupole time-of-flight, DDA, data dependent 
acquisition).

Table 3 
Feature m/z value, retention time, formula, and adduct information for the 
twelve marker compounds.

Name m/z RT (min) Formula Adduct

5-CQA 353.0778 1.4 C16H18O9 [M - H]-

4-CQA 353.0778 2.5 C16H18O9 [M - H]-

3-CQA 353.0778 2.6 C16H18O9 [M - H]-

1,3-DiCQA 515.1095 3.8 C25H24O12 [M - H]-

3,4-DiCQA 515.1095 4. 9 C25H24O12 [M - H]-

3,5-DiCQA 515.1095 5.0 C25H24O12 [M - H]-

1,5-DiCQA 515.1095 5.3 C25H24O12 [M - H]-

4,5-DiCQA 515.1095 5.6 C25H24O12 [M - H]-

MS 1019.495 6.2 C48H78O20 [M + FA - H]-

AS 1003.511 6.2 C48H78O19 [M + FA - H]-

MA 549.3321 6.38 C30H48O6 [M + FA - H]-

AA 533.3372 6.45 C30H48O5 [M + FA - H]-

Fig. 3. Data processing workflows to investigate the compound variations 
observed in cultivars during different growth and harvest periods (left) and 
cultivar level distinction and MS/MS clustering in pool samples (right).
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Social Molecular Networking (GNPS) platform (Wang et al., 2016). 
Edges were computed by cosine similarity at a 0.70 threshold with a 
minimum of six fragment ions matching. Cytoscape (version 3.9.1) was 
used to visualize molecular networks. Molecular structures were drawn 
using ChemDraw Professional 16.0.

3. Results and discussion

3.1. Phytochemical markers

Based on preclinical studies, we have assigned twelve consistently 
found compounds (Fig. 4) in C. asiatica extracts as bioactive phyto
chemical markers to facilitate the characterization of extracts and 
derived formulations (Yang et al., 2023).

These phytochemical constituents were measured in four different 
C. asiatica cultivars grown in climate-controlled greenhouses in Central 
Oregon (Fig. 5) over a growth cycle of 8, 10, 12, and 14 weeks. Addi
tional phytochemicals were measured by accurate mass and peak in
tensity as described previously (Magana et al., 2020).

3.2. DNA marker analysis confirms that all cultivars were from the genus 
Centella

DNA marker analysis confirmed that all cultivars were from the 
genus Centella. The Internal Transcribed Spacer (ITS) marker region of 
each cultivar was determined and compared with available sequences in 
the NCBI database from the following three species: C. asiatica, C 
capensis, and C. montana (NCBI) (Fig. 6). Sequence alignment is shown in 
Figure S1. From the DNA marker analysis, all samples are identified as 
Centella asiatica.

3.3. Untargeted LC-HRMS/MS in conjunction with data reduction 
techniques reveals varietal differences in metabolite compositions

The four cultivars were grown and harvested at separate times of the 
year and analyzed using LC-HRMS/MS. Quality control (QC) pooled 
samples were created by combining samples from different harvest time 
points for a given cultivar and propagation period. QC samples were run 
twelve times during the LC-HRMS/MS analysis providing measurements 

Fig. 4. Structures of mono-CQAs, di-CQAs, and triterpenoids used as phytochemical markers in this study (Chan et al. 2009, Orhan, 2012).
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for data normalization prior to untargeted analysis. Pool samples were 
analyzed by both LC-HRMS/MS and LC-MRM-MS (Supplemental figure 
S2, S3). Time-course samples were analyzed by LC-HRMS/MS. A 
representative 2D ion map (mass-to-charge vs. time (min)) is provided in 
Fig. 7.

Analysis of the untargeted LC-HRMS/MS data by dimensionality 
reduction techniques after normalization confirmed metabolic differ
ences following the genetic origin of the plant cultivars. Initially, PCA on 
the untargeted pool samples showed that there were two distinct clusters 
separated based on data acquisition variation (Fig. 8A). This variation 
was attributed to analytical variation over the course of the four-day 
data acquisition. Analytical variation is caused by instrument drift 
that may arise from buffers, solvent systems, ion suppression, matrix 
effects and chromatographic column accumulation/degradation during 
long acquisitions. The systematic variation seen in Fig. 8A indicated that 
the ion signals of the two systematically grouped replicates is correct
able by normalization.

