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ABSTRACT

Optimal mean shift vector (OMSV)-based importance sampling

methods have long been prevalent in yield estimation and optimiza-

tion as an industry standard. However, most OMSV-based methods

are designed heuristically without a rigorous understanding of their

limitations. To this end, we propose VIS, the first variational analy-

sis framework for yield problems, enabling a systematic refinement

for OMSV. For instance, VIS reveals that the classic OMSV is sub-

optimal, and the optimal/true OMSV should always stay beyond

the failure boundary, which enables a free improvement for all

OMSV-based methods immediately. Using VIS, we show a progres-

sive refinement for the classic OMSV including incorporation of

full covariance in closed form, adjusting for asymmetric failure

distributions, and capturing multiple failure regions, each of which

contributes to a progressive improvement of more than 2×. Inherit-

ing the simplicity of OMSV, the proposed method retains simplicity

and robustness yet achieves up to 29.03× speedup over the state-

of-the-art (SOTA) methods. We also demonstrate how the SOTA

yield optimization, ASAIS, can immediately benefit from our True

OMSV, delivering a 1.20× and 1.27× improvement in performance

and efficiency, respectively, without additional computational over-

head.
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1 INTRODUCTION

With the continual advancement of integrated circuit technology,

microelectronic devices are shrinking to submicrometer scales. This

trend has elevated the significance of random process variations,

including intra-die mismatches, doping fluctuations, and threshold

voltage variations, as critical factors in circuit design. In modern cir-

cuit designs, particularly in scenarios like SRAM cell arrays where
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2The title of this paper is a homage to the seminal 2008 work of Lara Dolecek et al.,
łBreaking the simulation barrier: Sram evaluation through norm minimizationž which
laid the groundwork for contemporary yield analysis. The key word Beyond is twofold:
1) the optimal shift vector literately should lie beyond the failure boundary and 2) the
performance of the proposed method can go beyond the classic one.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

certain cells can be replicated millions of times, addressing yield

concerns has become paramount. Efficient yield estimationmethods

are crucial for providing accurate and rapid failure rate assessments

in the presence of specific process variations.

Monte Carlo (MC) simulation, the industry-standard baseline,

is commonly employed for yield estimation. MC involves running

SPICE (Simulation Program with Integrated Circuit Emphasis) sim-

ulations with parameters drawn from the process variation distribu-

tion millions of times, counting failures to obtain precise estimates.

However, MC is computationally intensive and becomes impracti-

cal for practical problems where the yield can be as low as 10−5, a

common setup in a 65nm SRAM cell array.

One pivotal avenue toward efficient yield estimation involves

harnessing the potential of machine learning (ML) to construct

data-driven surrogate models, approximating the unknown indi-

cator function. Active learning techniques are then employed to

iteratively refine the surrogate. Notably, [1] leverages a Gaussian

process (GP) for modeling the underlying performance functions

and employs an entropy reduction strategy in active learning. Ab-

solute shrinkage deep kernel learning (ASDK) replaces the GP with

a nonlinear-correlated deep kernel method and feature selection

to identify crucial features for focused analysis [2]. [3] adopts a

low-rank tensor approximation (LRTA) to approximate the perfor-

mance function. Recently, Optimal Manifold Importance Sampling

(OPTIMIS) proposes to use normalizing flow model to capture the

optimal failure manifold [4]. Despite their success, surrogate-based

methods are less favored due to their susceptibility to instability and

the demand for data for surrogate model training. Surrogate-based

methods are vulnerable to the highly nonlinear optimization prob-

lems inherent in model training, which, if not addressed correctly,

can yield erroneous surrogate models and consequently inaccurate

yield estimation scenarios the industry cannot afford.

Currently, the most extensively applied methods in the indus-

trial landscape for Electronic Design Automation (EDA) tools are

the Scaled-sigma Sampling (SSS) and Optimal Mean Shift Vector

(OMSV)-based techniques due to their simplicity and robustness [5].

SSS generates random samples from a distorted distribution for

which the standard deviation is scaled up to reduce the samples

of simulations and enhance estimation efficiency [6]. OMSV-based

methods employ the importance sampling (IS) technique, construct-

ing a Gaussian distribution with OMSV as the mean and using

it as the proposal distribution from which samples are drawn to

accelerate yield estimation. For the OMSV-based methods, find-

ing OMSV is most critical. Minimum Norm Importance Sampling

(MNIS) identifies the Minimum Norm (MN) failure sample, a.k.a.

the most probable failure point (MPFP), as the OMSV [7]. Owing to

its success, many subsequent studies redirect their focus towards
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finding MN-OMSV. Gradient Importance Sampling (GIS) enhances

efficiency in finding MN-OMSV by employing gradient descent [8].

