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Abstract
Physical reservoir computing (RC) is a machine learning technique that is ideal for processing of
time dependent data series. It is also uniquely well-aligned to in materio computing realisations
that allow the inherent memory and non-linear responses of functional materials to be directly
exploited for computation. We have previously shown that square arrays of interconnected
magnetic nanorings are attractive candidates for in materio RC, and experimentally demonstrated
their strong performance in a range of benchmark tasks (Dawidek et al 2021 Adv. Funct. Mater. 31
2008389, Vidamour et al 2022 Nanotechnology 33 485203, Vidamour et al 2023 Commun. Phys. 6
230). Here, we extend these studies to other lattice arrangements of rings, including trigonal and
Kagome grids, to explore how these affect both the magnetic behaviours of the arrays, and their
computational properties. We show that while lattice geometry substantially affects the microstate
behaviour of the arrays, these differences manifest less profoundly when averaging magnetic
behaviour across the arrays. Consequently the computational properties (as measured using task
agnostic metrics) of devices with a single electrical readout are found to be only subtly different,
with the approach used to time-multiplex data into and out of the arrays having a stronger effect
on properties than the lattice geometry. However, we also find that hybrid reservoirs that combine
the outputs from arrays with different lattice geometries show enhanced computational properties
compared to any single array.

1. Introduction

Neuromorphic computing is being actively pursued for artificial intelligence and machine learning
applications and investment in it is projected to grow significantly in the coming decade [1]. However, the
cost associated with training large neural networks for such applications can be significant and this has led to
investigation into unconventional computing approaches with lower energy footprints.

Reservoir computing [2–4] (RC) is a computing paradigm which uses the dynamics of a recurrent neural
network (RNN) or another dynamical system (algorithmic or physical), often referred to as the reservoir, to
transform input data to a higher dimensional space where it may be classified more easily. It has attracted
interest in recent years mainly because the internal weights of the RNN are fixed and hence do not need to be
trained, creating substantial energy savings when compared to a conventional RNN [5]. Significantly, the
‘black-box’ nature of the reservoir means that the RNN can be replaced by any dynamical system that has (a)
a non-linear response to stimuli, (b) a state space rich enough to allow input data to be expanded into higher
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dimensional space where classification becomes easier and (c) an asymptotic washing out of system states
with stimuli (typically refered to as ‘fading memory’). This has led to a wide variety of different
implementations of in materia RC using e.g. photonic [6], mechanical [7] and memristive [8, 9] systems.

In-materia RC offers potential advantages of increased computational efficiency in temporal tasks
compared to other static in materio computing paradigms which resemble standard neural networks. Here
the material acts simply as a nonlinear activation function and consequently in-materia RC can even
compete in performance with in silico computing approaches [10]. Benchmark tasks demonstrated using RC
approaches include signal transformation, speech and image recognition and time series prediction [11–14].

Reservoirs need to have different computational properties to be effective in different tasks. For example,
tasks such as signal transformation and spoken digit recognition primarily utilise the non-linear transform
provided by the reservoir, while the well-known NARMA-10 task requires the reservoir to provide both
non-linearity and memory of past inputs [11].

There are mainly two ways to tune an in materio reservoir’s properties: Firstly, intrinsic dynamics of the
reservoir can be changed e.g. by making changes to the physical system used or by replacing it with another
system altogether. For example, it has been reported that magnetic nanodots [15] and artificial spin ice
[16, 17] systems exhibit different computational properties when their lattice arrangements are varied.
Alternatively, the reservoir architecture (i.e. the way data is interfaced with the reservoir) can be changed, for
example by using different time-multiplexing approaches [11]. However, the relative effectiveness of these
two tuning approaches have yet to be explicitly compared for a given type of physical system.

We have previously shown that magnetic domain wall (MDW) dynamics in interconnected arrays of
Ni80Fe20 (Permalloy) magnetic nanoring arrays (NRAs) can be exploited for RC [11, 18, 19]. In those studies,
information was encoded in the amplitude of rotating applied magnetic fields, which then drove emergent
DW interactions within the arrays. We have shown that the magnetic response of the arrays exhibited both
the non-linearity and fading memory required for a useful reservoir, and demonstrated state-of-the-art
performance for several benchmark tasks, including signal transformation, spoken digit recognition and
time series prediction.

