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ABSTRACT  18 

Purpose 19 

This paper challenges the notion that reliability indices are appropriate for informing test length 20 

in exams in medical education, where the focus is on ensuring defensible pass-fail decisions. 21 

Instead, we argue that using classification accuracy instead better suited to the purpose of exams 22 

in these cases. We show empirically, using resampled test data from a range of undergraduate 23 

knowledge exams, that this is indeed the case. More specifically, we address the hypothesis that 24 

use of classification accuracy results in recommending shorter test lengths as compared to when 25 

using reliability. 26 

Method 27 

We analyzed data from previous exams from both pre-clinical and clinical phases of 28 

undergraduate medical education. We used a re-sampling procedure in which both the cut-score 29 

and test length of repeatedly generated synthetic exams were varied systematically. N=52,500 30 

datasets were generated from the original exams. For each of these both reliability and 31 

classification accuracy indices were estimated. 32 

Result 33 

Results indicate that only classification accuracy, not reliability, varies in relation to the cut-34 

score for pass-fail decisions. Furthermore, reliability and classification accuracy are differently 35 

related to test length. Optimal test length to using reliability was around 100 items, independent 36 

of pass-rates. For classification accuracy, recommendations are less generic. For exams with a 37 

small percentage of fail decisions (i.e., 5% or less), an item size of 50 did, on average, achieve an 38 

accuracy of 95% correct classifications. 39 
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Conclusions 40 

We suggest a move towards the employment of classification accuracy using existing tools, 41 

whilst still using reliability as a complement. Benefits of re-thinking current test design practice 42 

include minimizing the burden of assessment on candidates and test developers. Item writers 43 

could focus of developing fewer, but higher quality, items. Finally, we stress the need to consider 44 

effects of the balance false positive and false negative decisions in pass/fail classifications.  45 

  46 
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INTRODUCTION 47 

How to design, build, and deliver high-quality exams has been a long-term focus within 48 

the field of assessment in health professions education (HPE) 1. Most faculty members would 49 

probably agree that designing high quality content for assessments—even for a ‘simple’ 50 

knowledge test, let alone across a programme of assessment—demands a significant investment 51 

of resources: multiple choice exams need appropriate clinical vignettes with reasonable 52 

distractors, and OSCEs need high quality stations for defensible decision-making. 53 

An ongoing challenge is to decide on how many of these items, cases, or observations are 54 

enough for an exam—it is clearly more feasible to develop twenty carefully crafted case 55 

scenarios than one hundred 2,3. A need for a greater quantity of items, stations, and assessments 56 

in general might also impact the quality of the content provided, at least in educational contexts 57 

where resources are typically limited. Hence, the question of how many observations (i.e., items, 58 

stations, cases, etc.) are required for good assessment remains. In investigating this question, we 59 

propose that educators and assessment scholars should re-consider the norms of psychometric 60 

practice for exams in health professions education. 61 

From a global perspective, for many medical schools, decisions about ‘how much is 62 

enough’ in an assessment might often be informal, based on rules-of-thumb, or common practice 63 

at other schools, or even what the regulator ‘expects’. However, for some high-stakes 64 

assessments, such as some national licensing exams, psychometric calculations can help to 65 

determine the number of observations needed as a prerequisite for defensible decisions 4–7. More 66 

generally, in our experience and given examples in the literature, we find that a typical end-of-67 

term exam in medical schools have of the order of 100 items, while licensing exams might 68 
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double or even triple that number. Again, providing that much exam content, especially to a high 69 

level of quality, and often multiple times per year, can be a challenging and time-consuming task 70 

for test developers. The need to provide extensive (i.e. sufficiently long) exams seems to be 71 

common in thinking on assessment: “The message here is that more data equates to a better 72 

picture” 8. This notion suggests is that we need ‘a lot’ and that ‘more is better’, mirroring the idea 73 

of an increasing pixel resolution of an image 9. 74 

In this study we aim to gently challenge this rationale, based on an underlying and 75 

nuanced psychometric perspective. We ground our study in the idea that the purpose of a given 76 

exam should be guiding the answer to ‘how much is enough’, and that the rationale applied for 77 

determining this ‘how much’ must fit that purpose. This is especially relevant in competency-78 

based medical education 10 where there is an explicit focus on achieving particular outcomes. In 79 

brief, we will argue that the commonly employed statistic to determine test length—reliability—80 

is an inferior, or even inappropriate, psychometric indicator for this purpose in many assessment 81 

contexts. We propose that focusing on an appropriate measure—classification accuracy 11,12—82 

can lead to the re-thinking and re-designing of common assessment practices. In simple terms, 83 

classification accuracy can be thought of as a model-based estimate of the proportion of 84 

candidates in an exam who are correctly classified as true passes or true fails. 85 

To focus our arguments, we concentrate our empirical work on arguably the most 86 

straightforward and most common type of assessment in HPE, the standardized, written 87 

examination. However, we claim that our argument and the according psychometric rationale are 88 

applicable to other types of assessments, too, including performance assessments such as the 89 

OSCE, but also more complex assessment scenarios such as in programmes of assessment. 90 

The traditional perspective on reliability and test length 91 
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Current frameworks regarding the quality of assessment include several important 92 

aspects, such as its educational impact as well as the extent to which it is a catalyst for improving 93 

learning and instruction 13,14. In high-stakes testing, defensibility of the decisions made from 94 

exam scores is an integral part of assessment quality 13,15. Here, two fundamental criteria for 95 

good assessment are that it is both reliable and valid. Critically, test length as a basic feature of 96 

any assessment is related to both aspects. In terms of validity theory16, shorter tests might 97 

increase the risk of construct underrepresentation17. This means that an exam or assessment 98 

might fail to cover important aspects of the competency or skill that it tries to assess. With longer 99 

tests, the assessed content area can be covered more adequately16,17. In addition, longer exams 100 

tend to be more reliable17,18, and determining the appropriate length of an exam is crucial in 101 

assuring good assessment. There is, indeed, a body of literature on determining the amount of 102 

content for a given assessment, as, for instance for credential exams where careful task analyses 103 

and weighting procedures are employed before specifying an exam blueprint19,20. However, there 104 

is little specific recommendation on how many items are needed to cover a domain appropriately, 105 

especially in complex and multi-faceted disciplines such as medicine. A common 106 

recommendation then is to sample broadly 21 or to revert to reliability-based calculations of 107 

appropriate test length17,18. Still, there remains little specific guidance on what constitutes enough 108 

observations, or enough items.  109 

The number of items in an exam need not be completely arbitrary, and decisions on 110 

appropriate test length can be informed by psychometric analyses of real test data. The simplest 111 

application of such an analysis can be done using the Spearman-Brown formula 22, which, from 112 

real test data, estimates the number of items needed in a test to achieve a sufficient level of 113 

reliability. As argued earlier, from our perspective, the issue here is that reliability—a measure of 114 
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measurement precision—should be regarded as an indicator of lesser interest in many assessment 115 

contexts, particularly in comparison to classification accuracy. We develop these arguments in 116 

the next section. 117 

The problem: reliability is not the same as accurate classification 118 

Reliability can be conceptualized as a signal-to-noise ratio, that is, it provides an estimate 119 

of how much error there is in the scores obtained from an assessment 22,23. Higher reliability 120 

indicates more measurement precision and less error. This property is important if each 121 

individual score matters equally, or if we are interested in the stability of the rank-order of 122 

candidates. For instance, this is usually the case in progress testing where the goal is to follow 123 

individual students’ learning progression over time 24,25. This was also the case in the previous 124 