Fast Sensitivity Importance Sampling (FSIS) uses transient sensitiv-

ity analysis instead of gradient-descent to find MN-OMSV [9]. To

resolve the challenge of multiple failure regions, Hyperspherical

Clustering and Sampling (HSCS) employs clustering to identify

them and finds the MN-OMSV for each failure region [10]. To keep

MN-OMSV updated with more simulations, Adaptive Importance

Sampling (AIS) introduces a dynamically updated sampling distribu-

tion, enhancing the accuracy of yield estimation [11]. By integrating

the key ideas of HSCS and AIS, Adaptive Clustering and Sampling

(ACS) further enhances the efficiency of yield estimation with mul-

tiple failure regions [12]. The importance of OMSV-based yield

estimation is self-evident and it is de facto an industry standard due

to its simplicity and robustness, which also lays the foundation for

the state-of-the-art (SOTA) yield optimization, e.g., All Sensitivity

Adversarial Importance Sampling (ASAIS) [9].

Despite their success, most progresses are heuristic in nature,

it is unclear when or where their assumptions are valid. To this

end, we introduce the first variational analysis framework for yield

analysis: Variational Importance Sampling (VIS), which serves as

an unifying framework for various SOTA methods.

Based on VIS, we discover a surprising fact: the true/optimal

OMSV is not the widely used MN-OMSV first proposed in MNIS in

2008 [7], but rather, it always stays beyond the failure boundary (vs.

on the failure boundary asMN-OMSV). This insight instantly grants

us free improvement without extra costs for SOTAmethods built on

the OMSV assumption, e.g., ASAIS. VIS further reveals that MNIS

and SSS are special cases of the same assumed proposal distribution,

and there exists a closed-form solution where these two methods

can be unified. To showcase the power of VIS, we further introduce

extra refinements, including a skew normal distribution to further

boost efficiency and a mixture of distributions to handle multiple

failure regions. In summary, the novelty of this work includes:

(1) VIS, the first variational analysis framework for IS-based

yield analysis, paving the way for the rigorous design and

analysis for computational yield problems, with the follow-

ing novelty as demonstration.

(2) True OMSV, the calibrated version of the canonical MN-

OMSV, generating a free-lunch speedup up to 10×.

(3) Full SSS, a complete version of SSS, which admits a closed-

form solution for the covariance matrix, offering another up

to 2× speedup at no extra computational cost.

(4) Skew Normal (SN) OMSV, introducing asymmetric distribu-

tion to offer an extra 1.4× speedup.

(5) Mixture of Skew Normals (MSN) OMSV, which is used to

handle multiple failure region challenges.

(6) The combination of (2)-(5) as a novel yield estimationmethod,

which we call BEYOND (to suggest the importance of True

OMSV and superior performance).

(7) Variational-ASAIS, demonstrating how VIS can immediately

improve SOTA yield optimization, ASAIS, by 1.20× in per-

formance and 1.27× in efficiency.

(8) The superiority of BEYOND is validated on multiple SRAM

and analog circuits with thoughtful experiments, ablation

study and robustness study, which demonstrate a 2.50×-

29.03× speedup (9.78× on average) and a 0.11%-24.49% im-

provement (7.33% on average) in yield estimation accuracy.

2 BACKGROUND

2.1 Problem Definition

Let x = [𝑥 (1) , 𝑥 (2) , · · · , 𝑥 (𝐷 ) ]𝑇 ∈ X denote the variation variables,

with X representing the parameter space for such variations. Typ-

ically, X is a high-dimensional space, denoted as 𝐷 , where each

element within the vector x signifies a specific manufacturing-

related parameter affecting a circuit, such as the dimensions (length

or width) of PMOS and NMOS transistors. In the context of our

analysis, we make a general assumption that the elements of x are

statistically independent and follow a Gaussian distribution:

𝑝 (x) = (2𝜋)
𝐷

2 exp

(

−
1

2
| |x| |2

)

. (1)

Given x, we can measure the performance of the circuit, denoted

as y (e.g., metrics like memory read/write time and amplifier gain),

by using SPICE simulation. Denote this as y = f (x), where f (·) rep-

resents the SPICE simulator. If y satisfies all pre-defined conditions

𝒕 , e.g., 𝑦 (𝑘 ) ≤ 𝑡 (𝑘 ) for 𝑘 = 1, · · · , 𝐾 , then the design is considered a

success; otherwise, it is a failure. Introducing an indication function

𝐼 (x) to denote the failure case, the ground-truth failure rate 𝑃𝑓 is

defined as:

𝑃𝑓 =

∫

X
𝐼 (x) 𝑝 (x)𝑑x. (2)

2.2 Monte Carlo Yield Estimation

The direct calculation of the yield is intractable due to the unknown

𝐼 (x). A straightforward approach to estimate the failure rate is MC,

which involves sampling x𝑖 from 𝑝 (x) and evaluating the failure

rate by the ratio of failure:

𝑃𝑓 =

1

𝑁

𝑁
∑︁

𝑖=1

𝐼 (x𝑖 ), (3)

where x𝑖 is the 𝑖-th sample from 𝑝 (x), and 𝑁 is the number of

samples. To obtain an estimate of 1−𝜀 accuracywith 1−𝛿 confidence,

𝑁 ≈ log(1/𝛿)/𝜀2𝑃𝑓 is required. For amodest 90% accuracy (𝜀 = 0.1)

with 90% confidence (𝛿 = 0.1), we need𝑁 ≈ 100/𝑃𝑓 samples, which

is infeasible in practice for small 𝑃𝑓 , say, 10
−5. We can also see this

intuitively from the fact that it requires on average 1/𝑃𝑓 samples

just to observe a failure event.