Data pretreatment, such as transformation and normalization play a 
key role in metabolomics data analysis (van den Berg et al., 2006). Data 
transformation facilitates identifying underlying patterns and normali
zation allows for minimization of systematic variation (Misra, 2020). We 
used support vector regression (SVR) normalization to minimize the 
data variation (Fig. 8B). Sample-based SVR normalization considers the 
signal drift in QC as a representation of instrument drift over the in
jection period (Shen et al., 2016). During normalization, the full-pool 
sample was considered as a quality control (training dataset), and all 
others were considered as sample data (test set). After SVR normaliza
tion, the scores plot from PCA shows the differences in metabolite 
composition between the four different cultivar origins (CA-9, CA-10, 
CA-11, CA-12) and the commercial plant material sample (CA-6) 
(Fig. 8B).

Concentrations of the twelve marker phytochemicals were calculated 
using external calibration and internal standard normalization in both 
LC-HRMS/MS and LC-MRM-MS datasets (Table 4) and Figure S3). The 

parallel analysis of cultivar-pool and full-pool QC samples by LC-MRM- 
MS (Figure S2) did not show the same systematic variation seen in the 
LC-HRMS/MS data suggesting that the observed signal drift was related 
to the specific instrument used for analysis rather than sample degra
dation (Figure S2). Accurate quantification and signal normalization 
ensured quality time-course data normalization and allowed additional 
benchmarking for the untargeted analysis. Relative standard deviation 
(RSD) before and after SVR normalization for the complete dataset are 
provided in the supplementary materials showing the effect of normal
ization on all data (Figure S4).

In all applied data reduction techniques (Fig. 9), cultivars were 
separated by multivariate dimensions. The cultivars CA-9 and CA-10 are 
consistently clustered closest to the previous standard material CA-6 and 
considered as future candidates for sourcing the plant materials for 
clinical trials, although other physical (i.e. non-chemical) growth pa
rameters may need to be considered for selecting the optimum cultivar. 
A water extract of CA-6 was shown previously to promote resilience to 
stress or age-related neurological changes, as well as amelioration of 
age-related cognitive decline and anxiety in mice (Gray et al., 2017, 
Gray et al., 2024). Visual presentations of the PCA of the 0.5 mg/mL 
cultivar-pool and full-pool QC samples are shown in Figures S5-S6.

We note, when PCA is performed in R using prcomp, it relies on SVD 
under the hood to transform the data into a new coordinate system 
where the first few axes explain the most variance. SVD "uncovers" the 
underlying structure of the data by decomposing it into three matrices. 
PCA selects the top rows from the right singular vectors that capture the 
most variance. When we look at the resulting scores plot, it might appear 
slightly different than what one would expect if we were to apply SVD 
directly. In another sense, PCA is equivalent to running SVD with a 
specific choice of parameters and can result in slightly different scores 
plots.

Independent Component Analysis (ICA) aims to separate mixed sig
nals into their original sources. ICA treats each data point as a mixture of 
several independent components and attempts to recover them using 

Fig. 5. C. asiatica cultivation pictures from Oregon’s Wild Harvest in Redmond, Oregon. (A) Greenhouse used for C. asiatica cultivation: (B) Plant cuttings are rooted 
in distilled water with diluted fertilizer under growing lights at 22 ºC. (C) Roots started developing after one week. (D) Plantlets are potted and returned to the 
greenhouse after three weeks yielding (E) fresh plant samples.
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only non-linear transformations. While PCA focuses on explaining 
variance in the original data space, ICA seeks to extract underlying 
patterns from the mixture. UMAP (Uniform Manifold Approximation 
and Projection) uses a combination of PCA and t-SNE (t-distributed 
Stochastic Neighbor Embedding) to create a lower-dimensional repre
sentation while preserving local relationships between points in the 
high-dimensional space.

3.4. Compositional- and varietal-annotated molecular networks confirm 
presence of neuroactive metabolites in greenhouse-grown Centella cultivars

Cosine similarity-based MS/MS clustering assisted in identification 
of structurally similar features and their relative abundance in specific 
cultivars. Untargeted data are primarily used for hypothesis generation, 
global analysis, MS/MS correlation with databases, qualitative identi
fication, and relative quantification (Schrimpe-Rutledge et al., 2016). To 
additionally reduce the complexity of metabolite-level information to 
specific metabolite changes, we performed cosine similarity-based 
MS/MS clustering on the 0.5 mg/mL cultivar-pooled data which al
lows for visual interpretation of relative abundances of specific known 
phytochemicals as well as unknown but spectrally related feature 
abundances (Fig. 10) (Bittremieux et al., 2022).