USMLE-Step 1 where candidates received score reports, which, in turn, could be used for 125 

selection to further training 26. In these cases, the purpose and the use of exam scores are well-126 

aligned with the notion of reliability as an appropriate measure of psychometric quality.  127 

But not all scores are equally important—at least not in general. A key scenario where 128 

different scores matter differently is when the main purpose of an assessment is to decide on 129 

each candidate’s readiness for the next step of training, which is the case in many licensing 130 

examinations globally27–29. In these contexts, classificatory decisions are made using the score of 131 

an individual student: the final decision awarded is either a pass or a fail—such as has been 132 

recently implemented in the USMLE Step 1 26 or the GMC’s national licensing assessment in the 133 

UK. The key inference made from the test score is if the candidate is sufficiently competent, if 134 

they reach a “threshold for safe practice”30—or not. 135 

For illustrative purposes, let us consider a hypothetical scenario where a pass/fail 136 

decision for every candidate is made. In a regular medical school, this might be based, say, on a 137 
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100-item multiple-choice exam. Furthermore, assume the passing score was defensibly set to 138 

60% correct out of the 100 questions. We find a candidate who responded correctly to 90 out of 139 

the 100 questions will clearly pass the exam. Yet, for making the pass/fail decision, we are not 140 

particularly interested if their particular result—an observed score of 90—is measured with great 141 

precision. Neither are we interested in whether one candidate outperforms another. Rather, we 142 

want to know whether this candidate could have passed by chance, that is, if they were so lucky 143 

that, while in truth being not ready to progress, they passed with sufficient help of measurement 144 

error in their favor. This is highly unlikely in this case—both intuitively and psychometrically—145 

given how far above the cut-score (60) their observed score is (90). While often very useful, our 146 

key point is that reliability indices tell us very little about the precision of the pass/fail decisions. 147 

When we focus on classification decisions made based on exam outcomes, the notion of 148 

measurement error has a different interpretation to that associated with score reliability. If the 149 

purpose of an exam is to make pass/fail decisions, the spotlight is on a very specific issue. We 150 

must ask how many of the candidates in a particular exam are misclassified—deemed competent 151 

when they should fail and failing while they should have progressed. This is a question that a 152 

reliability coefficient does not answer—except in the case when there is no measurement error 153 

and, consequently, reliability “pushes 1” 31. Thus, when classification decisions are to be made, 154 

such as in competent/not ready, what is most important is the accuracy of that classification32,33, 155 

and not the amount of noise in each single score 34. From a validity perspective, we argue that the 156 

inferences and intended use of the outcomes of an exam16 in this case match much better with 157 

classification accuracy35 than with reliability.  158 

The general concept of classification is also in line with considerations of false positive 159 

and false negative decisions, that is, with the errors associated with passing truly incompetent 160 
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candidates and failing truly competent ones. In high stakes settings such as in licensing 161 

examinations balancing between false positives and false negatives is an important policy 162 

consideration. If “false positive” candidates—those deemed competent but in truth are not—163 

progress into medical practice they pose a threat to patient safety. On the other hand, if a truly 164 

competent students fails an exam, they are likely to have a chance to resit the examination. The 165 

societal cost of the former typically outweighs the cost of the consequences of the latter. 166 

Although not the focus of this article, a focus on classification-accuracy stresses the need to be 167 

explicit about such policies. 168 

Approaches to estimating classification accuracy have been developed under different 169 

psychometric frameworks and are well-known in the broader literature on educational 170 

measurement for decades 11,12,36. While estimates of both classification accuracy and reliability 171 

provide important psychometric information in many contexts, to the best of our knowledge, 172 

there is no published study that aims at using classification accuracy as a guiding index for 173 

informing the design of high-stakes assessments in HPE where there is a specific focus on 174 

decisions such as competent or not-ready. 175 

Understanding the difference between reliability and classification accuracy  176 

In developing our understanding of the difference between reliability and classification 177 

accuracy, it is important to note that there is no role for the cut-score in the calculation of 178 

reliability coefficients. By contrast, estimates of classification accuracy include both candidates’ 179 

scores and their distance to the cut score explicitly11,12,33. To further illustrate, imagine an 180 

educational context where assessment, learning, and instruction are very-well aligned. Here, all 181 

candidates are proficient learners, who went through effective instruction conducted by 182 

competent educators. After such a course, they take an end-of-term-exam. In such an idealized 183 
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context, students will likely score homogenously and distinctly above the cut-score: All students 184 

are competent regarding the material they are supposed to master. Psychometrically, however, 185 

this results in a low variance in scores, which in turn implies that reliability estimates might drop 186 

below recommended standards, potentially even approaching zero. Reliability measures in this 187 

context convey no information about how well the examination is sorting the candidates 188 

correctly or otherwise into passing or failing.  189 

In the same idealized context, the focus on measures of classification accuracy is much 190 

more meaningful. Again, classification accuracy considers both candidates’ scores and their 191 

distance to the cut-score. As all students are clearly competent, their scores exceed the pass-mark 192 

by some margin. Critically, the corresponding classification accuracy estimates will, at least 193 

theoretically, not be affected by the very distinct pattern of scoring and might even approach 194 

perfect accuracy in this example. Thus, classification accuracy is better aligned to the key 195 

purpose of this type of assessment. 196 

To summarize our arguments, a simple but consequential aspect when designing an 197 

assessment is deciding on the number of observations needed to ensure defensibility 6,13,21. From 198 

a broad validity perspective, there is a lack of specific guidance on “how much is enough” to 199 

ensure appropriate content coverage. From a test-design viewpoint, this issue remains an ongoing 200 

challenge and is one we cannot cover extensively in this paper. However, psychometric 201 

calculations can be readily applied to ensure appropriate measurement precision at a particular 202 

test-length, but these are usually based on reliability considerations. We argue that this approach 203 

is ill-aligned to the purpose of assessments in which classificatory decisions, such as 204 

competent/not ready, matter most. Hence, we propose to compare appropriate test-lengths for 205 
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assessments based on classification accuracy for pass/fail decisions with those based on more 206 

traditional reliability estimates.  207 

Research Question 208 

We hypothesize that when the purpose of an assessment is to classify candidates into 209 

competent or not, calculations based on classification accuracy will likely result in less extensive 210 

test lengths as compared to calculations based on reliability. To address this question, we use a 211 

range of real undergraduate medical assessment data to investigate the extent to which measures 212 

of classification accuracy and reliability arrive at different conclusions for optimal test length in 213 

different scenarios. These analyses have both theoretical and practical consequences. 214 

Theoretically, we contribute by highlighting the important differences in the estimates of 215 

measurement precision we use to provide evidence for the defensibleness of our assessment 216 

decisions. Practically, this work also has potentially significant implications for how exams 217 

could and should be designed in HPE and beyond.  218 

We continue this paper outlining our methods and the results. We then situate our 219 

findings in the current literature and discuss what they might mean for test development in HPE. 220 