2.3 Importance Sampling Yield Estimation

In contrast to sampling directly from the distribution 𝑝 (x), IS-based

methods utilize a proposal distribution 𝑞(x) to draw samples and

estimate the failure rate as follows:

𝑃𝑓 =

∫

X

𝐼 (x)𝑝 (x)

𝑞(x)
𝑞(x)𝑑x ≈

1

𝑁

𝑁
∑︁

𝑖=1

𝐼 (x𝑖 )𝑝 (x𝑖 )

𝑞(x𝑖 )
=

𝑁
∑︁

𝑖=1

𝐼 (x𝑖 )𝑤 (x𝑖 ),

(4)

where x𝑖 are samples drawn from 𝑞(x) and are used to approximate

the integral as in MC. For convenience, we define the importance

weight 𝑤 (x) = 𝑝 (x)/𝑞(x). Eq. (4) is proved to be more efficient
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than traditional MC, provided that the proposal distribution 𝑞(x)

is thoughtfully selected.

2.4 MN-OMSV

A canonical approach to design a proposal distribution 𝑞(x) in-

volves employing a normal distributionN(𝝁, I), effectively shifting

the original Gaussian distribution centered at the origin to 𝝁. The

optimal shift vector 𝝁∗, referred to as OMSV (a.k.a. MPFP), can

be computed by solving the following optimization problem as

delineated in MNIS [7]:

𝝁
∗
= argmin | |x| |2 s.t. 𝐼 (x) = 1, (5)

where | |x| |2 =

∑𝐷
𝑑=1

(𝑥 (𝑑 ) )2 represents the Euclidean norm. As

illustrated in Fig. 1a, MNIS essentially uses the existing failure

samples with the minimal norm as the OMSV to propose new

samples.

3 PROPOSED APPROACH

Despite that MN-OMSV is intuitive, it was never rigorously justified

in the literature. We first introduce a variational analysis framework

for yield analysis, VIS, which will provide an analysis of the MN-

OMSV. We then use VIS to progressively improve OMSV with

rigorous mathematical analysis, which is also illustrated in Fig. 1.

3.1 Variational Analysis of IS Yield Estimation

From Eq. (4), we can see that the optimal proposal distribution

𝑞∗ (x) is the one that minimizes the approximate variance, i.e.,

𝑞∗ (x) = argmin
𝑞
E𝑞

[

𝑤2 (x)
(

𝐼 (x) − 𝑃𝑓

)2
]

. (6)

Utilizing the Lagrange multiplier rule for the calculus of variations,

we can show that the optimal proposal distribution is given by

𝑞∗ (x) = 𝑝 (x)𝐼 (x)/𝑃𝑓 . (7)

Thus, the optimal IS yield estimation is equivalent to minimizing

the Kullback-Leibler (KL) divergence between the true optimal

proposal distribution, 𝑞∗ (x), and its approximate counterpart, 𝑞(x)

KL(𝑞∗ (x) | |𝑞(x)) = E𝑞∗ (x)
[

log𝑞∗ (x)
]

− E𝑞∗ (x) [log𝑞(x)] , (8)

with a limited number of samples. Although alternative divergence

metrics (e.g., KL(𝑞(x) | |𝑞∗ (x)) and Wasserstein distance) exist, this

work specifically employs KL(𝑞∗ (x) | |𝑞(x)). As we will see later,

this choice yields closed-form solutions to avoid extensive hyper-

parameter tuning and computational overhead, a common issue

with modern ML-based approaches. Notably, E𝑞∗ (x) [log𝑞
∗ (x)] is

an unknown constant denoting the entropy of the optimal proposal

distribution, leaving the optimization focus on the second term.

Thus, minimization of the KL divergence is equivalent to maximiz-

ing E𝑞∗ (x) [log𝑞(x)], which admits an approximated solution by

only keeping the failure samples

∫

𝑝 (x)𝐼 (x)/𝑃𝑓 log (𝑞(x)) dx ≈
1

𝑃𝑓

𝑁 ′
∑︁

𝑖=1

𝑔(x𝑖 )𝑝 (x𝑖 ) log (𝑞(x𝑖 ))

(9)

where x𝑖 are failure samples, i.e., 𝐼 (x𝑖 ) = 1, 𝑁 ′ is the number of

failure samples, and 𝑔(x𝑖 ) is distribution that generates the samples.

To better explore the failure regions, which are crucial for approxi-

mating the integral with a small number of samples, this work uses

a uniform distribution, i.e., 𝑔(x𝑖 ) = 1.

Eq. (9) is the key insight of this workÐto provide a variational

framework, VIS, using a numerical approximation to the ideal KL

divergence. No assumption of the unknown function 𝐼 (x) is made

and the approximation is exact when the number of samples 𝑁 ′

approaches infinity.

