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Abstract

Large language models (LLMs) hold great promise for au-
tomating software vulnerability detection and repair, but
ensuring their correctness remains a challenge. While re-
cent work has developed benchmarks for evaluating LLMs
in bug detection and repair, existing studies rely on hand-
crafted datasets that quickly become outdated. Moreover,
systematic evaluation of advanced reasoning-based LLMs
using chain-of-thought prompting for software security is
lacking. We introduce SECUREMIND, an open-source frame-
work for evaluating LLMs in vulnerability detection and
repair, focusing on memory-related vulnerabilities. SECURE-
MIND provides a user-friendly Python interface for defin-
ing test plans, which automates data retrieval, preparation,
and benchmarking across a wide range of metrics. Using
SECUREMIND, we assess 10 representative LLMs, including
7 state-of-the-art reasoning models, on 16K test samples
spanning 8 Common Weakness Enumeration (CWE) types
related to memory safety violations. Our findings highlight
the strengths and limitations of current LLMs in handling
memory-related vulnerabilities.
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rity engineering; - Computing methodologies — Artifi-
cial intelligence.
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1 Introduction

Large language models (LLMs) such as ChatGPT [4], Gem-
ini [8], Llama [45], and DeepSeek [34] are emerging as pow-
erful tools for detecting and fixing software bugs and vul-
nerabilities. Although LLMs have demonstrated remarkable
capabilities in programming tasks, they still face a significant
challenge — correctness.

Errors in bug detection and repair include failing to iden-
tify or fix bugs or explain the reason, generating false-positive
predictions, or introducing new bugs. Undetected vulnerabil-
ities can lead to severe security risks, while excessive false
positives overwhelm developers and hinder adoption. En-
suring correctness is crucial for automatic bug fixing and
code generation, as LLM-generated code may inadvertently
introduce new bugs or vulnerabilities [21, 35, 39].

Since formally verifying LLM-generated content is still im-
practical [29], empirical evaluation using benchmark datasets
remains the primary method for assessing LLM performance.
However, existing benchmark datasets for code analysis [15,
46] predominantly rely on manually constructed test cases.
While these datasets provide valuable insights, their cov-
erage is inherently limited due to the expensive effort re-
quired to create high-quality test scenarios. Other bench-
marking datasets, such as those based on competitive pro-
gramming [32] or classroom-style coding tasks [10], fail to
represent real-world software engineering tasks sensitive
to security vulnerabilities. Additionally, data leakage poses
a challenge: since LLMs are trained on public data, many
benchmark cases may already be in their training set [43],
resulting in misleadingly high performance and an inflated
sense of the models’ capabilities [9].

An automatic benchmarking framework is important for
systematically testing LLMs’ ability to detect and fix soft-
ware vulnerabilities. Such a framework should reduce the
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need for manual test dataset collection, ensuring alignment
with real-world software development. The framework must
adapt to emerging vulnerabilities and evolving code patterns
whilst mitigating data leakage by ensuring test samples fall
outside an LLM’s training data cutoff. Additionally, it should
support test sample augmentation to assess LLMs’” handling
of code complexity. By providing an automated and repro-
ducible evaluation process, such a framework helps identify
weaknesses and improve LLM reliability and effectiveness
for vulnerability detection and repair.

We present SECUREMIND', an open-source framework and
dataset for systematically evaluating LLMs in vulnerability
detection and repair. SECUREMIND automates benchmark-
ing with customizable test plans, enabling a reproducible
evaluation pipeline with minimal human intervention.

SECUREMIND offers a Python interface that allows users
to define test plans with minimal effort. This can typically
be achieved using only a few dozen lines of Python code to
define testing parameters such as the target LLM, API cre-
dentials, and model knowledge cutoff date. Upon execution,
it automatically retrieves and caches test samples from six
public repositories, including the Common Vulnerabilities
and Exposures (CVE) database and GitHub. To prevent data
leakage, only datasets published after the LLM’s training
cutoff are included. To introduce adversarial challenges, SE-
CUREMIND applies source code obfuscation and evaluates
LLMs’ ability to analyze optimized assembly. Code repair
quality is validated using developer-created test inputs re-
trieved automatically, with syntax and functional correctness
checked via static analysis [5, 11].

SECUREMIND provides an automated evaluation pipeline to
systematically assess multiple aspects of LLM performance,
including prediction accuracy, reasoning capabilities, and
code repair correctness. By default, it quantifies LLM perfor-
mance across six key dimensions: (1) response consistency,
(2) prompt effectiveness, (3) reasoning ability, (4) vulnerabil-
ity detection and repair effectiveness, (5) sensitivity to code
obfuscations, and (6) robustness on assembly code. These cri-
teria can be easily customized and extended via SECUREMIND
APIs.

SECUREMIND is part of the community’s efforts in develop-
ing benchmarks to evaluate LLMs in code-related tasks [46].
It differs from prior work by offering a customizable toolkit
for test planning, automated data collection, and evaluation
rather than relying solely on static datasets. Our study tar-
gets memory-related vulnerabilities such as buffer overflows
and use-after-free errors, which account for a significant
portion of software security issues [12, 50]. For instance, 70%
of the most serious security bugs in the Chromium project
are memory-related vulnerabilities [16]. While tested on

1Code, documentation, test data, and full evaluation results are available at:
https://github.com/HuantWang/SecureMind.
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memory-related vulnerabilities, SECUREMIND can be adapted
to cover other software vulnerabilities.

We demonstrate the benefit of SECUREMIND by applying it
to evaluate 10 leading LLMs for detecting and repairing eight
vulnerability types. Our test set includes seven state-of-the-
art reasoning LLMs, such as ChatGPT-o01 and DeepSeek-R1,
which leverage chain-of-thought prompting [49] at inference
time to enhance coding and logical reasoning.

Using SECUREMIND, we construct a dataset of over 16K
memory-related vulnerabilities, sourced and augmented from
six data sources, including online repositories (e.g., CVEs [1,
2]), developer-curated datasets (e.g., SARD [37]), and bug
reports from GitHub and Bugzilla. The dataset spans C,
C++, Java, Python, and x86 assembly code, making this the
most comprehensive evaluation of reasoning-based LLMs
for vulnerability detection and repair to date. Our evaluation
demonstrates SECUREMIND’s effectiveness in benchmarking
LLMs, providing empirical insights into their strengths and
weaknesses. For example, we find that LLMs perform poorly
in automatic patch generation for real-life programs, with
success rates ranging from 3% to 37% across the tested LLMs.
Additionally, minor source code changes can cause LLMs to
miss vulnerabilities or generate false positives.

This paper makes the following contributions:

o An automated and customizable framework for evaluating

LLMs on identifying and repairing vulnerabilities;

o A large-scale evaluation of 10 state-of-the-art LLMs on
vulnerability detection and repair;
o Identifying limitations of state-of-the-art LLMs, providing

a checklist for researchers working in this space.

2 Background
2.1 Large Language Models

LLMs generate content based on user prompts (or queries).
Techniques like instruction tuning teach LLMs to follow in-
structions effectively [41], while RLHF trains them to engage
in human-like reasoning and conversation. This has led to
the development of chat-based LLMs such as CodeLlama and
ChatGPT-4o0, which can handle interactive discussions.