This will include the potentially challenging issue of ensuring sufficient domain sampling in 221 

complex domains such as applied clinical knowledge. 222 

METHODS 223 

In this study, we compare test lengths that either optimize reliability or measures of 224 

classification accuracy (CA). We use multiple administrations of three different knowledge tests 225 

from an undergraduate medical program. We detail in turn the data sample, ethical issues, our 226 
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analytic approach, as well as describing the measures of reliability and classification accuracy 227 

chosen.  228 

Sample 229 

Data analyzed here are retrieved from previous exams from the medical programme at 230 

the Faculty of Medicine at the University of Oslo. These are high-stakes end-of-term applied 231 

knowledge examinations. Students must pass these to continue with their studies. In our context, 232 

there is no national licensing exam comparable to the USMLE-Step-1 or Step 2/3 for the pre-233 

clinical and clinical parts, respectively. Hence, the exams analyzed here are part of the general 234 

licensing procedure and their aim is to assure candidates’ minimal competence via the award of 235 

an undergraduate medical degree.  236 

The exam developments uses a cyclic system of quality assurance, which includes pre-237 

exam proofing and post-exam item-level analysis 37. For this study, we used students’ response 238 

data from repeated administrations of one from the pre-clinical phase, and two from the clinical 239 

phase (so three exams and five administrations each = 15 exam datasets). These datasets include 240 

mostly single-best-answer multiple choice items, but also multiple response as well as short-241 

essay questions. All exams covered the content taught in the relevant module. The pre-clinical 242 

exam covered anatomy, physiology, micro-biology and immunology. The dominant subjects 243 

included in the clinical exams were pediatrics, gynecology and obstetrics in one exam, and 244 

psychiatry and social medicine in the other one.  245 

We only had access to anonymized data, which included students’ scores on all items 246 

within an exam. Thus, for instance, an exam with 50 participating candidates and 100 multiple 247 

choice items could be presented in a spreadsheet of 50x100 item-level scores plus one 248 

anonymized candidate-ID variable. In the current context, there is a pre-defined fixed passing 249 
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standard and an elaborate pre- and post-exam quality assurance regime is put in place to maintain 250 

standards across administrations37. 251 

Ethics and informed consent 252 

We stored and handled the data according University of Oslo’s data policy for ‘yellow’ 253 

data 38, since these are exam data limited in volume and without any sensitive or person-254 

identifiable information. We used the data without informed consent for the purpose of research 255 

in the public interest and within quality assurance in higher education. Each student’s right to be 256 

informed about the data usage is accounted for by a public blog post on the project 39. Permission 257 

to process the data was granted by the Norwegian Agency for Shared Services in Education and 258 

Research, reference number 497365. 259 

Data sharing 260 

Limited access to the student-level responses to exam items can be granted upon 261 

reasonable request to the first author (SKS). Results from the analyses are aggregate data which 262 

are available via a public repository40. 263 

Analytical approach 264 

Scoring 265 

The possible score per item per student varied between 0 and 100 percent correct. All 266 

items, regardless of response format, were weighted equally. Both student exam scores and cut-267 

scores were calculated and handled as percentage-correct scores.  268 

Resampling study 269 

To address our research objective, we designed a resampling study 41, with resampling of 270 

items as the main approach. Put briefly, the procedure included repeated, independent draws of 271 
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item samples with replacement from the existing exam data described above. The number of 272 

candidates remained constant within each of the 15 exam datasets. The resampling study allows 273 

us to investigate how psychometric indices—reliability and classification accuracy —vary with 274 

other features of the assessment (i.e. number of items and cut scores). Consequently, the results 275 

will help to evaluate the usage of either classification accuracy and/or reliability as guides for 276 

designing exams for pass/fail decision-making. 277 

We did not use the originally set cut-scores here since we did not have direct access to 278 

this information. Our approach is illustrative rather than attempting to replicate actual exam 279 

decision-making. Furthermore, and most importantly, we designed the study to show how 280 

psychometric indicators reflect the precision of classificatory decisions made in accordance with 281 

variation of assessment features. Hence, the actual estimates for the ‘real’ exams were of little 282 

interest in our research.  283 

Overall, we varied two assessment features systematically. Firstly, we specified different 284 

test lengths, in accordance with previous research 42. Secondly, we also varied the hypothetical 285 

cut-scores systematically. More specifically, we chose seven conditions for test length (20, 30, 286 

50, 75, 100, 125, 150) and five distinct cut-scores (40, 50, 60, 70, 80), meaning that there were 287 

35 possible combinations of test length and cut-score. For each for these 35 combinations we 288 

drew 100 random samples of items from each exam administration. Per exam administration, this 289 

means we drew 3500 samples and calculated reliability and classification accuracy for each 290 

sample. Since this was done for five previous administrations for the said three exams, we 291 

calculated a total of 3,500*3*5 = 52,500 estimates for reliability and classification accuracy.  292 
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All data handling, preparation and calculation of all relevant statistics were handled in the 293 

R Language for Statistical Programming 43. Table 1 summaries our overall analytical approach in 294 

pseudo-code. 295 

Measures of reliability and classification accuracy 296 

As noted earlier, estimates of both reliability and classification accuracy are available 297 

within different psychometric frameworks. For instance, Cronbach’s Alpha is a commonly used 298 

reliability estimate within a Classical Test Theory (CTT) framework, whilst Item Response 299 

Theory (IRT) offers estimates based on modelling of an underlying latent variable 44. Similarly, 300 

classification accuracy can also be calculated within either CTT or IRT frameworks 11,12. A more 301 

recent estimate for classification accuracy has been proposed by Lathrop & Cheng 33. The 302 

interested reader may refer to these references for more technical details of the procedure. This is 303 

a non-parametric approach to classification accuracy which does not rest on strong statistical 304 

assumptions for the underlying exam data and thus is more flexible in its application.  305 

In this study, for both classification accuracy and reliability, we calculated estimates 306 

based on CTT as well as IRT. We mainly focus on the following two indicators since they are 307 

well-established in the psychometric literature.  308 

1.) Cronbach’s Alpha as an estimate of score reliability 309 

2.) Non-parametric classification accuracy using the methods proposed by Lathrop & 310 

Cheng33 311 

However, to triangulate the results from these analyses, we additionally estimated IRT-312 

based estimates of reliability and classification accuracy using procedures in the TAM45 and 313 

cacIRT packages46 respectively. Finally, we estimated classification accuracy based on the 314 
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Livingston and Lewis method using the betafunctions package 47—which also provides an easily 315 

accessible front end freely available at https://hthaa.shinyapps.io/shinybeta/. In total, this gives 316 

two measures of reliability and three of classification accuracy per resampled exam. 317 

While we, in this paper, focus on Cronbach’s Alpha as an estimate for score reliability, 318 

we note that there are other frameworks for the calculation of estimates of measurement 319 

precision. Generalizability Theory, commonly used in medical education assessment research, 320 

has made important theoretical and analytical contributions to understanding and designing 321 

assessments. Scholars in this tradition have worked on topics closely related to making 322 

classificatory decisions. Here, particularly interesting is Kane’s works on “tolerance for error”48–323 