3.2 True OMSV

Based on VIS, let’s now revisit the OMSV [7] and assume that

the proposal distribution is a Gaussian with a mean shift 𝝁, i.e.,

𝑞(x) = N(x|𝝁, I) . Substituting this 𝑞(x) into Eq. (9) and taking the

derivative w.r.t 𝝁, we achieve the optimal 𝝁

𝝁 =

∑𝑁 ′

𝑖=1 𝑝 (x𝑖 )x𝑖
∑𝑁 ′

𝑖=1 𝑝 (x𝑖 )
. (10)

This elegant closed-form solution reveals that the łTrue OMSVž

that maximizes the objective function is the weighted average of

the failure samples and it always resides beyond the failure

boundary NOT on the failure boundary. We can also see that

the importance of each failure sample decreases as it moves away

from the origin, explaining why the classic MN-OMSV can still

work well as a special case of using just one failure sample with

the maximum weight.

3.3 Full SSS

With VIS, it is now possible to transcend the limitations of a fixed

variance Gaussian distribution for the proposal distribution. The

concept of employing varying variances for the proposal is not

novel itself, as it has been previously explored in the pioneer work

[6]. However, this method only considers a single variance scaling

factor for all dimensions, thereby ignoring the correlations between

dimensions and leading to suboptimal performance. Moreover, the

selection of variance relies on a heuristic approach and expert

knowledge, which is not practical for deployment in real-world

applications. Here, we take a more ambitious step by assuming

a full covariance matrix for the proposal distribution, i.e., 𝑞(x) =

N(x|𝝁, 𝚺), which may seem overkill and can lead to overfitting. As

we will see soon, the covariance matrix 𝚺 will admit a closed-form

solution under VIS. Substituting the proposal into Eq. (9), taking the

derivative w.r.t 𝝁 and 𝚺 and setting them to zero, we can derive the

optimal 𝝁 and 𝚺. Not surprisingly, the optimal 𝝁 is exactly Eq. (10),

and the optimal 𝚺 is

Σ =

∑𝑁 ′

𝑖=1 𝑝 (x𝑖 ) (x𝑖 − 𝝁) (x𝑖 − 𝝁)𝑇

∑𝑁 ′

𝑖=1 𝑝 (x𝑖 )
. (11)

As a special case of the full covariance matrix, we can also derive

the optimal variance for SSS by forcing 𝚺 = 𝜎2I and get the optimal

𝜎2 =

∑𝑁 ′

𝑖=1 𝑝 (x𝑖 ) (x𝑖 − 𝝁)𝑇 (x𝑖 − 𝝁)
∑𝑁 ′

𝑖=1 𝑝 (x𝑖 )
. (12)

A diagonal form of 𝚺 can also be assumed. Since the full covariance

matrix 𝚺 is available in closed form, there is no need to use a

diagonal form unless overfitting becomes an issue, which was not

encountered in our experiments.
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(a) MN-OMSV
x!

x"𝑂

MN-OMSV

MN

(b) True OMSV
x!

x"𝑂

True OMSV

(c) True OMSV+Full SSS
x!

x"𝑂

True OMSV

(d) True OMSV+Full SSS+SN
x!

x"𝑂

True OMSV

Figure 1: Illustration of progressive refinement of the classic MN-OMSV using VIS.

We can see how powerful VIS is, as it allows us to derive closed-

form solutions for the optimal mean and covariance of the proposal

distribution. In other words, we can derive better solutions than the

conventional methods, while preserving tractability to minimize

the computational costs andmodel complexity, which are important

key merits the industry is looking for.

3.4 Skew Normal Distribution

A ubiquitous assumption made in the OMSV-based literature is

that the proposal distribution is a symmetric Gaussian distribution.

While this assumption is convenient for the analysis and simple

enough to prevent overfitting, it can also lead to a significant reduc-

tion in efficiency by proposing many samples in the failure region

(about 50%, see Fig. 1c for an example). This is intuitive to see be-

cause at least half of the samples will be generated inside the failure

region, for the simplest cases with one failure region. In practice,

it can get worse when the failure regions have a narrow shape.

This issue is not resolved in the literature due to the lack of proper

analysis tools and the difficulty in deriving a feasible solution. With

VIS, we can now take a further step by amending the proposal

distribution to be the multivariate skew normal distribution, which

is a generalization of the normal distribution and can better fit the

optimal proposal distribution (see Fig. 1d). The Probability Density

Function (PDF) of the multivariate skew normal is

SN(x|𝝁, 𝚺,𝜶 ) = 2𝜙 (x; 𝝁, 𝚺)Φ(𝜶𝑇 x) . (13)

Here: 𝜙 (x; 𝝁, 𝚺) is the PDF of the normal distribution with mean

vector 𝝁 and covariance matrix 𝚺; Φ(·) is the cumulative distri-

bution function (CDF) of the standard normal distribution; 𝜶 is

a 𝐷-dimensional vector of shape parameters. The vector 𝜶 deter-

mines the skewness in each dimension. When 𝜶 = 0, the multivari-

ate skew normal distribution reduces to the standard multivariate

normal distribution.