2.2 Chain-of-Thought

The latest development in LLMs, such as ChatGPT-o1 and
DeepSeek R1, incorporate chain-of-thought (CoT) reason-
ing [49] to enhance multi-step problem-solving. CoT struc-
tures reasoning steps explicitly, improving LLMs’ ability to
handle complex tasks requiring logical inference and con-
textual understanding. By decomposing problems into se-
quential steps, CoT-equipped models enhance performance
in code-related tasks.

2.3 Model Parameters

Two key parameters affect LLM output: temperature and top-
p. Temperature controls randomness - higher values (> 1.0)
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Figure 1. The overall workflow of SECUREMIND.

1 from SecureMind import DefinitionInterface

2 from openai import OpenAl

3

4 class MyInterface(DefinitionInterface):

5 def __init__(self, temp: list, top_p: list):

[3 # Set the LLM parameters to be evaluated

7 super().__init__()

8 self.temp = temp

9 self.top_p = top_p

10

11 def set_model(self, model_name: str, api_key:
str):

12 # Set the model to be tested

13 self.model = OpenAI(api_key=api_key)

14 self.model_name = model_name

15

16 def set_data(self, cutoff_date: str):

17 # Set the dataset cutoff date.

18 self.cutoff_date = cutoff_date

19

20 if __name__ == "__main__":

21 evaluator = MyInterface(temp=[...], top_p
=[...D)

22 1lm = evaluator.set_model (model_name, api_key)

23 test_data = evaluator.set_data(cutoff_date="
RS

24 #Use the default evaluation pipeline

25 results = evaluator.evaluation(test_data, 1lm)

Figure 2. A simplified test plan using SECUREMIND APIs.
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Figure 3. The SECUREMIND evaluation pipeline.

yield more diverse outputs, while lower values make re-
sponses more deterministic. Top-p selects from the smallest
set of words whose cumulative probability exceeds a thresh-
old p, adapting to the model’s confidence. Higher p values
(e.g., 0.9-1.0) increase variation but risk errors; lower values
(e.g., 0.3-0.5) improve coherence. SECUREMIND allows users
to specify temperature and top-p ranges during automated
tuning (Sec. 5.1)

3 SeEcCUREMIND Workflow

SECUREMIND is designed to be flexible and customizable, sup-
porting the evaluation of any chat-based LLM compatible
with the OpenAI APL Integrating a test LLM with SECURE-
MIND is straightforward, requiring minimal effort from the
user. A basic setup involves writing a short Python script -
usually just a dozen lines of code - to specify the API key, LLM
knowledge cutoff date, and test configuration. SECUREMIND
is highly customizable, allowing users to override relevant

29

ISMM °25, June 17, 2025, Seoul, Republic of Korea

Table 1. Vulnerability databases used by SECUREMIND.

URL
github.com/advisories
nvd.nist.gov

cve.org
github.com/pypa/
advisory-database
samate.nist.gov/SARD/
bugzilla.org

Name

Security advisories reported on GitHub

The National Vulnerability Database (NVD)
Common Vulnerabilities and Exposures (CVE)
The Python Packaging Advisory Database

NIST Software Assurance Reference Dataset (SARD)
Bugzilla

methods within its interface class to tailor and extend default
test strategies to meet specific requirements.

3.1 Test Plan Program

Figure 1 depicts the workflow for using SECUREMIND, begin-
ning with the definition of a test plan. A simplified Python
implementation of this test plan is shown in Figure 2. The
test plan defines methods from the SECUREMIND interface
class, including specifying the model to be tested and the API
key (lines 13, 14) required to query the model. Additionally,
it sets the knowledge cutoff date of the test model, allowing
SECUREMIND to prepare the appropriate test data. The exam-
ple test plan follows the default evaluation method provided
by the SECUREMIND interface, which returns a Python numpy
data frame containing the evaluation results. However, users
can override this method to customize the evaluation process
and define their own metrics.

Figure 3 shows the automated evaluation pipeline of SE-
cUREMIND. Upon executing the test plan, SECUREMIND auto-
matically retrieves and synthesizes test data from public code
repositories such as GitHub, NVD, SARD, and Bugzilla. It
then automatically selects the appropriate model parameters
(Sec.2.3) for detection and repair, before assessing the LLM’s
performance across a range of predefined metrics (Sec.3.4).

3.2 Automated Data Preparation

Given a test plan, SECUREMIND automatically retrieves and
prepares test samples based on the knowledge cutoff date. It
supports code samples written in C, C++, Java, and Python,
and compiles C and C++ samples into assembly code.

By default, SECUREMIND downloads test samples for eight
predefined CWE types, extensible via the test plan. It queries
CVEs from six online sources (Table 1) using GraphQL [6], ex-
tracting the vulnerability description, affected GitHub repos-
itories, CWE type, and commits. Samples missing these de-
tails are discarded. SECUREMIND then inspects each CVE’s
patch commits to locating the vulnerable code in earlier
versions and retrieves the vulnerable function, its patched
counterpart, and any relevant descriptions. Finally, vulnera-
ble snippets are mixed with benign samples - sourced from
other projects or generated by applying developer-written
patches to CVE records - at a configurable ratio.

As this work targets memory-related bugs, we use Gemini-
2.0-Flash to analyse vulnerability descriptions and download
a sample only if the LLM confirms its relevance. Users can
customise bug types and LLM choice via a SECUREMIND
interface.
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Table 2. Source code level code augmentation methods.

No. Augmentation Method

Al Replace variable names with vulnerability-related keywords

A2 Replace function names with vulnerability-related keywords

A3 Rename a vulnerable function’s name to a non-vulnerable equivalent

A4 Introduce a potentially dangerous library function (e.g., strcpy,
strcat) but use it safely

A5 Define safe function names using macros (e.g., fgets) while embedding
vulnerable functions (e.g., gets) in their implementation

A6 Use sanitization functions (e.g., realpath) in vulnerable code without
mitigating the vulnerability

A7 Use map-defined expressions for safe function names (e.g., fgets) while
introducing vulnerable functions (e.g., gets) in their implementation

A8 Rename parameters

A9 Rename function names

A10  Insert dead code

A1l Add comments

Al12  Modify whitespace

A13  Insert additional functions

A14  Insert new lines

3.2.1 Dataaugmentation. SECUREMIND provides 14 source
code augmentation methods, as detailed in Table 2, to ob-
fuscate the collected source code and enhance dataset di-
versity. Following previous studies [46], our augmentation
techniques include: 1) function and variable renaming, which
evaluates the LLM’s noise resistance by assessing whether it
can correctly understand program functionality; 2) adding
unreachable functions or code segments, which introduces
structural noise to test the LLM’s equivalence reasoning and
determine whether it can recognize non-executable code;
and 3) adding security-related segments, which obfuscate
program logic to assess the LLM’s security reasoning and
deep code-understanding ability.

3.2.2 Assembly code. Unlike prior work focused on high-
level code (e.g., C, Python, Java), SECUREMIND also evaluates
LLMs on optimized binaries. This is especially useful for
evaluating LLMs when third-party source code is unavailable,
and only assembly can be recovered from compiled binaries
(e.g., 3rd party libraries) using tools like objdump. To support
this, SECUREMIND compiles C and C++ code into assembly
using standard compiler optimization levels (00 - 03).

