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Insertional diversification of the immunoglobulin heavy chain (IgH) switch and variable regions is an 

unconventional antibody diversification mechanism described as contributing to the generation of 

broadly neutralising antibodies against P. falciparum malaria; IgH LAIR1 gene insertions can create 

extra protein loops, resulting in viable antibodies specific to malarial antigens(1). Insertions of 

genomic sequences from outside IgH into the B-cell receptor (BCR) variable or IgH isotype switch 

regions(2) have since been demonstrated to occur in up to 1 in 104 B-cells in polyclonal 

populations(3), but to our knowledge not within clonal populations of chronic B lymphoproliferative 

disorders.  

Binding of IgH to antigen is central in BCR signalling, contributing to B-cell proliferation, clonal 

expansions and lymphomagenesis. Insertional diversification most likely occurs during VDJ gene 

segment recombination, somatic hypermutation and class-switch recombination, which underpin B-

cell generation of diversity, affinity maturation and immunoglobulin class switching (3, 4). Insertions 

maintaining the open-reading frame will alter amino acid sequence, changing BCR antigenic 

recognition (2) impacting on BCR and reactive antigen specificity. Stereotyped BCR specificities are 

linked to pathogenesis and disease risk in CLL(5), and there is emerging evidence that IgH/BCR VDJ 

(IGHV) mutational status can affect small molecule inhibitor treatment responses(6). Therefore, the 

question of whether insertional events could contribute to clonal lymphoproliferative disorders and 

their response to treatment is important to address.  

Insertional diversification requires DNA breaks allowing insertion of sequences of several hundred 

base pairs from outside the IgH locus(7), usually from other chromosomes(2, 3). Emerging evidence 

suggests that inserts occur through acceptor sites generated by enzymes RAG or AID, and chromatin 

structures such as RNA/DNA hybrids called R-loops(3, 8), and can occur in naïve, memory or 

activated B-cells(3).  

We present an exploratory analysis into whether insertional diversification events occur in cLPDs, 

which are hypothesised to have antigenic drive(4) and could recapitulate the process seen in LAIR1 

insertion public antibody generation. 

Extended methods are in supplementary file 1 (S1). Patient samples and sequencing data was 

analysed in accordance with ERIC recommendations using BIOMED2 primers(5, 9). Genome version 

Hg19 (GRCh37) was used.  

Routine cLPD IGHV electrophoresis results were screened for potential insertional events, selecting 

samples with longer than normal amplicons or multiple bands for analysis. Raw FASTA consensus 

sequences were queried in IMGT V-QUEST(10). Sequence sections not aligning to VDJ segments 

were copied and queried again with IMGT. If they failed to align the sequence was queried using 



Basic Local Alignment Tool (BLAT). This enabled identification of both biallelic VDJ 

rearrangements(11), and insert sequences. IGHV electrophoresis results from patients that lacked 

longer amplicons or additional bands were used as controls and evaluated using the same process. 

The switch region is not routinely sequenced in clinical practice and a searchable consensus map was 

not available. Therefore, a consensus map (supplementary file 2) was developed enabling 

identification of ‘hotspots’ for insertion events from published data and in-silico primer design for 

next generation sequencing (NGS).  

A range of B-cell cLPD diagnoses and controls were selected for switch region targeted NGS, table 1.  

Diagnosis Number of Samples 

Chronic lymphocytic leukaemia (CLL) 6 

CD5 negative lymphoproliferative disorder 7 

Marginal zone lymphoma (MZL) 5 

Lymphoplasmacytic lymphoma* 1 

Diffuse Large B-cell Lymphoma (DLBCL) 1 

CLL and MZL dual diagnosis 1 

Control type Number of samples 

CD19 negative PBMCs** 1 

HeLa Cells** 1 

Total B-cells D6*** 1 

Class switched B-cells D6 1 

Non-class switched B-cells D6 1 

Table 1. Patient and control samples for switch region PCR. *Confirmed MYD88 mutated, also known 

as Waldenström’s Macroglobulinaemia. **Non-B-cell controls. ***D6 – day 6 cultured B-cells. These 

samples were not linked to IGHV cases. 