The GNPS network was analyzed and processed by Cytoscape to 
provide annotation according to cultivar information (Smoot et al., 
2011). The network consists of 1800 nodes, 2016 edges, and 279 con
nected components.

Among all identified features, we labeled ten compounds using 

authentic standard retention times and masses. Other compounds in 
C. asiatica have been detailed previously (Magana et al., 2020). There 
are several possible reasons for the inability to annotate features: the 
chemical structure is available on the database, but there are no tandem 
MS/MS fingerprints available; database ion fragments can vary when 
data is collected with different instruments using different ionization 
modes (i.e., ESI+ or ESI-); multiple features arising from one metabolite 
due to formation of adducts (i.e., metal, solvent, ion pairing reagent), 
formation of multimer (Stefansson et al., 1996), in-source ion fragments 
(Xu et al., 2015), or from metabolic degradation products; in addition to 
other features that appear with unique retention times. Additionally, 
unknown features can also arise from three types of reactions during 
analysis: unimolecular reactions (racemization, rearrangement, elimi
nation, and photolysis), reactions with oxidants, and other metabolites 
(Hanson et al., 2016). While their exact chemical name and structure 
may not be identified, they still contribute to our understanding of 
phytochemical production processes in the plant using untargeted 
metabolomics methods, helping to possibly extend our knowledge 
beyond the recommended guidelines from the WHO, EMEA, and USFDA 
for use in cultivation optimization of medicinal plants.

Here, mono- and di-caffeoylquinic acids are found in the same cluster 
except for 1,3-dicaffeoylquinic acid, which occurs as a single node. The 
triterpenoid glycosides, asiaticoside and madecassoside, are found in the 
same cluster with an additional five feature nodes. Aglycones occurred 
as single nodes, indicating there are fragment ion variations among 
glycosidic and aglycone triterpenoids. Using marker retention times, we 
identified hydrophobic aglycone triterpene asiatic and madecassic acids 

Fig. 6. Neighbor-joining tree with five hundred bootstraps using the Tamura-Nei genetic distance model without an outgroup for sample BEN-CA6, BEN-CA9, BEN- 
CA10, BEN-CA11, and BEN-CA12 confirmed as Centella asiatica when aligned with previously published sequences (KM887373, KX277730, MH768337, OM943934, 
and OR182535).
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Fig. 7. 2D ion map showing the ion signals of the 12 markers in sample CA-10 (Hawaii). Blue dots represent features from 3-CA-10–14c sample, chosen as a 
representative sample, in contrast to dark grey dots representing a blank. Retention times were validated using authentic standards. Data obtained using the LC- 
HRMS/MS method described in 2.7.

Fig. 8. Comparison of PCA score plots of (A) raw data and (B) support vector regression (SVR) normalized data of the 0.05 mg/mL cultivar-pooled samples and full- 
pool QC sample (12 replicates each). Data were natural log transformed and centered without scaling.

Table 4 
Concentration of marker compounds (µg/mg plant material) in cultivar-pooled samples obtained by LC-HRMS/MS (using the 0.50 mg/mL extract data of 3 replicates).