3.3 Prompt Templates

Tables 3 and 4 list the built-in SECUREMIND prompt tem-
plates for vulnerability detection and repair. These can be
customized or extended via SECUREMIND APIs. By default,
SECUREMIND supports both zero-shot and few-shot prompts.
Zero-shot prompts rely solely on the LLM’s pre-trained
knowledge, while few-shot prompts include examples to
guide the model more effectively. Following [46], SECURE-
MIND provides prompts with step-by-step instructions to
simulate CoT reasoning (e.g., C3 in Table 3, R8 in Table 4),
mirroring how human experts approach vulnerability detec-
tion [47]. These CoT-based prompts also support comparison
between models with and without explicit CoT generation.
To reduce evaluation cost, SECUREMIND selects the most suit-
able prompt at the start using a small random sample. Users
may override this by supplying a custom prompt set.
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3.4 Built-in Evaluation Metrics

SECUREMIND provides a range of built-in evaluation metrics
for vulnerability detection and repair, described as follows.

3.4.1 Deterministic score. The deterministic score (rang-
ing from 0 to 1) quantifies the consistency of model responses
across multiple runs, irrespective of correctness. By default,
SECUREMIND measures the deterministic score by running
the test LLM on the same prompt 10 times per test input.

3.4.2 Metrics for detection. For each test sample col-
lected and synthesized by SECUREMIND, a ground truth label
indicates whether it contains a vulnerability. SECUREMIND
automatically evaluates LLM performance in vulnerability
detection using four standard metrics: accuracy, precision,
recall, and F1-score. Users can also define custom metrics by
implementing their own evaluation methods.

3.4.3 Metric for bug repair. For bug repair, we report the
ratio of buggy test samples successfully fixed. SECUREMIND
validates LLM-generated code through a two-step process.
First, it uses CodeQL [5] to verify syntax correctness and
identify any unfixed or newly introduced bugs. If the code is
both compilable and executable, SECUREMIND then evaluates
the generated binary using test cases from the correspond-
ing project repository. These test cases, originally created
by developers after applying human-written patches, are
retrieved by SECUREMIND by tracing the vulnerable code
samples back to their repository and associated patch com-
mit. Users can also customize the validation process via the
SECUREMIND APL To generate repair instances, we use the
repair prompts listed in Table 4, instructing the LLM to pro-
duce 10 repair attempts per test sample per prompt. A repair
is considered successful if at least one attempt passes both
the syntax check and the test case execution.

3.4.4 Metrics for reasoning. Besides assessing the test
LLM’s performance in classifying and repairing vulnerabili-
ties, SECUREMIND provides an interface to evaluate the LLM’s
explanations for its decisions. Our objective is to assess the
reasoning capabilities of LLMs and determine whether they
can justify their decisions effectively. To achieve this, SECURE-
MIND prepares the ground truth explanation for a given vul-
nerability collected from a vulnerability database like CWE,
and automatically evaluates the LLM’s explanation using
three quantified metrics proposed by Ullah et al [46]: (1)
Rouge [33], (2) Cosine similarity [42], and (3) an LLM score.

Rouge. This metric evaluates LLM-generated reasoning text
by measuring its n-gram overlap with the ground truth.

Cosine similarity. This measures the similarity between
two vectors in an embedding space, where a higher value
indicates greater similarity. In this study, we compute this
score by converting the LLM-generated text and ground
truth description into fixed-length vectors using Gemini’s
embedding model ‘text-embedding-004’, but other embed-
ding models can be used when defining the test plan.
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ID Few-shot Description

D1 No Does this code contain instances of the memory-related security vulnerability?

D2 No Does this code contain instances of the memory-related security vulnerability known as {cwe_type}?

D3 No Similar to D2, but with the LLM role set as a "helpful assistant."

D4 No Similar to D2, but with the LLM role set as a "code security expert."

D5 No You are a code security expert who analyzes the given code for the memory-related security vulnerability known as
{cwe_type}.

D6  Yes Similar to D2, but includes an example of a vulnerability and its corresponding patch, along with reasoning texts.

D7 Yes Similar to D4, but includes the few-shot information as D5.

Cl1  No Similar to D1 but use CoT prompt: "Let’s think step by step.’

C2 No Similar to D2 but use CoT prompt: "Let’s think step by step.’

C3 No Similar to D3 but use a multi-step prompt: 1. First, you describe the overview of the code. 2. Then, based on the overview,
you identify the sub-components in the code that could lead to {cwe_type}. 3. After that, you conduct a detailed analysis
of the identified sub-components for the existence of the { cwe_type} vulnerability. 4. Based on the detailed analysis, you
determine and answer whether the {cwe_type} vulnerability is present in the given code.

C4 No Similar to D3 but use a multi-round conversation: Provide a brief overview of the code. Based on the overview, identify
the sub-components in the code that could lead to a memory-related security vulnerability known as {cwe_type}.

C5  Yes Similar to C3 but with the role "helpful assistant” and add few-shot information as in D5.

C6  Yes Similar to C2 but with few-shot information as in D5.

C7  Yes Similar to C5, but without the role assigned.

Table 4. SECUREMIND built-in prompt templates of vulnerability repair

ID Few-shot Description

R1 No Remove the vulnerable memory-related code/function body and replace it with a secure version.

R2 No Remove the vulnerable memory-related code/function body known as {cwe_type} and replace it with a secure version.

R3 No Similar to R2, but with the LLM role set as a "code security repair expert".

R4 No Similar to R1, but with the LLM role set as a "code security repair expert”.

R5 Yes Similar to R2, but includes the few-shot information as in D5.

R6 Yes Similar to R5, but with the role set as in R2.

R7 No Similar to R2 but using the CoT prompt: "Let’s think step by step".

R8 No Similar to R2 but using a multi-step prompt: analyze the given code for { cwe_type} security vulnerabilities and system-
atically fix them by following these steps: 1. Remove insecure memory-related functions and replace them with safe
alternatives. 2. Initialize all allocated memory before use to avoid uninitialized memory vulnerabilities. 3. Implement
buffer overflow protection by ensuring all writes stay within buffer limits. Avoid unsafe pointer arithmetic and always
validate pointer dereferences. 4. Enable stack canaries to detect and prevent stack-based buffer overflows. 5. Verify the
fixed code: Ensure that the {cwe_type} vulnerability is fully mitigated.

R9 Yes Similar to R7 but with few-shot information as in D5.

R10 Yes Similar to R8 but with few-shot information as in D5 and with the role set as "code security repair expert".

LLM score. To compute the LLM-evaluated similarity, Se-
CUREMIND instructs an LLM (Gemini-2.0-Flash in this work)
to determine whether the response generated by the test
LLM and the ground-truth reason are similar.