50 while Brennan discusses estimates of measurement error that are meaningful for the context 324 

discussed here51. For the sake of brevity, we do not consider Generalizability Theory in further 325 

detail here. 326 

Statistical analyses of resampling results 327 

To investigate how the estimates of both reliability and classification accuracy relate to 328 

the two key features of the assessment (i.e., test length and the cut-score), we analyzed the results 329 

across the repeated samples and conditions using linear mixed effects models as implemented in 330 

the lme4 R-package 52. For all models, the estimate of interest (either Cronbach’s Alpha or 331 

classification accuracy) was the dependent variable. In terms of predictors, the models included 332 

fixed effects for test-length and the cut-score. We also included a random effect for the three 333 

exams to account for the fact that the repeated administrations of each of these exams are not 334 

entirely independent. The fixed effects were included in a stepwise procedure. Since we 335 

estimated a mixed effects model, we also report the intra class correlation (ICC) for the exam. In 336 

https://hthaa.shinyapps.io/shinybeta/
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our context, this ICC represents proportion of variance in the psychometric estimate that is 337 

exam-specific, that is, due to the clustering of repeated administrations within an exam.  338 

Since the sample size for this part of the study was large (52,500), negligible effect sizes 339 

are likely to be statistically significant on the 5%-level. We therefore only report the 340 

standardized regression coefficients with 95% confidence intervals. Standardized regression 341 

coefficients can be interpreted like correlation coefficients and facilitate interpretation of how the 342 

two assessment features are comparatively related to either Cronbach’s Alpha, as an estimate of 343 

reliability, or classification accuracy. Simulation results are publicly available for interested 344 

researchers (https://surveybanken.sikt.no/en/study/NSD3183). 345 

RESULTS 346 

We first present the descriptive statistics for the fifteen real datasets from actual exams. 347 

Then, we present the results of the 52,500 resampled conditions descriptively for each of the 348 

three exams included. As part of this, we provide more detailed comparison of the difference 349 

between estimates of classification accuracy and reliability. We present these graphically and 350 

report the results of the statistical modelling - for alpha and then for classification accuracy 351 

respectively. We end the results section with a summary of our key findings. 352 

Descriptive statistics 353 

Descriptive statistics for the fifteen original exams 354 

The grand mean of the percentage correct score across the original fifteen was M = 71% 355 

(SD = 3%). Number of participating students was, on average N = 121 with range between 356 

min = 89 and max = 189. Number of items ranged between 79 and 143, with a median of 108 357 

https://surveybanken.sikt.no/en/study/NSD3183
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items per exam. Cronbach’s Alpha was on average Alpha = .78, ranging between 358 

Alpha(min) = .63 and Alpha(max) = .92. For the original exams, the average fail rate was 3.83% 359 

of the candidates, ranging from zero percent to a maximum of 13.1% on one single occasion. 360 

This occasion was, notably, the first regular exam after a series of remote exams due to COVID-361 

19-related restrictions. 362 

Descriptive statistics for the resampled exams 363 

Mean classification accuracy across all conditions was MCA = 0.93 (SD = 0.06) for the 364 

non-parametric approach meaning that 93% of pass/fail decisions were estimated as accurate 365 

across all data. The average reliability was Alpha = .73 (SD = 0.16) implying in one 366 

interpretation that across all data the scores on the tests correlate 0.73 with a ‘perfect’ test. The 367 

two measures—reliability and classification accuracy—were positively associated, with a 368 

correlation of r = 0.28 (t = 66, df = 52498, p < .001). This suggests that these two indices are 369 

only moderately aligned—they provide different information about the psychometric properties 370 

of the exam.  371 

Descriptive statistics and inter-estimate associations for all five coefficients are presented 372 

in Table 2. These results show that, across all conditions, the three different measures of 373 

classification accuracy are closely aligned, with the lowest correlation coefficient being r = 0.95 374 

(t = 966, df = 52490, p < .001) for non-parametric classification accuracy and the CTT-based 375 

approach (i.e., Livingston & Lewis). The same pattern of high inter-estimate correlations is 376 

found for the two reliability coefficients - across all 52,500 resampled exams, Cronbach’s Alpha 377 

and IRT-based EAP reliability correlated r = 0.96 (t = 781, df = 52498, p < .001). This suggest 378 

that the choice of an overarching psychometric framework (CTT or IRT) makes little difference 379 

to our substantive conclusions. 380 
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Relation between cut score, test length and Cronbach’s Alpha 381 

For the relation of Cronbach’s Alpha and test length, we found an effect of βstd = 0.81 382 

(95% CI [0.80 , 0.81]; cf. Table 3) using the linear mixed effects model. As expected, the cut 383 

score as a predictor was not related to variation in Cronbach’s Alpha (βstd = 0.00, 95% CI [-384 

0.01 , 0.00]).  385 

Detailed results are given in Figure 1 which shows how classification accuracy (lower 386 

panel) and Cronbach’s Alpha (upper panel) vary in relation to test length (number of items; 387 

horizontal axes) for a range of cut-scores (40%, 50%, 60%, 70% and 80%). On average, both 388 

estimates increase with test length. Regarding Cronbach’s Alpha, the upper panel of Figure 1 389 

illustrates visually how Alpha is not affected by the various cut-scores. At the same time, Alpha 390 

varies mainly due to the number of items in the resampled exams. Furthermore, the intra class 391 

correlation (ICC) for the exam-level effect was 0.19 which indicates that 19% of the variation in 392 

Cronbach’s Alpha is due to this clustering in exams. Put differently, within the three exams, 393 

estimates of Cronbach’s Alpha tend to be more similar. The model overall explained around 70% 394 

of the total variation in the estimate. 395 

Since visual inspection of the descriptive results (i.e., Figure 1) suggested a non-linear 396 

trend for the effect of test length on Cronbach’s Alpha, we also estimated an additional model in 397 

which we included both a linear (βstd = 0.89, 95% CI [0.88 , 0.89]) and a quadratic trend (βstd = -398 

0.38, 95% CI [-0.38 , -0.37]) for test length. This model increased the variance explained in 399 

Cronbach’s Alpha to a total of 79.3%. 400 

Relation between cut score, test length and classification accuracy 401 
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For classification accuracy, when we only entered test length in the regression model, we 402 

found a standardized regression coefficient of βstd = 0.31 (95% CI [0.30 , - 0.31]) for the relation 403 

between test length and classification accuracy (Table 3). This is a weaker effect than that for 404 

Cronbach’s alpha (βstd = 0.81 cf. paragraph above). Generally, higher cut-scores were related to 405 

lower classification accuracy (βstd = -0.79, 95% CI [- 0.77 , - 0.75], cf. Table 4). Since a higher-406 

cut score moves closer to the mean of the score distribution, a more equal balance of pass-fail 407 

decisions is made, which in turn implies a greater likelihood of incorrect classifications. This 408 

pattern is shown in Figure 1, lower panel, where an exam with 20 items, where most students 409 

pass (1% fails), has a higher classification accuracy than a 150-item-exam where about half of 410 

students pass (46% fails).  411 

The ICC for the exam-level effect was low with ICC = 0.02; indicating that the exam-412 

level variation, that is, similarity in estimates which are due to the clustering within the three 413 

exams, was negligible, and a weaker effect than seen for Cronbach’s alpha. In total, the model 414 

explained almost 62% of the variation in the non-parametric estimate for classification accuracy. 415 