To get the parameters of the multivariate skew normal distribu-

tion, we can substitute Eq. (13) into Eq. (9), take the derivative w.r.t

𝝁, 𝚺 and 𝜶 and set them to zero.

argmax
𝝁,𝚺,𝜶

𝑁 ′
∑︁

𝑖=1

𝑝 (x𝑖 ) log (SN (x𝑖 |𝝁, 𝚺,𝜶 )) . (14)

Unfortunately, this does not lead to a closed-form solution for

the parameters, which is not surprising as the estimation of the

parameters in the multivariate skew normal distribution itself is

a known challenge. To deliver a practical solution, we use the

mean and covariance estimated from the previous sections and

only optimize Eq. (14) w.r.t the shape parameter 𝜶 using gradient

descent. This turns out to be an excellent workaround as it fits well

with our motivation to have an asymmetric proposal distribution,

instead of deriving a well-fitting distribution from scratch.

3.5 Mixture of Skew Normal Distribution

Finally, all simple OMSV-based methods can only deal with a single

failure region, which poses a significant limitation for real-world

applications. This problem can be simply resolved by introducing a

mixture of skew-normal distribution, i.e.,

𝑞(x) =

𝑀
∑︁

𝑚=1

𝑤𝑚SN(x|𝝁𝑚, 𝚺𝑚,𝜶𝑚), (15)

where𝑤𝑖 is the weight and𝑀 is the number of mixture components.

Substituting Eq. (15) into Eq. (9) and doing the optimization, we

can derive the optimal mixture of skew normal distribution. How-

ever, this optimization is extremely difficult. As a workaround, we

first cluster the failure samples using silhouette coefficient [13, 14],

which automatically determines the number of clusters and the

cluster label for each failure sample. The weight 𝑤𝑚 is approxi-

mated by the number of samples in each cluster divided by the total

number of failure samples. Finally, the parameters {𝝁𝑚, 𝚺𝑚,𝜶𝑚}

for each cluster are optimized by Eq. (14), Eq. (11) and Eq. (10).

3.6 Complexity and Implementation

Given 𝑁 as the number of failure samples, the computation of the

silhouette coefficient is O(𝑁𝐷). The computation of True OMSV

and Full SSS is O(𝑁 ′) and O(𝑁 ′𝐷2), respectively, where 𝑁 ′ is the

number of failure samples in a cluster. Updating the skew normal

shape parameters is O(𝑁 ′) each iteration. The overall algorithm is

summarized in Algorithm 1. Note that the algorithm is flexible by

using only the True OMSV, Full SSS.

3.7 Calibration of SOTA Yield Optimization

Many SOTA yield optimization methods rely on yield estimation by

MN-OMSV [9, 15, 16], which has been revealed to be sub-optimal

in this work. Nonetheless, just by using the True OMSV instead of

the MN-OMSV and keeping other parts of the method unchanged,

we can achieve better performance for no extra cost. We choose the

latest advanced OMSV-based yield optimization method, ASAIS [9],

as the baseline method. It optimizes the design parameter z by
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Algorithm 1 BEYOND Algorithm

Require: SPICE-based indication function 𝐼 (x)

1: Use Onion Sampling [4] to form initial failure samples set D

2: repeat

3: Update iteration 𝑡 = 𝑡 + 1

4: Use silhouette coefficient to get𝑀 clusters and weight𝑤𝑚
5: Fit each cluster with a skew normal distribution using

Eq. (14), Eq. (11) and Eq. (10) and form 𝑞(x) with Eq. (15)

6: Draw 𝐾 samples from 𝑞𝑡 (x) and calculate importance

weights:𝑤𝑡
𝑘
= 𝐼 (x𝑘 )𝑝 (x𝑘 )/𝑞

𝑡 (x𝑘 ) for 𝑘 = 1, 2, . . . , 𝐾 .

7: Estimate failure rate 𝑃𝑓 =
1
𝑡𝐾

𝑡
∑

𝑗=1

𝐾
∑

𝑘=1
𝑤𝑡
𝑘
.

8: Update failure sample collection D

9: until Figure of Merit (FOM), 𝑠𝑡𝑑 (𝑃𝑓 )/𝑃𝑓 < 0.1

10: return Failure rate estimation 𝑃𝑓

maximizing the following objective function:

argmax
z

| |𝝁 (z) | |2, (16)

where 𝝁 (z) is the OMSV computed by Eq. (5) for design parameter

z. This optimization is solved by gradient descent with gradient

2𝝁
𝜕𝝁
𝜕z given by adjoint method implemented in the SPICE solver.

According to the True OMSV, we simply modify the computation of

𝝁 (z) using Eq. (10). The gradient is then given by the weighted sum

of the gradient of all failure samples. We call the modified method

Variational-ASAIS.

4 EXPERIMENTAL RESULTS

In this section, we conduct a comprehensive evaluation of the ac-

curacy and efficiency of our method, namely BEYOND, in yield

estimation on three benchmark circuits: a 6T-SRAM, an operational

transconductance amplifier (OTA) and a 6-bit 6T-SRAM array cir-

cuit. To ensure a SOTA comparison, we implement seven SOTA

methods as comparative baselines: MNIS [7], HSCS [10], AIS [11],

ACS [12], LRTA [3], ASDK [2], and OPTIMIS [4]. MC serves as the

gold standard for estimating the true failure rate. We also utilize the

Figure of Merit (FoM), denoted as 𝜌 , calculated as 𝜌 = std(𝑃𝑓 )/𝑃𝑓 ,

where std(𝑃𝑓 ) is the standard deviation of the estimated failure rate.