Bioinformatic pipeline details are in S1.  

819 IGHV PCR gel results were screened, characteristics of the 64 selected samples are shown in 

figure 1. Extended results are in supplementary file 3 (S3). 18 control samples showed no IGHV 

anomalies.  

 

 

 



Figure 1. Identification of long amplicon sequences, outside of the reported IGHV sequence. FASTA 

sequences are available in S3. Structure 1 is a confirmed insert, length 222bp, with IGH at both the 5’ 
and 3’ ends of the insert sequences. Structures 2 and 3 are ‘potential’ inserts, lengths 209bp, 211bp 

and 487bp, with only 5’ IGH identifiable in structure 2. 

All insert-containing sequences were amplified using the Vh4-Fr1 BIOMED primer set and 

demonstrated the same region of chr6. BLAT of structure 1 3’ sequence aligned to IGHJ5 and the J4-

J5 intron. Nucleotide Basic Local Alignment Tool (BLASTn) of the chr6 region did not demonstrate 

significant homology to IGH. Open reading frame analysis and VDJ usage is detailed in S3. 

The Chr6 insert loci were characterised using UCSC genome browser(12), and shown to be an 

intergenic ‘DNase hypersensitive site’. 

In the switch region insertion ‘hotspot’ sites were defined as follows: Sγ1 region chr14:106210574-

106213018 q32.33; Sµ region chr14:106323549-106326839 q32.33.  



The bioinformatic pipeline confirmed 2 inserts, both in a ‘non-class switched B-cells D6’ control 
sample, Sµ primer set. The FASTA sequences are in S3.  

Insert 1: length 194bp, mean bp coverage 91.4, identified as gene ANKRD44 exon 2, Chr2q33.1. It is 

highly expressed in lymph node (https://www.ncbi.nlm.nih.gov/gene/91526), EBV transformed 

lymphocytes and whole blood(12).  

Insert 2: length 250bp, mean coverage 51.9, intergenic, 500bp upstream of gene ACTB (a 

cytoskeleton actin protein that is expressed in B cells (13)). This aligns to CFS FRA7b position Chr7:1-

7300000(14). 

Like the Chr6 insert from VDJ gene sequencing, both switch region inserts include DNase 

hypersensitivity clusters. 

Our results demonstrate that accurate targeting of the switch region using the consensus map and 

in-silico primer design combined with a long amplicon PCR method can enable sequence analysis of 

this crucial genomic region.  

We also demonstrate that identification of insertion events from routine IGHV gene sequencing is 

possible and suggest that IGHV NGS could identify more insertions and improve sequencing depth 

for subclonal insert discovery(7). This could be coupled with longer PCR extension times and/or 

alternative polymerases to enhance longer insert amplification.  

The finding of the same IGHV insert sequence from chr6 in 4 samples of 3 different diagnoses (CLL, 

MZL and HCL) suggest a shared insert pattern in cLPD patients. Inserts from this region were not 

identified in published datasets from normal donors(2, 3).  IGHV and BCR data from online 

repositories may demonstrate inserts and would be helpful for developing NGS-based IGHV 

reporting guidance when it is updated by ERIC.  

Inserts identified by this study map to ‘DNase hypersensitive sites’(12) of accessible chromatin(15), 

consistent with other evidence linking insert origins to open chromatin regions(7). IGHV VDJ-insert-

partial J-IGH as gDNA has not been described but the IGHJ loci are within the ‘switch region’ 
definition used by previous bioinformatic analysis. Inserts after VDJ and no 3’ IGH sequence 

identified have also been published previously(3). Finding switch inserts in only unswitched cells may 

reflect that µ-µ and γ1- γ1 primer sets were used.  

Insertional diversification events are identified as rare events in clonal IGHV sequences of cLPDs. 

Given the small numbers studied screening additional samples and NGS analysis would be 

interesting to evaluate insertion events alongside IGHV stereotypy and mutational status.  
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