For completeness and to be consistent with the reliability analysis, we also adding a quadratic 416 

trend for the test length. The variance explained by the model increased by less than one 417 

percentage point.  418 

Summary of key findings and differences in test length guidelines  419 

In general, our results indicate that reliability and classification accuracy are differently 420 

related to test length and that our initial hypothesis that test length decisions based on 421 

classification accuracy would generally be shorter is too simplistic. However, as expected, only 422 

classification accuracy varies in relation to the cut-score for pass-fail decisions. Based on our 423 

analyses, to optimize the reliability of a particular exam, we find by inspection that optimal test 424 
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length, across conditions, is around 100 items. At this test length, estimates are close to or exceed 425 

the ‘standard recommendation’ of Alpha = .8 (Figure 1, upper panel). For classification 426 

accuracy, however, the derived recommendations are less generic (Figure 1, lower panel). For 427 

exams with a small percentage of fail decisions (i.e., 5% or less, typical for many national 428 

licensing exams), an item size of 50 would typically achieve an accuracy of 95% correct 429 

classifications. With an increase in the cut-score and, accordingly, a higher share fail-decisions, 430 

much longer exams would be recommended. For instance, for 18% fail-decisions, a 150-item 431 

exam would reach, on average, a level of approx. 90% accuracy. Importantly, these results 432 

indicate that given the purpose of the exam (‘ranking’ vs. ‘competent or nor’, which are mirrored 433 

in the psychometric indicator used), we reach different conclusions regarding an optimal test 434 

design. 435 

DISCUSSION 436 

Our study is based on the notion that different perspectives on the precise purpose of an 437 

assessment can lead to different recommendations for the test length of assessments. In addition, 438 

we comment that there seem to be two qualitatively different strands in the literature. One is 439 

psychometrics-focused and essentially bases recommendations for test lengths on reliability 440 

calculations. The other strand is more validity-focused and put emphasis on ‘broad sampling’ of 441 

domains 21. Only the former approach has proposed clear recommendations for the specific 442 

number of items (or stations) needed in an exam (see for example, van der Vleuten and 443 

Schuwirth7). Against this background, our work shows that for contexts where classification into 444 

competent or not competent are most important, shorter tests are often sufficiently accurate and 445 
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defensible. Crucially, this depends upon the cut-score relative to the average candidate 446 

performance, or equivalently, the expected failure rate.  447 

The results provided here have practical implications for the design of both individual 448 

exams and programmes of assessment, both within HPE institutions, and for national licensing 449 

examinations6,27,28. In scenarios where only a low proportion of failing students is expected, our 450 

work suggests that shorter exams might reach sufficiently high levels of classification accuracy 451 

for high stakes decision-making. Opportunities to re-design assessments might be therefore most 452 

promising where exams tend to have lower failure rates. For instance, less comprehensive testing 453 

might be needed at the end of medical training or at the end of larger modules of teaching. 454 

However, our results indicate that test design decisions guided by reliability calculations are 455 

generally likely to require more items in such contexts. Importantly, our work suggests that the 456 

conclusions on test length drawn from reliability estimates are usually in the opposite direction 457 

of those from classification accuracy. 458 

Taken together, based on our analysis, we can make the following specific 459 

recommendations for test developers involved in HPE. 460 

 If you mainly make pass-fail decisions in your exams then, in addition to 461 

reliability, use one of the free tools to also calculate classification accuracy (more 462 

on this below). 463 

 Think about how many items are appropriate to achieve sufficient coverage of the 464 

assessed domain. Is the number of items justified as achieving appropriate levels 465 

of reliability or to secure appropriate construct representation?  466 

 Where possible, reduce the assessment burden on item writers by shortening the 467 

exam. For instance, in a context similar to the one here, consider reducing the 468 
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number of items from 100 to 80. This will allow for a focus on better item quality 469 

rather than greater volume. 470 

Clearly, test design involves many consequential decisions. In our opinion, these should 471 

not be solely based on psychometric indicators since influential thinking on validity stresses the 472 

need for appropriate representation of the assessed constructs 16. If, for instance, one hundred 473 

items are generally considered the minimum necessary for appropriate representation in a 474 

particular area of HPE, adjusting that number downwards would not be justified. However, 475 

appropriate representation is both a matter of the choice of the tasks included (‘which’/‘how 476 

much’) and their fidelity (‘how realistic’) 16. In practice, these demands might clash where there 477 

are limited resources for producing high quality assessment content. Even where item pools are 478 

available and large in size, maintaining the quality of the individual items might be problematic, 479 

particularly in rapidly changing areas of medicine for example.  480 

Another practical implication of our research is that more innovative testing models and 481 

assessment designs might be facilitated by a shift towards, or at least greater emphasis on, 482 

classification accuracy over reliability. For instance, this line of thinking would support more 483 

frequent, but spaced exams, instead of relying on massed ‘big’ exams, thereby capitalizing on 484 

spaced learning effects 53. Importantly, this could be done without the need for large item banks, 485 

advanced psychometric analyses, or the more technical demands of computerized adaptive 486 

testing. Ultimately, such developments would likely enable better learning for students 54. 487 

On a theoretical level, our findings suggest a need to estimate and discuss appropriate 488 

levels of classification errors in decision-making in assessment. By the nature of assessment and 489 

testing, such errors are nearly always made, with some students who are not ready moving on to 490 

the next step in training, and competent students failing exams. At the very least, classification 491 
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accuracy estimates should be presented and discussed among the decision makers involved in 492 

overseeing the assessments. For those unfamiliar with calculating classification accuracy, we 493 

suggest using a web application based on one of the R packages used here47. This is an open 494 

source online-tool and straightforward to use with raw assessment scores 495 

[https://hthaa.shinyapps.io/shinybeta/]. 496 

Discussions on the use of appropriate psychometric models in the assessment of medical 497 

competence have often focused on concepts such as latent traits or reliability indices 1,8,55. Our 498 

study focusses on just one other—classification accuracy—of many quantitative, psychometric 499 

concepts that can be inform the design of assessment 56. However, in this work we have only 500 

really touched on the topic of classification accuracy , while assessment policy-making would 501 

also need to consider more carefully the balance of likely decision errors (e.g., false positives or 502 

negatives) or other assessment properties such as its sensitivity and specificity 57. More detailed 503 

classification accuracy analysis than presented here can produce useful metrics for these 504 

properties. In a clinical, rather than assessment, context, these technical measures are typically 505 

evaluated against a gold standard (e.g., results of another diagnostic test), but in educational 506 

settings this gold standard is typically not available. Fortunately, psychometric theory allows us 507 

to estimate these different indices based on certain statistical assumptions.  508 

As our results indicate, strong correlations across different estimates of either reliability 509 

or classification accuracy suggest that the choice of the underlying measurement framework 510 