Name CA-6 CA-9 CA-10 CA-11 CA-12

5-CQA 0.066 ± 0.018 0.05 ± 0.01 0.05 ± 0.01 0.04 ± 0.01 0.05 ± 0.0
4-CQA 0.0050 ± 0.0012 0.0028 ± 0.0004 0.0030 ± 0.0006 0.0022 ± 0.0004 0.0026 ± 0.0006
3-CQA 2.02 ± 0.60 1.50 ± 0.32 1.00 ± 0.24 1.26 ± 0.44 1.90 ± 0.74
1,3-DiCQA 0.009 ± 0.002 0.0034 ± 0.0004 0.0058 ± 0.0012 0.0036 ± 0.0006 0.0032 ± 0.0004
3,4-DiCQA 0.11 ± 0.03 0.036 ± 0.008 0.072 ± 0.022 0.040 ± 0.022 0.044 ± 0.026
3,5-DiCQA 1.56 ± 0.50 0.96 ± 0.18 1.20 ± 0.30 0.96 ± 0.36 1.10 ± 0.42
1,5-DiCQA 1.54 ± 0.46 0.70 ± 0.14 0.64 ± 0.14 0.70 ± 0.26 0.96 ± 0.38
4,5-DiCQA 0.56 ± 0.16 0.13 ± 0.024 0.17 ± 0.04 0.132 ± 0.048 0.144 ± 0.058
MS 5.60 ± 1.44 5.66 ± 0.48 4.82 ± 0.56 5.22 ± 0.44 5.06 ± 0.74
AS 4.7 ± 1.14 9.34 ± 0.78 5.40 ± 0.52 6.62 ± 1.60 7.04 ± 1.64
MA 0.26 ± 0.08 0.074 ± 0.010 0.086 ± 0.018 0.078 ± 0.016 0.092 ± 0.018
AA 0.078 ± 0.028 0.028 ± 0.012 0.044 ± 0.008 0.042 ± 0.01 0.04 ± 0.006
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as single nodes. Additional centelloids, such as asiaticoside B, cen
tellasaponins C and A, centellasapogenol A, isothankunic acid, madasi
atic acid, and betulinic acid, have been reported in literature (James and 
Dubery, 2009). However, the identification of these triterpenoids 
remained a challenge due to lack of authentic standards. In addition, 
co-eluting molecular ions with overlapping retention times and MS/MS 
fragment ion patterns, as well as in-source ion fragmentation pose 
additional analytical challenges in providing proper annotation to 
unassigned features (Xu et al., 2015). Data is made available for sub
sequent mining and annotation through MetaboLights (MTBLS11735). 
Additionally, the MS/MS clustering molecular network from 
0.05 mg/mL samples generated 1372 nodes 1494 edges with 214 con
nected components (network not shown, but available publicly at https 
://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1786994c61db446 
3a93f7c6ddc113d21).

The number of mass spectrometry features associated with each 
cultivar sample is in the thousands. MS/MS clustering-based molecular 
networking minimized data complexity by clustering structurally 
similar MS/MS data, allowing semi-quantitative comparison of feature 
abundances in four cultivars. MS/MS for each of the twelve-markers and 
their chromatographic elution profiles are shown in Figures S8-S19. We 
paired a focused look at a set of specialized metabolites that have been 
associated with the observed neurological bioactivity of C. asiatica ex
tracts (Gray et al., 2017), namely three mono-CQAs, five di-CQA, and 
four TTs, for which authentic standards were available, with an untar
geted approach to metabolomic phytochemical analysis.

3.5. Untargeted metabolomics and Bayesian hierarchical clustering 
reveals production time-course for selected bioactive compounds for each 
greenhouse-grown Centella cultivars

To understand metabolite changes in time, MS1 peak areas were 
integrated from a list of 94 compounds, including 12 marker compounds 
verified with authentic standards by retention time, accurate mass, and 
fragmentation spectra. Other peaks are consistently found features in 
our C. asiatica extracts (Magana et al., 2020). Feature peak areas were 
integrated using Sciex Multiquant software. The time-dependent profiles 
were analyzed by unsupervised non-parametric multinomial Dirichlet 
process Bayesian hierarchical clustering (BHC, Fig. 11). In traditional 
hierarchical clustering, each pair of objects is chosen based on pairwise 
distance difference (i.e., Euclidean, Manhattan) or pairwise norm-based 
similarity (e.g. Tanimoto, correlation, cosine), however, it does not 
support an optimal number of clusters for pruning trees and the choice of 
metric is arbitrary and complicated further for time series. BHC (R/BHC 
doi:10.18129/B9.bioc.BHC) is advantageous in this situation as it uses a 
Dirichlet process approach to merge clusters. The R/BHC algorithm uses 
the predictive distribution of test points to assign a point to an existing 
cluster in the tree from a prior probabilistic model of the data, the 
marginal likelihood.