Compute reasoning metrics. Following the methodology
in [46], we compute reasoning metrics by comparing an LLM-
generated explanation (L,) to the ground truth (G,). Specif-
ically, L, is considered similar to G, if its Rouge score and
Cosine similarity exceed 0.34 and 0.84, respectively. Once
three similarity scores are computed, SECUREMIND deter-
mines reasoning correctness through a majority vote: if at
least two of the scores indicate similarity, the LLM’s reason-
ing is classified as aligned with the ground truth.

4 Evaluation Setup

This section describes the parameters and experimental setup
used by SECUREMIND to evaluate some of the state-of-the-art
LLM:s for detecting and repairing memory-related bugs. In
this work, we focus on memory-related bugs because they
are common, critical, and challenging for LLMs, which strug-
gle with the complex reasoning required for pointers, heap
management, and execution paths. However, SECUREMIND is
applicable to other bug types, which we consider a strength.

4.1 Language Models

Table 5 lists the LLMs used in this study, including several
state-of-the-art CoT-enhanced reasoning models that have
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Table 5. LLMs evaluated in this work

CoT LLM #Params. ContextGen. Know.
len. len. Cutoff

Llama-3.3-70B-Inst. 70B 128K 128K 12/2023
Llama-3.1-405B-Inst. 405B 128K 128K 12/2023

No Qwen2.5-7B-Inst. 7B 128K 8K 04/2023
Qwen2.5-Coder-32B-Inst. 32B 128k 8K 04/2023

ChatGPT 40 ~200B 128K 16.4K  04/2023

at training DeepSeek V3 671B 128K 8K 07/2024
Gemini 1.5 PRO ~200B 128K 8K 09/2024

ChatGPT o1 ~200B 128K 128K 10/2023

atinfer.  DeepSeek R1 671B 128K 8K 07/2024
Gemini 2.0 Flash 40B 1M 8K 06/2024

Table 6. Vulnerable test samples used to evaluate detection;
all were reported after Sept. 2024 - the latest knowledge
cutoff date of the evaluated LLMs.

CWE Description #Raw #Aug.
samples samples
CWE-119  Improper restriction of operations within 120 1,800
the bounds of a memory buffer (a.k.a
buffer overflow)
CWE-125 Out-of-bounds read 180 2,700
CWE-190  Integer overflow or wraparound (focus- 24 360
ing on memory leaks under this cate-
gory)
CWE-415 Double free 198 2,970
CWE-416 Use after free 270 4,050
CWE-476 NULL pointer dereference 144 2,160
CWE-787 Out-of-bounds write 78 1,170
CWE-824  Access of uninitialized pointer 64 960

not been previously evaluated for bug detection and repair
in prior peer-reviewed publications.

Because each LLM may have different preferred prompt-
ing methods, SECUREMIND allows users to tailor prompt
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Table 7. Raw test samples per programming language.

Languages #Samples
Cand C++ 934
Java 120
Python 24

—— SecureMind == SARD ~@- SecureMind -l SARD

10°

10’ 10°
#Basic blocks (solid line) and
cyclomatic complexity (dashed line)

10> 10

10°
#Lines of code

@ (b)
Figure 4. The CDF of the number of lines (a), basic blocks,
and cyclomatic complexity (which measures the complexity
of a program’s control flow [23]) (b) for our test samples and
the SARD benchmark at log scale.

formatting to optimize interactions with the test model. In
this study, we follow the guidance of LLM vendors to apply
the recommended prompting techniques. This customiza-
tion is achieved by overriding the default prompt method
in the SECUREMIND API For example, OpenAI’s GPT docu-
mentation suggests enclosing the input content within triple
quotes (“""") to clearly separate it from instructions [4].

4.2 Datasets

Raw test samples. We use SECUREMIND to automatically
collect data from six databases (Table 1), yielding 1,078 test
samples for vulnerability detection - split evenly between
vulnerable and benign (patched) versions. Table 7 shows
the language distribution of these samples. The cumulative
distribution functions (CDF) in Figure 4 highlight some key
characteristics of the SECUREMIND dataset (Table 6) com-
pared to SARD (Table 1). Over 80% of our samples have at
least 100 lines of code and 20 basic blocks, whereas SARD
samples are simpler. This suggests that our dataset better
reflects real-world program complexity. For vulnerability
repair, we collect a smaller dataset of 23 samples, as SECURE-
MIND automatically retrieves developer-written patches and
test cases, limiting sample availability.

Code augmentations. We use the code augmentation meth-
ods described in Sec. 3.2.1 to obfuscate both vulnerable and
benign samples at the source code level, resulting in a total
of 16K test samples for vulnerability detection.

4.3 Test Plan and Evaluation Platform

For this study, we define a test plan using the SECUREMIND
API in less than 50 lines of Python. We then execute the
plan on six Google Cloud instances, switching test LLMs
via cloud-based LLM APIs. Each instance runs Ubuntu 20.04
with 16x Intel(R) Xeon(R) CPUs (2.20GHz) and 64GB RAM.

In total, our evaluation used over 5,000 CPU hours, gen-
erating more than 10 billion tokens from the tested LLMs.
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Figure 5. Temperature and top-p settings for deterministic
scores and vulnerability repair rates.

Most of this time was spent querying LLMs for evaluation,
while data download and preparation took under 5 hours.
To prevent overloading data source websites, SECUREMIND
limits concurrent download requests by default.

5 Evaluation Results

We use SECUREMIND to evaluate all LLMs listed in Table 5,
reporting the built-in metrics from Sec. 3.4 along with illus-
trative examples. Following the default evaluation pipeline,
we first tune the temperature and top-p parameters (Sec.2.3).
SECUREMIND then identifies the optimal prompt template
(Tables 3 and 4) for each LLM and assesses its reasoning abil-
ity in explaining decisions. Using the selected parameters,
we further analyze LLM performance across varying code
complexities and vulnerability types. All the quantified met-
rics are automatically generated by SECUREMIND as Python
data frames and CSV files.

5.1 Parameter Tuning and Determinism

To robustly evaluate LLMs, ensuring response consistency
is crucial - repeated tests for identical inputs should yield
stable results. SECUREMIND begins with parameter tuning
(Sec. 2.3), using 10% of randomly selected test samples to
find the highest temperature and top-p values that still yield
a deterministic score (Sec. 3.4.1) of at least 0.9.

Each parameter pair is tested across 10 trials, varying
values from 0 to 1 in 0.1 increments. For tuning, SECUREMIND
uses prompt D4 (Table 3) for detection and R4 (Table 4) for
repair. These zero-shot prompts avoid prior context, making
them well-suited for evaluating response stability.

Observations. Optimal parameter settings vary across LLMs.
As shown in Figure 5, setting the temperature and top-p to
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1 int open(wtap *wth, int xerr, gchar x*xerr_info)
2 {

3 wth->p = g_malloc(...);

4 while (1) {

5 if (file_seek(...)) == -1){

3 g_free(wth->p); wth->p = NULL;
7 return -1;

8 }

9

10 if (bytes_read != 4){

11 xerr = ;

12 if (xerr != 0){

13 g_free(wth->p); wth->p = NULL;
14 return -1;

15 }

16 g_free(wth->p); wth->p = NULL;
17 return 0;

18 133

19

20 static void close(wtap *wth) {

21 if (wth->p != NULL){

22 g_free(wth->p);

23 wth->p = NULL;}

(a) A simplified patch for a CWE-415 double-free vulnerability. The patch
ensures that pointer p is set to NULL immediately after calling g_free().