(CTT or IRT) matters little. Rather, what matters most is that we explicitly consider the 511 

alignment of the purpose of an exam, the use of the scores obtained, and the psychometric 512 

concepts used. Importantly, our study illustrates that the proper use of psychometric methods is 513 

not self-evident. This echoes the strong stances put forward by leading scholars in the field. 514 

https://hthaa.shinyapps.io/shinybeta/
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Recently, Robert Brennan cautioned against a simplistic interpretation of reliability stating that 515 

“[c]learly, reliability is a ratio that depends on both the modeling of observed scores and the 516 

definition of error, which renders the concept of reliability to be far more challenging than 517 

typically understood. Indeed, Cronbach (2004), Kane (1996), and this author advise abandoning 518 

routine use of reliability coefficients because they are so easily misinterpreted.”58 519 

An obvious limitation of this work is that it is based on the resampling of knowledge test 520 

assessment data from a single institution, rather than real test data from a range of institutions 521 

with varying test lengths. Whilst we have made attempts to make the best use of this data via our 522 

resampling approach, future work could aim to derive practical recommendations for 523 

classification accuracy guidelines on a broader selection of different types of exam data, in 524 

particular OSCE-type assessments as well as combinations of observations as in programmatic 525 

assessments. Consequently, future research could make use of assessment data from a broader 526 

range of institutions. It is likely that data that includes information on the sequence and time a 527 

student used for items in an exam gathered automatically in an online platform would be highly 528 

informative. This data could be employed to get a more authentic estimate of the by-item 529 

increase in reliability and classification accuracy in the course of testing, and might provide an 530 

additional perspective that does not suffer from the ‘artificiality’ of our resampling procedure. 531 

For more complex assessments such as the OSCE or a set of mini-CEX encounters, more 532 

complex psychometric procedures to calculate classification accuracy are available36,59 and could 533 

be compared to estimates of reliability just as in the case provided here. In these more complex 534 

contexts, the issue of domain representation is likely to be more acute than in an applied 535 

knowledge test. 536 
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The evidence suggests that when it comes to assessment design issues, test developers 537 

and assessment policy individuals need to think carefully and explicitly about the precise 538 

purpose(s) of the assessment. Shifting our perspective on assessment towards accurate 539 

classification also requires being explicit about our expectations about student cohort groups, 540 

about base-rates of students being competent (or not), and how this might change as training 541 

proceeds. This shift in perspective also suggests that reliability considerations alone are likely 542 

too simplistic, and that high-reliability exams might sometimes lack appropriate levels of 543 

classification accuracy. Unfortunately, our work suggests that there are no very simple guidelines 544 

on test length and appropriate indices that can be stated to cover all cases – possibly a message 545 

from our work that busy faculty are not going to find of comfort. As a first step, we would 546 

advocate for the use of both reliability and classification indices when ‘assessing the assessment’ 547 

60, with the inferences made about the quality of the test and associated outcomes also depending 548 

on careful consideration of  the particular context.  549 

 550 

  551 



CHALLENGING THE NORM: RELIABILITY VS. CLASSIFICATION ACCURACY 

27 

 

 552 

REFERENCES 553 

 554 

1. Schuwirth LWT, van der Vleuten CPM. A history of assessment in medical education. Adv 555 

Health Sci Educ. 2020;25(5):1045-1056. doi:10.1007/s10459-020-10003-0 556 

2. Case SM, Holtzman K, Ripkey DR. Developing an Item Pool for CBT: A Practical 557 

Comparison of Three Models of Item Writing. Acad Med. 2001;76(10):S111. 558 

3. Karthikeyan S, O’Connor E, Hu W. Barriers and facilitators to writing quality items for 559 

medical school assessments – a scoping review. BMC Med Educ. 2019;19(1):123. 560 

doi:10.1186/s12909-019-1544-8 561 

4. Moonen-van Loon JMW, Overeem K, Donkers HHLM, van der Vleuten CPM, Driessen 562 

EW. Composite reliability of a workplace-based assessment toolbox for postgraduate 563 

medical education. Adv Health Sci Educ. 2013;18(5):1087-1102. doi:10.1007/s10459-013-564 

9450-z 565 

5. Swanson DB, Norman GR, Linn RL. Performance-Based Assessment: Lessons From the 566 

Health Professions. Educ Res. 1995;24(5):5-11. doi:10.3102/0013189X024005005 567 

6. Swanson DB, Roberts TE. Trends in national licensing examinations in medicine. Med Educ. 568 

2016;50(1):101-114. doi:10.1111/medu.12810 569 

7. Van Der Vleuten CPM, Schuwirth LWT. Assessing professional competence: from methods 570 

to programmes. Med Educ. 2005;39(3):309-317. doi:10.1111/j.1365-2929.2005.02094.x 571 

8. Pearce J, Tavares W. A philosophical history of programmatic assessment: tracing shifting 572 

configurations. Adv Health Sci Educ. 2021;26(4):1291-1310. doi:10.1007/s10459-021-573 

10050-1 574 

9. Pearce J, Chiavaroli N, Tavares W. On the use and abuse of metaphors in assessment. Adv 575 

Health Sci Educ. Published online February 2, 2023. doi:10.1007/s10459-022-10203-w 576 

10. Ryan MS, Holmboe ES, Chandra S. Competency-Based Medical Education: Considering Its 577 

Past, Present, and a Post–COVID-19 Era. Acad Med. 2022;97(3S):S90. 578 

doi:10.1097/ACM.0000000000004535 579 

11. Livingston SA, Lewis C. Estimating the Consistency and Accuracy of Classifications Based 580 

on Test Scores. J Educ Meas. 1995;32(2):179-197. doi:10.1111/j.1745-3984.1995.tb00462.x 581 



CHALLENGING THE NORM: RELIABILITY VS. CLASSIFICATION ACCURACY 

28 

 

12. Rudner LM. Expected Classification Accuracy. Pract Assess Res Eval. 2005;10(1). 582 

doi:10.7275/56a5-6b14 583 

13. Norcini J, Anderson B, Bollela V, et al. Criteria for good assessment: consensus statement 584 

and recommendations from the Ottawa 2010 Conference. Med Teach. 2011;33(3):206-214. 585 

doi:10.3109/0142159X.2011.551559 586 

14. Norcini J, Anderson MB, Bollela V, et al. 2018 Consensus framework for good assessment. 587 

Med Teach. 2018;40(11):1102-1109. doi:10.1080/0142159X.2018.1500016 588 

15. American Educational Research Association. Standards for Educational and Psychological 589 

Testing. American Educational Research Association; 2014. 590 

16. Messick S. Validity of psychological assessment: Validation of inferences from persons’ 591 

responses and performances as scientific inquiry into score meaning. Am Psychol. 592 

1995;50(9):741-749. doi:10.1037/0003-066X.50.9.741 593 

17. Downing SM. Threats to the Validity of Locally Developed Multiple-Choice Tests in 594 

Medical Education: Construct-Irrelevant Variance and Construct Underrepresentation. Adv 595 

Health Sci Educ. 2002;7(3):235-241. doi:10.1023/A:1021112514626 596 

18. Tavakol M, Dennick R. Post-examination interpretation of objective test data: Monitoring 597 

and improving the quality of high-stakes examinations: AMEE Guide No. 66. Med Teach. 598 