In the final heatmap presentation from R/BHC, the most represen
tative hierarchy informs the relation of mass spectrometry signals to the 
underlying distribution of signal. The contributions in the heat map are 
visualized from the distribution as a color scheme: green indicating the 
lower bound, black denoting the marginal likelihood, and red indicating 
the upper bound. Metabolites in the lower and upper bounds are 
considered silent contributions and do not contribute to the clustering. 
Specifically for this analysis, the resulting lower bound (green) 

Fig. 9. LC-HRMS/MS data of the cultivar-pooled samples (0.05 mg/mL) analyzed by (A) singular value decomposition (SVD), (B) independent component analysis 
(ICA), and (C) uniform manifold approximation and projection (UMAP) after SVR normalization.
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metabolites are more dispersed, while the upper bound metabolites are 
more tightly grouped. This visualization contributes to interpreting the 
results, identifying metabolites that exhibit similar trends. While the 
algorithm chooses the final number of clusters (Table 5), more confi
dence can be assigned to the final fusion at the top of the dendrogram 
distinguishing the upper bound (red) metabolites from the other two 
groups. For instance, madecassoside is quantified with baseline resolu
tion and high concentration and has similar production trends with 
asiaticoside, which both are in the red upper bound and are represented 
in Cluster 1. Also in Cluster 1 are the metabolites asiatic acid and 
madecassic acid, which contribute to the final clustering yet are placed 
within the marginal likelihood and show an even more visually similar 
production in time. In comparison, 1,3-DiCQA is found in Cluster 5 
within the lower bound (green) potentially due to its lower 

concentration and lower signal-to-noise in many samples and is grouped 
less confidently together with other metabolites.

Interestingly, four marker compounds 1,5-DiCQA, 3,5-DiCQA, asi
aticoside, and madecassoside along with flavonoids and primary me
tabolites are in Cluster 1. Cluster 2 metabolites are grouped together 
centrally with high confidence too and all follow similar time-series 
concentration profiles. Representative concentration profiles for each 
likelihood bounds are shown in Fig. 12 indicating how metabolites that 
share similar production rates across different groups and harvest pe
riods are grouped together. Interestingly, even those metabolites that 
are deemed in the lower-bound do follow similar concentration profiles 
across cultivation. Since the data is sorted by using a Dirichlet process 
that proceeds down a hierarchy, the outlying metabolites that do not fit 
into the previous distinct clusters can end up being similar noise terms 

Fig. 10. Molecular network built using the four cultivar pool data (0.5 mg/mL extracts) with annotation of 10 marker compounds. The nodes are labeled as pro
genesis IDs (RT_Mass and m/z for measured mass and “n” for neutral mass where adducts of a feature have been combined.) Pie charts show the cultivar specific 
abundances. The edges are weighted to cosine similarity.
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and may warrant further investigation.
The results here suggest that metabolites measured by an untargeted 

approach and with a distinct production cycle over time can indeed be 
clustered together. The utility of BHC is to find groups of metabolites 
with similar production trends and potentially aid in optimizing growth 
conditions for desired metabolite content in the future. Clustering occurs 
on both data axes. The sample clustering is shown in Figure S20. For 
reassurance, a bar plot of the sample amount was also analyzed 
(Figure S7) and the metabolite concentration changes were found to be 
unrelated to the analyzed sample amount by mass. A true change in 
concentration of these compounds occurs across different harvests and 
growth periods as measured by peak area. This implementation of BHC 
is highly novel in this phytochemical context.

3.6. Self-organizing maps (SOM) and t-distributed stochastic neighbor 
embedding (tSNE) confirm clustering of marker phytochemicals with 
similar time-course production across cultivar species and propagation 
groups

While peak-area information is useful to cluster and identify groups 
of untargeted metabolites that have similar time-course trends, specific 
concentration of metabolites through time is directly applicable to 
cultivation. Calibration curves normalized to the internal standard 
digoxin-d3 provide accurate concentrations that can be used to identify 
trends (Figure S3). The concentration of 12 metabolite markers through 
time were analyzed by Self-Organizing Maps (SOM) (Kohonen, 1982) 
and t-distributed stochastic neighbor embedding (tSNE) (van der 
Maaten and Hinton, 2008) to cluster marker phytochemicals into similar 
time-course production across cultivar species and propagation groups.