ChatGPT-40’s incorrect response to the code in (a)

memory again. X

The code has multiple paths where memory (wth->p) is freed. If an error
occurs and the caller subsequently calls close, a double free can occur. Multiple
return paths also increase the risk, as the caller might unknowingly free the

(b) A false-positive provided by ChatGPT-40
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F1 score [ Precision BB Recall B Accuracy

D6 D7 C1
Prompt

Figure 7. Vulnerability detection performance using differ-
ent prompts. Min-max bars show the variances across tested

LLMs and samples.
Response to prompt D1

Upon reviewing the provided code, I have identified a few potential

issues related to memory management... X

Response to prompt D3
Yes, the code contains instances of double free. ... In the close function,
wth->p is freed again without checking if it is NULL. X

Response to prompt D6

... The ‘close’ function checks if ‘wth->p° is not ‘NULL' before freeing
it, and then sets it to ‘NULL' to prevent any potential double free.
Overall, the code appears to handle memory management correctly

and does not contain any instances of double free. v

(a) Llama-405B’s responses to prompts D1, D3, and Dé.

Response to CoT prompt C1

.. let’s analyze it step by step... 1. Buffer Overflows... 2. Use-
After-Free... ... 4. Other Issues... In conclusion, based on the pro-
vided code snippet, there do not appear to be any obvious instances
of memoryrelated security vulnerabilities such as buffer overflows,

useafterfree, or memory leaks. v

Response to CoT prompt C2

ChatGPT-40’s correct response to the code in (a)

to prevent accidental reuse. [...] The memory is managed correctly. Vv

The code frees memory at each error exit point and sets the pointer to NULL

(c) Correct responses given by ChatGPT-4o.

Figure 6. A benign code sample and inconsistent responses
given by ChatGPT-4o for the same prompt.

0.2 and 0.1, respectively—values suggested by OpenAl for
code-related tasks [3]—yields a deterministic score below
0.9 for ChatGPT-40 but exceeds 0.98 for DeepSeek R1 for
vulnerability detection. Notably, even with a temperature
of 0, full consistency is not guaranteed, with deterministic
scores averaging only 0.96. For example, ChatGPT-40 (tem-
perature 0.0, top-p 0.1) misclassifies a patched code snippet
in Figure 6 as vulnerable in 1 out of 10 runs. As seen in Fig-
ure 5, increasing temperature and top-p values (e.g., > 0.9)
enhances response diversity and "creativity,' improving the
likelihood of generating a correct patch. Since optimal param-
eter settings depend on both the LLM and the task, choosing
appropriate values is non-trivial. SECUREMIND addresses this
challenge by automatically adjusting parameters based on
user-defined criteria, such as ensuring a deterministic score
above 0.9 while maintaining accuracy above 0.6.

5.2 Prompt Template Selection

SECUREMIND automates the evaluation of prompt effective-
ness on LLMs for vulnerability detection and repair using the
templates in Sec. 3.3. Such an evaluation provides insights
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... 1. Memory Allocation... 2. Freeing Memory... 3. ... In conclusion,
the provided code does not appear to contain instances of the double

free vulnerability. X

Response to CoT prompt C3

Overview: ... The following sub-components ...1. Memory Alloca-
tion and Freeing in ‘open’; ... 2. Potential Double Free... Detailed Anal-
ysis ... Conclusion The potential double-free vulnerability arises
because if the function encounters an error while reading the next
record type and length, it frees the allocated memory and returns -1.
If the function is called again, it will attempt to free the same memory

again, leading to a double free. X

Response to CoT prompt C7

Overview: ... sub-components: S1: Memory allocation for ‘wth->p°
in ‘open’. S2: ... S3: ... Analysis A-S1: The memory for wth->p is
allocated using g_malloc ... Decision: It seems that the authors have

taken necessary precautions to avoid double-free issues v4
(b) Llama-405B’s responses to CoT prompts C1-C3 and C7.

Figure 8. Llama-405B’s responses to standard and CoT
prompts to detect vulnerability for the code in Figure 6(a).

into prompt effectiveness, supporting the development of
more effective prompt strategies. In this experiment, we use
the parameters during the parameter tuning stage for indi-
vidual LLMs (Sec. 5.1). This evaluation is conducted on 16K
test samples for vulnerability detection and 23 samples for
vulnerability repair.

5.2.1 Vulnerability detection. Figure 7 presents the per-
formance of different prompts for vulnerability detection,
with min-max bars indicating variation across LLMs and



ISMM °25, June 17, 2025, Seoul, Republic of Korea

Table 8. Repair success rate of individual prompts of Table 4.

Prompts RI1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Rep.rate 27% 25% 22% 29% 29% 33% 25% 33% 32% 28%

1 BGD_DECLARE(void) gdImageFillToBorder (gdImagePtr im,

int x, int y, int border, int color){...
2 if (border < 0) {
3 /* Refuse to fill to a non-solid border =/
4 return;
5 }...}

(a) A stack-overflow code sample when invalid color is used

(ChatGPT-o1 patch with R1 prompt \
#Problem: If im is NULL, accessing im->trueColor will cause a NULL

pointer dereference (CWE-476), which can crash the program.
if (!im) { printf("Error: Image line pointer is NULL."); return;} X
(b) A incorrect ChatGPT-o1 generated patch

ChatGPT-o01 patch with R9 prompt

1 //Validate color and border indices [...]

2 BGD_DECLARE(void) gdImageFillToBorder (
gdImagePtr im, int x, int y, int border,
int color){...

3 if (!im->trueColor) {

4 if (im->colorsTotal <= @) {

5 printf ("Error: No colors available.\n");

[3 return}

7 if (color < @ || border < @ || color >= im->
colorsTotal || border >= im->colorsTotal)
{

8 /* Ensure color [...] x/

9 printf ("Error: Invalid color or border

L.o..1");

10 return;}}}

v

(c) A correct ChatGPT-o1 generated patch using prompt R9
Figure 9. A code sample and patches given by ChatGPT-o1.

test samples. Figure 8 provides examples of the Llama-405
B responses. Among the tested prompts, D1 performs the
worst, with low precision (32%) and recall (31%), as it lacks
vulnerability-specific context (e.g., CWE types). This high-
lights a practical challenge in using LLMs for vulnerability
detection: users may not know whether a vulnerability exists,
let alone its type. Adding candidate CWE types (D2) improves
precision by 5%. Assigning a role (e.g., "security expert” in D3)
enhances function analysis, increasing detection precision
by up to 10% for some LLMs. However, this does not help
all models — Llama-405B still fails with D3, as shown in Fig-
ure 8(a). In general, CoT-like prompts outperform standard
prompts. Incorporating contextual examples with reasoning
text (D6) further improves predictions, demonstrating that
prior knowledge enhances LLM reasoning. C1, a step-by-
step CoT-like prompt, achieves 34% precision and 33% recall
for common memory issues such as buffer overflow and use-
after-free but struggles with other CWE types. Similar to D2,
which provides CWE hints, C2 further improves accuracy.