FoM serves as the termination criterion for all methods and we use

𝜌 = 0.1 following [7, 10, 15]. For the assessment, speedup is com-

puted as #𝑆𝑖𝑚𝑀𝐶

#𝑆𝑖𝑚 , and the relative error rate is (𝑃𝑓 − 𝑃𝑓𝑀𝐶
)/𝑃𝑓𝑀𝐶

.

In all of our experiments, we conduct ten random seed exper-

iments for each method (ensuring the same seeds for all meth-

ods). The final failure rate estimation is obtained by taking the

average across these ten experiments. Additionally, we select the

best-performing result from the ten random experiments for each

method and use it to create a visualization of the iterative estima-

tion of failure rate and its FoM. We implement the baselines with

their default configurations, and where necessary, we fine-tune

hyperparameters to optimize performance. All experiments are

conducted on a Windows system with an AMD 7950x CPU and

32GB RAM.
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Figure 2: The structure of SRAM column circuit
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Figure 3: Failure rate estimation with FoM on 6T-SRAM

Table 1: Yield Estimation Results on 6T-SRAM

Model Fail. Rate Rel. Err. # Sim Speedup

MC 4.99e-5 - 406240 1×

MNIS 4.81e-5 3.61% 10030 40.50×

HSCS 4.86e-5 2.61% 4152 97.84×

AIS 4.85e-5 2.81% 9702 41.87×

ACS 4.70e-5 5.81% 9620 42.23×

LRTA 4.86e-5 2.61% 6130 66.27×

ASDK 4.85e-5 2.81% 6640 61.18×

OPTIMIS 4.93e-5 1.18% 3916 103.74×

BEYOND 4.98e-5 0.16% 1564 259.74×

4.1 6T-SRAM Circuit

The 6T-SRAM bit cell, illustrated in Fig. 2, is implemented in a 45nm

CMOS process, which includes six transistors. Each transistor has

three independent random variables: threshold voltage, mobility,

and gate oxide thickness, which are critically impactful on yield

among all variation parameters. As a result, the circuit encompasses

18 independent random variables. In our experiments, we focus on

the delay time of SRAM read/write as the performance metric of

interest.

The yield estimation experimental results are shown in Table 1,

and the evolution of failure rate convergence and FoM evaluation is

depicted in Fig. 3. As shown in Table 1, it is evident that BEYOND

achieves the most accurate estimation with minimal simulations.

In terms of accuracy, BEYOND exhibits a relative error rate as

low as 0.16%, improving the accuracy by 1.02%-5.65% against other
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767.52x

Figure 4: Failure rate estimation with FoM on OTA

Table 2: Yield Estimation Results on OTA

Model Fail. Rate Rel. Err. # Sim Speedup

MC 1.89e-4 - 1102000 1×

MNIS 1.64e-4 11.94% 21065 52.31×

HSCS 1.70e-4 10.15% 17950 61.39×

AIS 1.74e-4 8.18% 11178 98.59×

ACS 1.78e-4 5.59% 11053 99.70×

LRTA 2.04e-4 7.94% 10100 109.11×

ASDK 2.14e-4 11.68% 9600 114.79×

OPTIMIS 1.92e-4 1.57% 4126 267.09×

BEYOND 1.90e-4 0.41% 1441 764.75×

baselines. In terms of efficiency, BEYOND achieves a speedup of

up to 259.74× compared to MC, and demonstrates a speedup of

2.50×-6.41× compared to other baselines.
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Figure 5: Operational Transconductance Amplifier Circuit

4.2 Operational Transconductance Amplifier

The OTA circuit, depicted in the Fig. 5, contains 14 transistors. Each

transistor has four process variation parameters: oxide thickness,

threshold voltage, and deviations in length and width due to process

variations. Consequently, this circuit comprises 56 independent

random variables. In our experiments, the performance of interest

922.85x

Figure 6: Failure rate estimation with FoM on 6-bit array

Table 3: Yield Estimation Results on 6-bit 6T-SRAM Array

Model Fail. Rate Rel. Err. # Sim Speedup

MC 5.62e-5 - 1417500 1×

MNIS 4.94e-5 12.03% 45174 31.38×

HSCS 4.21e-5 25.09% 47090 30.10×

AIS 4.37e-5 22.19% 15996 88.62×

ACS 4.92e-5 12.44% 14060 100.82×

LRTA 5.96e-5 6.05% 12300 115.24×

ASDK 5.87e-5 4.44% 12500 113.40×

OPTIMIS 5.66e-5 0.71% 5300 267.45×

BEYOND 5.59e-5 0.60% 1622 873.92×

is the quiescent current 𝐼𝑄 at 27◦𝐶 . The yield estimation results are

detailed in Table 2, and the evolution of failure rate convergence

and FoM evaluation is illustrated in Fig. 4.