Fig. 11. Non-parametric multinomial clustering using BHC of (A) the time-course production in weeks of 94 metabolites, including 12 authentic marker compounds. 
Color coding of the heat map (B) is based on the marginal likelihood (black) of the time series of profiles (grouped on the y-axis) to reveal the quality of metabolites 
according to their final cluster membership (grouped on top on the x-axis). Green represents the lower bound and red represents the upper bound. Cluster numbers 
indicated on x-axis hierarchical tree and hyperparameter tuned values defined for tree branching are indicated in each branch, black numbers indicate a significant 
branching difference while red numbers are not as significant.
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The application of SOM to our metabolite dataset revealed distinct 
clusters of metabolites with similar time-course trends (Fig. 13). Spe
cifically, the metabolites MS, AS, 3,5-DiCQA, and 3-CQA are clustered 
together (and are also close in the tSNE embedding) reflecting similar 
concentrations throughout propagation and harvest timing. Looking 

back to Fig. 12 we see the time-dependent changes of concentration for 
MS and AS. Other metabolites were clustered, but not as confidently. 
The metabolites AA, 3,4-DiCQA, 4-CQA, 1,5-DiCQA, and 4,5-DiCQA 
were grouped with a larger distance between neurons than the previ
ous cluster, but still like each other. These findings underscore the utility 
of SOM in discerning and visualizing temporal patterns in metabolite 
data, offering significant insights into the metabolic changes throughout 
the harvest period. The utility may be that surrogate markers can be 
used for propagation and harvest timing, such as using AA to profile one 
cluster, 3,4-DiCQA for another, and 5-CQA for the third. But further 
research is likely needed to simplify the analysis in this way.

SOMs are a type of artificial neural network that is particularly 
effective for visualizing high-dimensional data. By mapping the high- 
dimensional metabolite data onto a two-dimensional grid, SOM clus
ters metabolites that exhibit similar temporal patterns. This is achieved 
through an iterative process where the map’s nodes, or neurons, adjust 
their weights to match the input data, thereby grouping similar data 
points closer together on the grid. Eventually, the grid will approximate 
the data distribution. In our specific case, metabolites with similar time- 
course trends are positioned in proximity on the SOM grid, facilitating 
the identification of patterns and trends that might not be immediately 
apparent in the raw data. Additionally, the topological height, repre
sented by the color map in Fig. 13A, of each neuron in a unified distance 
matrix (U-matrix) representation of a self-organizing map shows the 
distance between neighboring neurons, a measure of how similar or 
dissimilar the neuron’s weight vectors are.

Compared to other clustering tools, SOM offers unique advantages 
and some limitations. One of the primary advantages of SOM is its ability 
to preserve the topological properties of the input data, meaning that the 
spatial relationships between data points are maintained in the output 
map. This makes SOM particularly useful for visualizing complex, high- 
dimensional datasets. Additionally, SOM provides a clear and intuitive 
visual representation of the clusters, which can be beneficial for inter
preting the results.

SOM also has limitations, including the need to predefine the grid 

Table 5 
List of metabolites (tentatively assigned) (Magana et al. 2020) in the final 
clusters derived from BHC.

Cluster Metabolite

1 3,5-Dihydroxyphenyl 1-O-(6-O-galloyl-beta-D-glucopyranoside), 
quercetin, mangiferin, 1,4-dicaffeoylquinic acid, tetradecanedioic acid, 
palmitic acid, malate, citric acid, asiatic acid, madecassic acid, 
asiaticoside, madecassoside, 1,5-dicaffeoylquinic acid, 3O-caffeoylquinic 
acid, 3,5-dicaffeoylquinic acid

2 tropic acid, succinate, soyacerebroside-I, quercetin− 3-O-glucoside, 
pelargonidin− 3-O-glucoside, naringin, isoferulic acid, glabraoside A, 
ginkgoic acid, furaneol− 4,6-malonylglucoside, epicatechin, dihydroferulic 
acid, daucic acid, catechin, 5-O-caffeoylquinic acid, 16-hydroxypalmitic 
acid, kaempferol, 12-oxodihydrophytodienoic acid, 2-pyrrolidone− 5- 
carboxylic acid, 3,4-dicaffeoylquinic acid, quercetin 3-(6”- 
acetylglucoside), succinoadenosine, rutin, adenine, L-ribulose, 
xanthurenic acid, uric acid, sambacin, phlorin, nomilinic acid 17-gluco
side, L-arginine, kuwanon Y, isovalerylglucuronide, ginsenoyne K, 
gentiopicroside, folinic acid, dysolenticin B, deoxyfructosazine, 8- 
acetoxy− 4’-methoxypinoresinol 4-glucoside, 5-methoxy-L-tryptophan, 5’- 
deoxy− 5’-(methylsulfinyl)adenosine, 3,5-dihydroxy− 2-methylphenyl- 
beta-D-glucopyranoside, tsangane L 3-glucoside