5.2.2 Vulnerability repair. Table 8 shows the repair suc-
cess rates when using individual repair prompts from Ta-
ble 4. R1 has the lowest success rate owing to the absence
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Figure 10. Reasoning scores for vulnerability detection.

of vulnerability-specific information. With this prompt, the
LLM must first identify and remove the code segment before
generating a suitable replacement, making this a complex
challenge. For example, Figure 9(b) presents a patch gen-
erated by ChatGPT-o1 using R1, which failed to repair the
vulnerability in Figure 9(a). In general, few-shot prompts
with examples yield more successful patches. By incorporat-
ing the vulnerability type and additional context, R9 helps
ChatGPT-o01 generate a valid patch in Figure 9(c) with a good
understanding of the code context and key data structures.

Observations. Providing bug context improves LLM perfor-
mance in vulnerability detection and repair, but extracting
and integrating such context remains challenging. One ap-
proach is to combine LLMs with static bug-detection tools [5]
to supply useful hints. Step-by-step, CoT-like prompts en-
hance performance even in models without explicit CoT
mechanisms. Nevertheless, models with built-in CoT reason-
ing consistently outperform those without, highlighting the
value of CoT for code analysis. For instance, with prompt
D1, DeepSeek-R1 achieves a detection accuracy of 52.0%,
outperforming Llama-405B’s 45.1% even when using CoT
prompt C1.

5.3 Reasoning Ability

SECUREMIND measures LLM reasoning ability using a rea-
soning score (Sec.3.4.4), which quantifies alignment between
the model’s reasoning and its answer. As shown in Figure10,
reasoning scores generally correlate with vulnerability de-
tection performance. However, some CoT prompts (e.g., C2,
C3) produce similar reasoning scores despite up to 15% drops
in precision and recall. This suggests LLMs may focus on
similar code elements but reach inconsistent conclusions. Fig-
ures 11 and 12 show LLM-generated reasoning for the same
code, revealing varied accuracy: some models, like Gemini-
2.0-Flash, correctly detect vulnerabilities but misidentify the
root cause, potentially misleading users.

Observations. While the tested LLMs generally align their
answers with their reasoning, every model exhibits cases
where it provides the correct answer but with incorrect rea-
soning, e.g., Figure 12(b). Additionally, while models using ex-
plicit CoT reasoning at inference often generate correct and
well-structured reasoning texts, they may sometimes offer a
less accurate root cause explanation than non-CoT models.
By enabling automatic evaluation of reasoning faithfulness,
SECUREMIND can assist model developers in improving LLM
reasoning by identifying areas where a model is likely to
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1 # CVE-2024-4741: Use-After-Free

2 int tls_free_buffers(OSSL_RECORD_LAYER xrl)

3 { if (...)

4 return 0;

5 return tls_release_read_buffer(rl);}

6 # Reads and free client data

7 void Run(){while (true){...

8 iRes = SSL_read_ex(&ssl, inBuf, BufSize, &
iLen);}

9 tls_free_buffers(&ssl);}

10 # Another concurrently running thread to
execute Run()
11  void RunThread(){
12 h = CreateThread(...,
, e )5 )
13 # Listens for client and start new threads
14 void Server(){...

C->Run(), (LPVOID)this

15 while (true){...
16 Connection* C = new Connection(...);
17 C->RunThread();}}

18 # Starts the server
19  int main(){
20 Server();}

(a) A race conditions of shared buffer in multi-threaded execution.

ChatGPT-o1 reasoning texts

... Lack of Synchronization: - Risk: The code assumes single-threaded
execution. In multi-threaded contexts (common in TLS), concurrent
access to rl->wbuf/rl->rbuf without locks/atomics could cause: - A
thread to free buffers while another thread is still using them. - In-
consistent state checks (e.g., numwpipes changes after validation).
... Responsing text: Yes. The code does contain use-after-free vul-

nerabilities due to inadequate thread synchronization, unsafe pointer
management, and insufficient validation of buffer lifecycle states.[...]

v

(b) ChatGPT-o1 reasoning texts to Figure 11(a)

Llama-405B reasoning text )

The code appears to be safe from use-after-free vulnerability.
The analysis states that the buffers are released and not ac-
cessed after being freed. However, it requires further review
of the ‘tls_release_read_buffer’ function and the code calling
‘tls_free_buffers’ to completely confirm the absence of a use-after-free

vulnerability. f
(c) Llama-405B reasoning texts to Figure 11(a)

Figure 11. Reasoning texts provided by CoT model ChatGPT-
ol and Llama-405B for a program with race conditions.

produce misleading explanations, which can be improved
through methods like supervised fine-tuning [22].

5.4 Comparing LLMs

This section presents a comparison of the results of the tested
LLMs (Table 5), using the report generated by SECUREMIND.

Vulnerability detection. Figure 13(a) reports the vulnera-
bility detection performance of individual LLMs across 1,078
raw test samples (without augmentations) using prompt C4,
along with their reasoning scores. The min-max bars show
variance across test samples. Models trained with CoT rea-
soning or those that explicitly employ CoT during inference
outperform non-CoT models. For instance, the CoT-enabled
ChatGPT-o01 successfully identifies the "lack of synchroniza-
tion" issue in Figure 11(b), identifying the Use-After-Free
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Gemini-1.5-PRO response

The code has the potential for a use-after-free vulnerability due to a
lack of external synchronization. Other parts of the code might access
rl->wbuf or rl->rbuf concurrently with tls_free_buffers, leading to a

race condition. v/
(a) Gemini-1.5-PRO reasoning texts to Figure 11(a)

Gemini-2.0-Flash response

The code does contain a use-after-free vulnerability in the read di-
rection. The code contains a use-after-free vulnerability in the read
direction because the function ‘tls_release_read_buffer(rl)‘ is called
twice, resulting in the second call operating on a potentially freed

buffer. \/

(b) Gemini-2.0-Flash reasoning texts to Figure 11(a)

DeepSeek-R1 response
The code contains multiple use-after-free (UAF) vulnerabilities due

v

(c) DeepSeek-R1 reasoning texts to Figure 11(a)

0 ..., lack of thread synchronization, ...

Owen-7B response \
The code does not reuse the freed buffer, so there is no risk of use-
after-free. Each buffer is checked and freed only if the conditions are

met. X

(d) Qwen-7B reasoning texts to Figure 11(a)

Figure 12. Reasoning texts provided by diverse LLMs for
the example program in Figure 11(a).
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(b) Reasoning evaluation across LLMs

Figure 13. Evaluation for LLMs. Min-max bars indicate per-
formance variation across different prompts.

vulnerability. In contrast, Llama-405B is unsure about this
sample as can be seen from its reasoning text in Figure 11(c).
Figure 13(b) further demonstrates that among models of
similar size, CoT-enabled LLMs (e.g., GPT-40, 200B) achieve
reasoning scores up to 6% higher than conventional LLMs
(e.g., Llama-405B). Overall, larger models tend to perform
better - DeepSeek R1 (671B) and Gemini 1.5 Pro (200B) out-
perform Gemini 2.0 Flash (40B), which uses CoT in inference.
As shown in Figures 12(a) and 12(c), Gemini 1.5 Pro and
DeepSeek R1 correctly detect the vulnerability with sound
reasoning, whereas Gemini 2.0 Flash provides a poorer ex-
planation for its decision.