2012;34(3):e161-e175. doi:10.3109/0142159X.2012.651178 599 

19. Raymond MR. A Practical Guide to Practice Analysis for Credentialing Examinations. Educ 600 

Meas Issues Pract. 2002;21(3):25-37. doi:10.1111/j.1745-3992.2002.tb00097.x 601 

20. Raymond MR, Neustel S. Determining the Content of Credentialing Examinations. In: 602 

Handbook of Test Development. Lawrence Erlbaum Associates Publishers; 2006:181-223. 603 

21. Schuwirth L, van der Vleuten C. How to design a useful test: the principles of assessment. 604 

In: Swanwick T, Forrest K, O’Brien BC, eds. Understanding Medical Education. 3rd ed. 605 

Wiley-Blackwell; 2018:275-289. doi:10.1002/9781119373780.ch20 606 

22. Park YS. Reliability. In: Yudkowsky R, Park YS, Downing SM, eds. Assessment in Health 607 

Professions Education. 2nd ed. Routledge; 2019:33-50. doi:10.4324/9781138054394 608 

23. Downing SM. Reliability: on the reproducibility of assessment data. Med Educ. 609 

2004;38(9):1006-1012. doi:10.1111/j.1365-2929.2004.01932.x 610 

24. Karay Y, Schauber SK. A validity argument for progress testing: Examining the relation 611 

between growth trajectories obtained by progress tests and national licensing examinations 612 

using a latent growth curve approach. Med Teach. 2018;40(11):1123-1129. 613 

25. Wrigley W, van der Vleuten CPM, Freeman A, Muijtjens A. A systemic framework for the 614 

progress test: strengths, constraints and issues: AMEE Guide No. 71. Med Teach. 615 

2012;34(9):683-697. doi:10.3109/0142159X.2012.704437 616 



CHALLENGING THE NORM: RELIABILITY VS. CLASSIFICATION ACCURACY 

29 

 

26. West CP, Durning SJ, O’Brien BC, Coverdale JH, Roberts LW. The USMLE Step 1 617 

Examination: Can Pass/Fail Make the Grade? Acad Med. 2020;95(9):1287-1289. 618 

doi:10.1097/ACM.0000000000003537 619 

27. Gedamu Wonde S, Schauber SK. Psychometric properties of the Ethiopian national licensing 620 

exam in medicine: an analysis of multiple-choice questions using classical test theory. Teach 621 

Learn Med. 0(0):1-11. doi:10.1080/10401334.2024.2428191 622 

28. Guttormsen S, Beyeler C, Bonvin R, et al. The new licencing examination for human 623 

medicine: from concept to implementation. Swiss Med Wkly. 2013;143(4950):w13897-624 

w13897. doi:10.4414/smw.2013.13897 625 

29. Gomboo A, Gombo B, Munkhgerel T, Nyamjav S, Badamdorj O. Item Analysis of Multiple 626 

Choice Questions in Medical Licensing Examination. Cent Asian J Med Sci. 2019;(2):141-627 

148. doi:10.24079/CAJMS.2019.06.009 628 

30. GMC. How we assess doctors new to UK practice is changing, here’s why. Supporting good, 629 

safe patient care across the UK. April 27, 2023. Accessed April 16, 2025. 630 

https://gmcuk.wordpress.com/2023/04/27/how-we-assess-doctors-new-to-uk-practice-is-631 

changing-heres-why/ 632 

31. Sijtsma K. On the Use, the Misuse, and the Very Limited Usefulness of Cronbach’s Alpha. 633 

Psychometrika. 2009;74(1):107-120. doi:10.1007/s11336-008-9101-0 634 

32. Lathrop QN, Cheng Y. Two Approaches to Estimation of Classification Accuracy Rate 635 

Under Item Response Theory. Appl Psychol Meas. 2013;37(3):226-241. 636 

doi:10.1177/0146621612471888 637 

33. Lathrop QN, Cheng Y. A Nonparametric Approach to Estimate Classification Accuracy and 638 

Consistency. J Educ Meas. 2014;51(3):318-334. doi:10.1111/jedm.12048 639 

34. Schauber SK, Hecht M. How sure can we be that a student really failed? On the 640 

measurement precision of individual pass-fail decisions from the perspective of Item 641 

Response Theory. Med Teach. 2020;42(12):1374-1384. 642 

doi:10.1080/0142159X.2020.1811844 643 

35. Downing SM. Validity: on the meaningful interpretation of assessment data. Med Educ. 644 

2003;37(9):830-837. doi:10.1046/j.1365-2923.2003.01594.x 645 

36. Setzer JC, Cheng Y, Liu C. Classification Accuracy and Consistency of Compensatory 646 

Composite Test Scores. J Educ Meas. 2023;60(3):501-519. doi:10.1111/jedm.12357 647 

37. Schauber S, Stensløkken KO. No knowledge gap in human physiology after remote teaching 648 

for second year medical students throughout the Covid-19 pandemic. No Knowl Gap Hum 649 

Physiol Remote Teach Second Year Med Stud Covid-19 Pandemic. 2023;23(976). 650 

http://www.biomedcentral.com/bmcmededuc/ 651 



CHALLENGING THE NORM: RELIABILITY VS. CLASSIFICATION ACCURACY 

30 

 

38. University of Oslo. How to classify data and information. July 6, 2024. 652 

https://www.uio.no/english/services/it/security/lsis/data-classes.html 653 

39. Wennberg A. Kan eksamen bli kortere og bedre? 654 

https://www.med.uio.no/imb/forskning/aktuelt/aktuelle-saker/2024/bedre-og-kortere-655 

eksamen.html 656 

40. Schauber SK. Re-Designing Assessments—Recommended Test-Length Based on Estimates 657 

of Either Reliability or Classification Accuracy (Version 1). https://doi.org/10.18712/NSD-658 

NSD3183-V1 659 

41. James G, Witten D, Hastie T, Tibshirani R, Taylor J. Resampling Methods. In: James G, 660 

Witten D, Hastie T, Tibshirani R, Taylor J, eds. An Introduction to Statistical Learning: With 661 

Applications in Python. Springer International Publishing; 2023:201-228. doi:10.1007/978-3-662 

031-38747-0_5 663 

42. Aubin AS, Young M, Eva K, St-Onge C. Examinee Cohort Size and Item Analysis 664 

Guidelines for Health Professions Education Programs: A Monte Carlo Simulation Study. 665 

Acad Med. 2020;95(1):151. doi:10.1097/ACM.0000000000002888 666 

43. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for 667 

Statistical Computing; 2023. https://www.R-project.org/ 668 

44. Raju NS, Price LR, Oshima TC, Nering ML. Standardized Conditional SEM: A Case for 669 

Conditional Reliability. Appl Psychol Meas. 2007;31(3):169-180. 670 

doi:10.1177/0146621606291569 671 

45. Robitzsch A, Kiefer T, Wu M. TAM: Test Analysis Modules.; 2022. https://CRAN.R-672 

project.org/package=TAM 673 

46. Lathrop QN. cacIRT: Classification Accuracy and Consistency under Item Response 674 

Theory.; 2015. https://CRAN.R-project.org/package=cacIRT 675 

47. Haakstad HE. Betafunctions: Functions for Working with Two- And Four-Parameter Beta 676 

Probability Distributions and Psychometric Analysis of Classifications.; 2022. 677 

https://CRAN.R-project.org/package=betafunctions 678 

48. Kane M. The Precision of Measurements. Appl Meas Educ. 1996;9(4):355-379. 679 

doi:10.1207/s15324818ame0904_4 680 

49. Kane M. Using Error/Tolerance Analysis to Design an Empirical Practice Analysis. Adv 681 

Health Sci Educ. 2000;5(3):179-196. doi:10.1023/A:1009821413152 682 

50. Kane M. The Errors of Our Ways. J Educ Meas. 2011;48(1):12-30. doi:10.1111/j.1745-683 

3984.2010.00128.x 684 

51. Brennan RL. Raw-score conditional standard errors of measurement in generalizability 685 

theory. Appl Psychol Meas. 1998;22(4):307-331. doi:10.1177/014662169802200401 686 