3 Stachyose, carlosic acid methyl ester, traumatic acid
4 guanosine, dihydroactinidiolide, N-acetyl L-glutamic acid, aesculin, 1- 

caffeoyl− 5-feruloylquinic acid, enicoflavine, 4-O-caffeoylquinic acid, 
caprylic acid, 26-(2-Glucosyl− 6-acetylglucosyl]− 1,3,11,22- 
tetrahydroxyergosta− 5,24-dien− 26-oate, 3,4-dihydroxybenzaldehyde

5 1,3-dicaffeoylquinic acid, dihydrocaffeic acid, adenosine, pantothenic acid
6 caffeic acid, b-chlorogenin 3- [4” -(2”’-glucosyl− 3”’-xylosylglucosyl) 

galactoside]e 
3-hydroxy− 2-oxo− 3-phenylpropanoic-acid, succinyl L-proline, N-(1- 
deoxy− 1-fructosyl) phenylalanine, 2-O-methyladenosine, linustatin, 
digalacturonate, kynurenic acid, 
N1, N5, N10, N14-tetra-trans-p-coumaroylspermine

Fig. 12. Marker compound bar plots of madecassoside, asiaticoside, madecassic acid, asiatic acid, 4-CQA, and 1,3-DiCQA showing calculated concentrations over the 
time-course and how that relates to likelihood assignment of authenticated standard phytochemicals. Of note is the similarity of time-course data within each 
likelihood bounds and cluster.
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size and topology, which can influence the results. Additionally, in both 
SOM and tSNE, peak area or concentration data is transformed onto a 
new two-dimensional representation that does not preserve the original 
peak abundance information, but rather acts as a simplification or 
monogram of the data. BHC does not do this. Unlike t-SNE, which is 
primarily used for dimensionality reduction and visualization and can 
be followed by clustering techniques like K-means clustering, SOM ad
vantageously performs clustering and visualization simultaneously. 
SOM’s ability to provide a detailed and visually interpretable clustering 
makes it a valuable tool for metabolite analysis. The combination of 
multiple techniques allows us to arrive at the most descriptive under
standing of the cultivation of these plants and their phytochemicals.

The novel application of Bayesian hierarchical clustering (BHC) 
identified trends in production at different growth and harvest periods 
for 94 metabolites. These findings were corroborated by SOM and tSNE 
of the measured concentrations of 12 phytochemical markers. By 
investigating specific metabolite signals by cluster, we represent the 
metabolite changes through the growth cycle of each cultivar and can 
make future informed decisions about production and monitoring of 
these important phytochemicals.

Cultivation and propagation of different cultivars of C. asiatica fol
lowed by LC-HRMS/MS, LC-MRM-MS, data reduction techniques, GNPS, 
a novel application of BHC, as well as investigating metabolite pro
duction similarity by SOM and tSNE, all provide a comprehensive and 
capable strategy to investigate and describe the metabolomic composi
tion of C. asiatica cultivars in time. We have found that the cycle of 
specific phytochemical production varies throughout the year which has 
corroborated previous findings that show the relationship of light in
tensity to the abundance of asiaticoside, madecassoside, flavonoids, and 
chlorogenic acid (Maulidiani et al., 2012). It remains unclear whether 
sunny periods are directly associated with varying concentrations from 
this study, since the plants are grown in greenhouses, yet many practical 
and specific insights were found for greenhouse cultivation. Thorough 
data has been collected and presented that link known metabolites, 
somewhat known metabolites, and tentatively known metabolites in the 
time-course production of phytochemicals from C. asiatica. These 
methods could also be applied to compare the effects of other cultivation 
variables such as temperature, light cycles, and soil additives.

4. Conclusions

This study provides a comprehensive investigation from cultivation- 
to-analysis for obtaining optimal preparation of plant materials for 
future clinical trials. There are 50,000–80,000 flowering plants reported 
as being used for medicinal purposes according to the International 
Union for Conservation of Nature and the World Wildlife Fund. The 
experimental, analytical, and computational approaches described here 
are applicable to other environmentally controlled plant cultivation 
studies and may contribute to global and specific analysis of phyto
chemical production monitoring.
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Fig. 13. Time course analysis by self-organizing maps (SOM) and t-distributed stochastic neighbor embedding (tSNE). (A) The unified distance matrix (U-matrix) 
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arrangement in a two-dimensional space in both tSNE and SOM. SOM displays neighboring neuron distance indicating which metabolites cluster better (i.e. smaller 
distance equates to similarity).
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