Vulnerability repair. Table 9 reports the average success
rate of repairing 23 real-world vulnerabilities using all 10
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Table 9. LLM success rates for vulnerability repair.

LLMs Qwen-7B  Llama-70B  Qwen-coder-32B  Llama-405B  Gemini-2.0-Flash ~ Gemini-1.5-Pro  DeepSeek-V3  DeepSeek-R1 =~ GPT-40 GPT-ol
Rep. rate 3.3% 6.3% 12.8% 19.1% 6.3% 21.9% 27.0% 28.4% 29.9% 37.1%
R x 9 06 F1 score d Precision M Recall B Accuracy
Funn % .
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Figure 14. Most LLMs fail to fix samples with a long execu- g
tion flow like (a), and none can patch vulnerabilities spanning E 02
. . . . . i 5
multiple functions like (b), even when provided with all rele & A7 A8 A9 A10 AT A2 A13 AL

vant code in a single input.

prompts from Table 4, with each LLM run 10 times per
prompt per sample. A repair is deemed successful if at least
one output correctly fixes the code. Despite multiple at-
tempts, repair rates remain below 40%. CoT-enabled models
outperform standard LLMs, with ChatGPT-o1 achieving a
37% success rate, compared to a maximum of 30% for others.
Figure 14(a) shows a ZNC [7] test case with a long execution
path, successfully patched only by ChatGPT-o1 thanks to its
explicit CoT reasoning. Standard LLMs struggle with such
reasoning depth. Similarly, when vulnerabilities span multi-
ple functions (Figure 14(b)), none of the models produced a
correct fix - even with full context. Nine test cases fall into
this category. In other cases, LLMs identify the right code
segments but fail to produce functionally correct patches.

Observations. Increasing model size improves detection
accuracy and reasoning capability to some extent, but it
is not the sole factor. For example, Llama-405B underper-
forms compared to the CoT-enabled Gemini 2.0 Flash (40B),
while both DeepSeek-V3 (671B) and the smaller Qwen-7B
(7B) model fail to detect the vulnerability in Figure 11(a).
While CoT enhances LLMs’ code reasoning and generation
capabilities, applying them to real-world vulnerability repair
may require integration with external tools like compilers
to handle complex, multi-function programs.

5.5 Code Augmentation Impact

This evaluation shows how SECUREMIND’s code augmenta-
tion strategies (Sec.5.5) test LLM robustness by adding diver-
sity and complexity to source code - key factors in defending
against adversarial attacks [13]. For each LLM, SECUREMIND
uses its best-performing prompt. Figure 15 compares model
performance and reasoning on original vs. augmented code
in vulnerability detection.

Some augmentations mislead LLMs into false positives or
missed vulnerabilities. For instance, adding a benign-looking
function name like safe_input (A5) leads to misclassifi-
cation (Figure 16(a)). Function renaming (A2, A3) lowers
precision by 5-10% and reasoning scores by up to 15%; e.g.,
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Augmentatlon methods

(b) Reasoning evaluation across augmentation methods
Figure 15. Evaluation of code augmentation methods. Min-

max bars show variations across LLMs.

Gemini-2.0-Flash response to an A5-augmented benign sample

Yes, this code contains a potential buffer overflow vulnerability. The
culprit is the ‘4define safe_input(buffer, size) gets(buffer)* X
(a) Reasoning texts given by Gemini-2.0-Flash for A5, where we add
‘#define safe_input(buffer, size) gets(buffer)’ to a correct test sample.

DeepSeek-R1 response to an A2-augmented benign sample
Based on A-S1 and A-S2, the code is potentially vulnerable to buffer
overflow due to the use of ‘vulnerable_strcpy’, which implies a lack

X

(b) Reasoning texts given by DeepSeek-R1 for A2 on a correct test sample

of proper bounds checking. ...

Responses to an A13-augmented benign sample

Qwen2.5-7B

Based on the provided code snippet, the ‘helpfunc® function seems
to be the most suspicious part. The function contains a loop with
multiple ‘break’ statements, which is unnecessary and can potentially

lead to a stack overflow if the loop is not properly terminated.
ChatGPT-40
The ‘helpfunc® appears to be a placeholder or a stub with no functional

purpose in its current form. v

(c) Reasoning texts based on A13 given by LLMs with different parameter
sizes. vulnerable_strcpy

Llama-70B responses to an A14-augmented benign sample

Response to the original test sample

Yes, [...] if ‘a® was previously allocated and had a name, ‘oldname’
would point to freed memory, leading to a use-after-free vulnerability.
4

Response to the A14-augmented sample

No, this code does not contain a use-after-free vulnerability. The code
explicitly checks if a->name is not NULL before freeing it using g_free.
L.IX

(d) Reasoning texts based on A14. Llama-70B misses a Use-After-Free
vulnerability after a new line is added to the original code sample.

Figure 16. Reasoning texts provided by different LLMs for
various augmentation methods applied to benign samples.

renaming strcpy to vulnerable_strcpy causes a false neg-
ative in DeepSeek-R1 (Figure 16(b)).
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Figure 17. Evaluation for 8 memory-related vulnerability
types. Min-max bars indicate variation across different LLMs.

The impact of adding redundant security-like functions
varies by model size. As displayed in Figure 16(c), ChatGPT-
4o correctly ignores the placeholder helpfunc, while Qwen-
7B misinterprets it. Even small changes, like added white-
space or new lines (A12, A14), can trigger misclassifications.
For instance, Llama-70B misses a use-after-free vulnerabil-
ity after a one-line insertion (Figure 16(d)), likely due to
changing token context.

Observations. All the tested LLMs are sensitive to code
changes in vulnerability detection. This raises concerns, as
adversaries could introduce small changes to bypass security
scrutiny or generate excessive false positives [25], discourag-
ing adoption. By automatically assessing LLM robustness to
code augmentation, SECUREMIND helps developers enhance
model reliability for vulnerability detection.

5.6 Evaluation on Vulnerability Types

Figure 17 shows the LLM performance and reasoning across
eight memory-related CWEs (Sec. 6). LLMs excel at detecting
CWE-415 (double-free), reaching 65% precision and 50% re-
call, but struggle with CWE-119 (buffer overflow), achieving
only 34% for both metrics. This gap likely exists because
double-free follows a clear pattern (free called more than
once), while buffer overflows often depend on user input and
indirect memory access, requiring deeper contextual under-
standing. For reasoning, LLMs perform worst on CWE-824
(use of an uninitialized pointer), with only 15% of responses
aligning with the ground truth. This is due to execution
flow dependencies, which vary across samples and projects,
reducing cosine similarity.

Observations. Most LLMs show poor performance in cer-
tain types of CWE or cannot appropriately explain their
reasons for decisions. SECUREMIND can help developers pin-
point the weaknesses of LLMs and improve the coverage of
the test data of LLMs.
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Figure 18. Performance evaluation across compiler optimiza-
tion levels. Min-max bars indicate the average performance
variation across different LLMs.