CHALLENGING THE NORM: RELIABILITY VS. CLASSIFICATION ACCURACY 

31 

 

52. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. 687 

J Stat Softw. 2015;67(1):1-48. doi:10.18637/jss.v067.i01 688 

53. Versteeg M, Hendriks RA, Thomas A, Ommering BWC, Steendijk P. Conceptualising 689 

spaced learning in health professions education: A scoping review. Med Educ. 690 

2020;54(3):205-216. doi:10.1111/medu.14025 691 

54. Lambers A, Talia AJ. Spaced Repetition Learning as a Tool for Orthopedic Surgical 692 

Education: A Prospective Cohort Study on a Training Examination. J Surg Educ. 693 

2021;78(1):134-139. doi:10.1016/j.jsurg.2020.07.002 694 

55. Schauber SK, Hecht M, Nouns ZM. Why assessment in medical education needs a solid 695 

foundation in modern test theory. Adv Health Sci Educ. 2018;23(1):217-232. 696 

56. Collares CF. Cognitive diagnostic modelling in healthcare professions education: an eye-697 

opener. Adv Health Sci Educ. 2022;27(2):427-440. doi:10.1007/s10459-022-10093-y 698 

57. Lalkhen AG, McCluskey A. Clinical tests: sensitivity and specificity. Contin Educ Anaesth 699 

Crit Care Pain. 2008;8(6):221-223. doi:10.1093/bjaceaccp/mkn041 700 

58. Brennan RL. Current Psychometric Models and Some Uses of Technology in Educational 701 

Testing. Educ Meas Issues Pract. 2024;43(4):88-92. doi:10.1111/emip.12644 702 

59. Lee WC. Classification Consistency and Accuracy for Complex Assessments Using Item 703 

Response Theory. J Educ Meas. 2010;47(1):1-17. doi:10.1111/j.1745-3984.2009.00096.x 704 

60. Pell G, Fuller R, Homer M, Roberts T. How to measure the quality of the OSCE: A review 705 

of metrics – AMEE guide no. 49. Med Teach. 2010;32(10):802-811. 706 

doi:10.3109/0142159X.2010.507716 707 

 708 

  709 



CHALLENGING THE NORM: RELIABILITY VS. CLASSIFICATION ACCURACY 

32 

 

 710 

 711 

 712 

 713 

 714 

 715 

FIGURES & TABLES 716 

 717 

 718 

 719 

 720 

 721 

 722 

  723 



CHALLENGING THE NORM: RELIABILITY VS. CLASSIFICATION ACCURACY 

33 

 

 724 

 725 

Figure 1 *** ENTER AS SIDEWAYS FIGURE *** 726 

Relationship between number of items and reliability (Cronbach’s Alpha) as a function of the 727 

cut-score.  728 

 729 

[ENTER Figure 1.pdf HERE] *** ENTER AS SIDEWAYS FIGURE *** 730 

Note. Lower panel shows relationship between classification accuracy and number of 731 

items as a function of the cut-score. Bold, black dots and lines are the grand mean across all 732 

resampled exams in each condition. The average across 100 resamples of one specific condition 733 

of exam, cut-score, and item-size is marked by an X. Classification Accuracy is the non-734 

parametric approach (Lathrop & Cheng, 2014).  735 
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 737 

Table 1 738 

Pseudo-code for the resampling procedure that was applied to each of the fifteen exams 739 

for nitems in [20, 30, 50, 75, 100, 125, 150] 

→ for cutscore in [40, 50, 60, 70, 80] 

 → for i in [1 to 100] 

  → draw a random sample DATA[i] of nitems 

   → CALCULATE ACCURACY for cutscore in DATA[i] 

   → CALCULATE ALPHA for DATA[i] 

Note. Pseudo-code for the resampling procedure that was applied to each of the fifteen 740 

exams, which indicates a loop across different conditions in our procedure: nitems can take the 741 

number of 20, 30… up to 150. Similarly, cutscore accounts for the varying contitions between 40 742 

and 80. The running index i indicates that for each combination of number of items [nitems] and 743 

pass mark (cutscore), one hundred random samples are drawn. And for each of these samples, 744 

both classification accuracy (CA) and Cronbach’s Alpha (ALPHA) are calculated. 745 

 746 
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 748 

Table 2 749 

Means, standard deviations, and correlations with confidence intervals for the estimates of 750 

reliability and classification accuracy across all 52,500 resampled exams. 751 

Coefficient M SD 1 2 3 4 

       
1. Cronbach’s Alpha 0.73 0.16         

              

2. IRT-based Reliability 0.72 0.18 .96**       
      [.96, .96]       

              

3. Non-Parametric     

    classification accuracy  
0.93 0.06 .28** .25**     

      [.27, .28] [.24, .26]     

              

4. L&L 
    classification accuracy  

0.92 0.07 .32** .29** .95**   

      [.31, .33] [.28, .30] [.95, .95]   

              
5. Rudner 

    classification accuracy  
0.93 0.06 .36** .33** .97** .96** 

      [.35, .37] [.33, .34] [.96, .97] [.96, .96] 

              

Note. M and SD are used to represent mean and standard deviation, respectively. Values 752 

in square brackets indicate the 95% confidence interval for each correlation. * indicates p < .05. 753 

** indicates p < .01. 754 

 755 
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 757 

Table 3 758 

Linear mixed effects models which include assessment features as predictors for Cronbach’s 759 

Alpha or Classification Accuracy 760 

  Cronbach’s Alpha  Classification Accuracy 

 β [CI]  β [CI] 

(Intercept) -0.00 [-0.30 – 0.30]  -0.00 [-0.09 – 0.09] 

Test length 0.81 [0.80 – 0.81]  0.31 [0.30 – 0.31] 

Cutscore -0.00 [-0.01 – 0.00]         -0.72 [-0.72 – -0.71] 

Random Effects    

Exam-level variance τ00 17.16 exam  0.22 exam 

Residual variance σ2 73.19  13.31 

Exam-level ICC 0.19  0.02 

Marginal R2 / Conditional R2 0.639 / 0.708  0.611 / 0.618 

    

Note. β is the standardized regression coefficient. CI is the 95% confidence interval. σ2 is 761 

residual variance. τ00 is the random effect for the exam-factor. ICC is the intra-class correlation. 762 

Marginal R2 is the variance explained by the fixed effects only. Conditional R2 is the variance 763 

explained by both random and fixed effects.  764 
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