The results indicate that BEYOND consistently delivers highly

accurate estimation with the reduced simulations in the analog

circuit. In accuracy terms, BEYOND achieves a relative error rate

as low as 0.41%, enhancing the accuracy by 1.16%-11.53% over

other baselines. In efficiency terms, BEYOND realizes a speedup

of up to 764.75× relative to MC and shows a speedup of 2.86×-

14.62× compared to other baselines. These results underscore the

robustness of BEYOND in varied circuit complexities.

4.3 6-bit 6T-SRAM Array Circuit

Building upon the BEYOND validated in the 6T-SRAM bit cell exper-

iments, we expand to a higher complexity with the 6-bit 6T-SRAM

array circuit, which has six such bit cells. This circuit contains a

total of 108 variational parameters, offering a comprehensive view

that incorporates peripheral circuit influences to enhance failure

rate estimation accuracy. Results are captured in Table 3, and the

evolution of failure rate convergence and FoM evaluation is shown

in Fig. 6.

For the higher-dimensional circuit, BEYOND still maintains its

leading edge. Accuracy-wise, BEYOND achieves a relative error

rate as low as 0.16% and an accuracy enhancement of 0.11%-24.49%

over the baselines. Efficiency-wise, BEYOND exhibits a remarkable

speedup, reaching up to 873.92× compared to MC and achieving a
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Table 4: Yield Optimization Comparison Results on Adder Circuit

Case 1 (Higher Specification) 2 (Lower Specification)

Metric Failure Rate # Simulation Failure Rate # Simulation

Method Best Worst Mean Std Best Worst Mean Best Worst Mean Std Best Worst Mean

WEIBO 7.50e-7 2.08e-5 6.80e-6 8.61e-6 2121 4861 3626 1.50e-5 1.90e-5 1.74e-5 1.36e-6 2681 4391 3536

MESBO 5.00e-8 1.50e-7 6.00e-8 3.00e-8 4070 11200 8640 1.03e-5 2.00e-5 1.70e-5 2.83e-6 4220 7870 5687

KDEBO 5.00e-8 1.30e-6 3.45e-7 4.54e-7 10000 10000 10000 1.10e-5 1.46e-4 5.24e-5 5.40e-5 8000 8000 8000

BYA 4.00e-8 5.00e-8 4.50e-8 5.00e-9 11000 11000 11000 1.70e-5 1.75e-5 1.72e-5 2.29e-7 8000 8000 8000

ASAIS 2.50e-8 7.50e-8 4.75e-8 2.08e-8 2417 2427 2422 9.00e-6 2.60e-5 1.83e-5 5.88e-6 2412 2420 2415

V.-ASAIS 2.50e-8 5.00e-8 4.00e-8 1.22e-8 1875 1987 1912 7.00e-6 1.20e-5 8.50e-6 1.50e-6 1968 1992 1981

Figure 7: The structure of Adder circuit

speedup of 3.27×-29.03× compared to other baselines. These results

not only reinforce the precision of BEYOND but also underscore

its efficiency in managing the heightened complexity of advanced

SRAM architectures.

4.4 Yield Optimization on Adder Circuit

Building upon our successful yield estimation experiments, we

now focus on yield optimization through the ASAIS optimization

flow [9], herein referred to as Variational-ASAIS. We benchmark

Variational-ASAIS against five SOTA yield optimization methods:

Weighted Expected Improvement BayesianOptimization (WEIBO) [17],

Max-value Entropy Search Bayesian Optimization (MESBO) [18],

Kernel Density Estimator Bayesian Optimization (KDEBO) [19],

Bayesian Yield Analysis (BYA) [1], and ASAIS for a comprehensive

comparison.

We conduct the yield optimization experiments on an adder

circuit, illustrated in Fig. 7. The adder circuit comprises 28 MOS

transistors, each subject to three variational parameters, totaling

84 variables. Our design parameters focus on the width and length

of these transistors. We assess the yield by examining the time-to-

threshold (TT) performance, which involves simulating the tran-

sient response until the sum output attains a specified threshold

voltage. To validate the optimization performance of each method,

we conduct experiments with ten different random seeds to reduce

random fluctuations (ensuring the same seeds for all methods). Fur-

thermore, we employ two distinct circuit specifications - a higher

case (Case 1) and a lower case (Case 2) - to assess the robustness

of all methods. The optimal design is validated using 4e7 and 1e6

MC simulations for Case 1 and Case 2, respectively. The results are

summarized in Table 4.

For Case 1 on the high specification, BYA achieves the low-

est standard deviation and its worst-case result equating to that

achieved by Variational-ASAIS, which consistently leads in perfor-

mance. While ASAIS also posts competitive optimization results,

Variational-ASAIS outstrips all baselines when considering mean

performance, boasting a 1.13×-170× improvement over the other

baselines. In efficiency terms, Variational-ASAIS proves to be the

most resource-sparing, surpassing the baselines by 1.27× to 5.75×.

For Case 2 on the lower specification, BYA continues to show a

good result in the lowest standard deviation. But in other aspects,

all baselines are inferior to Variational-ASAIS, which achieves a

2×-6.16× optimization performance improvement with a 1.22×-

4.03× speedup compared to other baselines based on the mean

results. Collectively, these findings highlight Variational-ASAIS’s

exceptional optimization prowess while conserving simulations.