3
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1 void *hi_calloc(size_t nmemb, size_t size) {

2 if (SIZE_MAX / size < nmemb)

3 return NULL;}

4

5 if (elements > 0) {

6 if (SIZE_MAX / sizeof(redisReplyx) <
elements) return NULL; /% Don't
overflow */

7 r->element = hi_calloc(elements,sizeof(
redisReplyx));

8 )

(a) Patch for CVE-2021-32765: buffer overflow. The condition on
line 6 prevents the allocation of more than SIZE_MAX bytes, which
would otherwise result in a buffer overflow.

(Response to assembly code )

The code contains potential integer overflow vulnerabilities in mem-
ory allocation functions (‘hi_malloc’, ‘hi_calloc’, ‘hi_realloc®) [...] X

(b) Wrong reasoning given by ChatGPT-o1.
Figure 19. Reasoning texts (b) of ChatGPT-o01 for (a).

5.7 Evaluation on Low-level Languages

SECUREMIND can evaluate LLM reasoning on assembly code
generated at different compiler optimization levels. It cur-
rently supports automatic compilation of C/C++ code. In
our study, we use SECUREMIND to compile 23 real-world C
samples from 12 GitHub projects into assembly using LLVM
v19.1.0, then evaluate LLMs on vulnerability detection at the
assembly level.

Figure 18 depicts performance and reasoning results. LLMs
achieve 62% precision and recall on source code, but precision
drops by 20% on assembly. LLMs can detect memory-related
functions but often misinterpret their roles (Figure 19) due to
loss of high-level context during compilation and limited ex-
posure to assembly code in training. Reasoning performance
is especially weak, with a score of just 0.4%, suggesting min-
imal understanding of assembly-level vulnerability patterns.

Observations. While LLMs show promise in detecting vul-
nerabilities in high-level programming languages, they strug-
gle with assembly. This raises concerns about their ability to
scrutinize third-party libraries, where high-level source code
is often inaccessible [53]. An interesting direction for fu-
ture research is to explore whether fine-tuning a pre-trained
LLM on assembly code can enhance its capability to detect
vulnerabilities at a lower level [18].

5.8 Comparing to Static Tools

In this experiment, we compare ChatGPT-4o (using prompt
C4) with CopeQL [5] on code samples extracted from the



ISMM °25, June 17, 2025, Seoul, Republic of Korea

Linux kernel v6.6~v6.12. The test data contains 76 CVEs
reported by independent users. Results show that CopEQL
detects 6 CVEs with a recall rate of 8%, while the LLM detects
41 CVEs with a recall rate of 54%. An interesting future di-
rection would be to explore hybrid approaches that combine
LLMs with static analysis techniques [48].

6 Threats to Validity

Internal validity. Despite our best efforts to prevent data
leakage, we cannot guarantee the complete absence of data
contamination, such as similar code snippets appearing in the
training data. The current implementation of SECUREMIND
includes a set of prompt templates specifically designed for
bug detection and repair, along with a selection process that
automatically chooses the most suitable prompt for a given
task. However, our prompts may be further optimized us-
ing prompt engineering tools such as LangChain [17] and
OpenPrompt [20].

External validity. Although we included diverse memory-
related vulnerabilities across multiple programming languages,
our findings may not be generalizable to other vulnerabil-
ity classes, such as network threats. Furthermore, while we
evaluated 10 leading LLMs, including advanced models such
as ChatGPT-o1 and DeepSeek-R1, the rapidly evolving na-
ture of LLM technology means that our findings represent a
snapshot that might not reflect future model capabilities.
Construct & conclusion validity. The risk of bias in con-
struct and conclusion validity is minimal, as our evaluation
is based on a large dataset, a representative selection of
widely used LLMs, and a diverse set of metrics to report our
findings. Furthermore, LLMs are evolving rapidly, so con-
clusions and methodologies in this research field may not
remain valid over time. This is precisely why we developed
an automated and extensible framework designed to reduce
the effort required to test LLMs as they evolve. SECUREMIND
also provides a user-friendly API that allows users to extend
both the evaluation methodology and metrics.

7 Related Work

LLMs are increasingly used to assist with software develop-
ment tasks [28], including code generation [30, 31] and opti-
mization [18, 24]. Their applications also extend to detecting
and repairing software bugs and vulnerabilities [19, 27, 52].
Recent studies explored LLMs for generic code repair [40]
and vulnerability detection [46, 51].

Despite their potential to automate software development,
LLMs struggle with reliability, especially in vulnerability
detection and repair, where incorrect outputs can introduce
serious security risks [21, 35], and high false-positive rates
can deter adoption. As formal verification of LLM-generated
content is limited to highly simplified models or scenar-
ios [36, 44], empirical evaluation using benchmark datasets
remains essential to evaluate an LLM. Turbulence [26] groups
test samples with related properties into "neighborhoods"
and assesses the variance in LLM capabilities within each
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neighborhood. The same strategy can be applied to alter our
prompt templates. We adopted the evaluation methodology
from [51] - using hand-crafted benchmarking data to evalu-
ate LLMs. However, we make two key different contributions:
(1) an automated framework for collecting and preparing
test data to evaluate LLMs, and (2) an extensible API that
supports the expansion of the evaluation methodology.

Existing efforts to benchmark LLMs for bug detection
have several limitations. They typically rely on manually
crafted datasets [14, 35, 38, 46, 54] that can rapidly become
outdated as LLMs are continuously trained on newly col-
lected data. Moreover, existing code-based benchmarks are
typically based on competitive programming challenges [32]
or classroom-style coding tasks [10], which poorly represent
real-world software engineering practices sensitive to secu-
rity vulnerabilities. Furthermore, there has been no system-
atic evaluation of state-of-the-art (SOTA) reasoning LLMs
that leverage chain-of-thought prompting for vulnerability
detection and repair.

SECUREMIND addresses these drawbacks by providing an
automated benchmarking framework with an easy-to-use
Python API for defining and customizing test plans. It auto-
matically downloads and prepares test data from real-world
open-source projects and vulnerability databases and mini-
mizes data leakage. It also assesses LLMs on assembly code -
an area largely overlooked by existing benchmarks. While
this work focuses on memory-related vulnerabilities, SECURE-
MIND can be extended to other code-related tasks.

Beyond introducing an automated testing framework for
LLM-based bug detection and repair, our study conducts a
large-scale evaluation of SOTA reasoning LLMs for code
reasoning and highlights challenges in using LLMs for bug
detection and repair.

8 Conclusions

We have presented SECUREMIND, a customizable and auto-
mated framework for evaluating LLMs’ efficiency and rea-
soning capabilities in detecting and fixing software vulnera-
bilities. We performed a large-scale study to evaluate some
state-of-the-art LLMs using SECUREMIND. Our evaluation
identifies the strengths and weaknesses of the leading LLMs
in vulnerability detection and repair. We show that while
the recent advancement of reasoning LLMs shows promise
in memory bug detection and repair, they are still brittle to
adversarial changes, and the success rates for automated bug
repair are low (max observed is 37% success from ChatGPT-
o1). We hope our open-source framework, datasets, and find-
ings will be useful for the community in designing more
robust LLMs for software engineering tasks.
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