Table 5: Comparison of Computational Time (CPU Hours)

CPU Hours MNIS HSCS AIS ACS LRTA ASDK OPT. BEYOND

6T-SRAM 4.8 2.0 4.6 4.6 3.1 3.2 2.0 0.8

OTA 50.5 43.0 26.8 26.5 24.3 25.0 10.0 3.5

6-bit Array 270.9 283.2 95.9 84.3 73.9 75.7 32.4 9.8

4.5 Computational Time Study

We demonstrate the computational time for the aforementioned

yield estimation experiments in this section to highlight the effi-

ciency. Table 5 presents the average computational time for ten

random seed runs for each method. Clearly, BEYOND demonstrates

a leading edge in computational efficiency, showing a 4.64×, 8.39×,

and 13.34× speedup on average for the 6T-SRAM, OTA, and 6-bit

6T-SRAM array circuits, respectively.

Furthermore, we conduct comparative experiments on the train-

ing time (find the optimal parameters) between BEYOND and other

surrogate-based methods (LRTA, ASDK, OPTIMIS). As depicted in

Fig. 8, BEYOND achieves a 41.87×, 39.15×, and 8.27× speedup on

average for the 6T-SRAM, OTA, and 6-bit 6T-SRAM array circuits,

respectively.
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Figure 8: Model training time on three benchmark circuits

4.6 Ablation Study

To assess the contribution of each component, i.e., True OMSV, Full

SSS, and the mixture of skew normal distributions, we conduct an

ablation study on 6-bit 6T-SRAM array (the most challenging one

among our testing examples) by incrementally integrating compo-

nents into the basic MN-OMSV method. The experimental results

are presented in Table 6, which reveal consistent improvement with

the incorporation of each component. Fig. 9 more vividly illustrates

the trend of accuracy and efficiency.

True OMSV brings the most significant improvement in both

accuracy and efficiency, reducing the relative error rate by 9.02%

and the number of simulations by a factor of 10.17. Full SSS fur-

ther improves the accuracy by 1.63% and the efficiency by 2.01×,

whereas skew normal distribution brings a marginal improvement

of 0.78% in accuracy and 1.25× in efficiency. These results substan-

tiate the superiority of BEYOND (True OMSV+Full SSS+MSN) in

yield estimation.

Table 6: Ablation Study of BEYOND on 6-bit Array

Model Fail. Rate Rel. Err. # Sim Speedup

MC 5.62e-5 - 1417500 1×

MN-OMSV 4.94e-5 12.03% 45174 31.38×

True OMSV 5.45e-5 3.01% 4440 319.26×

True OMSV+Full SSS 5.54e-5 1.38% 2240 632.81×

True OMSV+Full SSS+MSN 5.59e-5 0.60% 1622 873.92×

MN-OMSV True OMSV True OMSV

+ Full SSS

True OMSV

+ Full SSS 

+ MSN
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Figure 9: Ablation study of each component

Table 7: The Comparison of Incorrect Estimation Counts

Circuit MNIS HSCS ACS AIS LRTA ASDK OPT. BEYOND

6T-SRAM 1/10 2/10 2/10 2/10 3/10 5/10 2/10 1/10

OTA 3/10 3/10 3/10 3/10 4/10 7/10 4/10 2/10

6-bit Array 5/10 6/10 4/10 4/10 4/10 5/10 2/10 2/10
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Figure 10: Incorrect estimation ratio in all experiments

4.7 Robustness Study

To highlight the robustness that is highly valued by the industry,

we conduct an in-depth robustness study on the three benchmark

circuits for all methods. Specifically, each method is executed with

the same set of ten consecutive random seeds, and the counts of

incorrect estimationsÐwhere the relative error rate exceeds 30%Ðis

recorded for each method. The statistical outcomes are presented

in Table 7.

In the 6T-SRAM experiments, OMSV-based methods generally

demonstrate better stability than surrogate-based methods, with

MNIS and BEYOND showing the highest stability. However, as

circuit complexity increasing, as observed in the OTA and 6-bit

Array experiments, the stability of all methods declines. Despite

this, BEYOND continues to exhibit superior stability.

Based on the statistical results of incorrect estimations for the

three circuits, the percentage of incorrect estimations for each

method is depicted in Fig. 10. From the percentages of incorrect

estimations, it is observable that OMSV-based methods generally

exhibit higher robustness compared to surrogate-based methods,

with BEYOND being the most stable among the all methods.

5 CONCLUSION

We propose VIS, a rigorous analysis framework for yield estima-

tion, which may revolutionize the traditional yield estimation para-

digm. Based on VIS, we propose BEYOND, a novel yield estimation

method. The capacity of BEYOND is demonstrated by multiple mod-

ifications to the classic OMSV method in both yield estimation and

optimization. BEYOND’s superiority is validated by comprehensive

experiments conducted on real-world circuit benchmarks, compu-

tational time studies, ablation studies and robustness studies. With

the way paved by this work, we expect more innovative methods to

be developed in the future. Dealing with high-dimensional circuits

remains challenging, a common issue faced by all SOTA methods.

We will further investigate the potential of multi-region sampling

and dimensionality reduction strategies to address this issue.
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