In this paper we explore how variations in the lattice arrangement of NRAs change both their physical
behaviours, and their resulting computational properties when used as reservoirs. We study these alongside
three different time-multiplexed RC architectures [11] to understand how the effects of changing the physical
form of the reservoirs compare to those produced by changing the way we interface data with them.

We consider three different NRA lattices (refer to figure 1) with different numbers of nearest neighbours
(NN) which directly overlap with a given ring: (a) square (with NN= 4), (b) trigonal (with NN= 6) and (c)
Kagome (with NN= 3). We first use X-ray photo-emission electron microscopy (X-PEEM) imaging of the
arrays’ microstates to show that the different lattices exhibit different characteristic configurations of MDWs
and differing evolutions of state with applied stimulus strength, thus showing the strong influence of the
number and position of NN rings on NRA behaviour. We then use anisotropic magnetoresistance
measurements (AMR) to probe the global responses of each NRA lattice arrangement, and use these with the
three reservoir architectures to evaluate task agnostic metrics that quantify their computational properties.
We observe that the time-multiplexing approach has a more profound influence on computational
properties than the type of NRA lattice used, suggesting that our global readout mechanism does not allow
differences in the rich microstate behaviours of the arrays to be fully captured. However, reservoirs
constructed using the combined outputs of NRAs with different lattice arrangements do show enhanced
computational metrics compared to reservoirs constructed from a single NRA, indicating the utility of
combining the dynamics of multiple material reservoirs for improved computational performance.

2. Methodology

Each NRA had rings of diameter 4µm and ring widths of 300–400 nm. The overlap between rings was
150–200nm. The total area of each array was fixed at∼100µm2. Figures 1(a)–(c) shows scanning electron
microscopy (SEM) images of example arrays with square, trigonal and Kagome lattices respectively.

NRAs were patterned using electron beam lithography with lift-off processing. After electron beam
exposure and development, 10nm of Ni80Fe20 was thermally (AMR measurements) or electron beam
(XPEEMmeasurements) evaporated before lift-off. Our previous studies have shown no appreciable
difference in the magnetic field driven responses of thermally and electron beam evaporated ring arrays. The
samples used for AMRmeasurements were patterned on thermally oxidised silicon substrates and underwent
a second stage of lithography and metalisation to pattern Ti(20nm)/Au(100nm) electrical contacts at the
edges of the NRAs (figure 5(b)). The samples for X-PEEMmeasurements were patterned on silicon
substrates with native oxide layers and had an additional∼2nm Aluminium capping layer to avoid charging
of the samples during X-PEEM imaging.
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Figure 1. SEM images of ring arrays with (a) square, (b) trigonal and (c) Kagome lattice arrangements.

AMR measurements were performed using a custom-built electrical transport measurement rig. A
sinusoidal probe current of 1 mA was provided to the NRA contacts at a frequency of 43 117 Hz using a
Keithley 6221 current source. Resistance changes due to AMR effects [20, 21] were measured using a
Stanford Research Model SR830 lock-in amplifier. Rotating magnetic fields at a frequency of 19 Hz were
generated using two pairs of air-coil electromagnets in Helmholtz-like configurations. The electromagnets
were driven by a pair of Kepco BOP 36-6D power supplies and were controlled with voltage signals supplied
by a National Instrument acquisition card.

X-PEEM was performed at the CIRCE beamline at the ALBA synchrotron. Magnetic domains images
were obtained by averaging a series of x-ray absorption images on and off the Fe-L3 resonance with left and
right x-ray circular polarization in order to generate contrast by x-ray magnetic circular dichroism. Samples
were mounted on cartridges with a quadrupole magnet [22], which was used to generate in-plane rotating
magnetic field at a frequency of 1 Hz. Microstate populations were extracted from the X-PEEMmicrographs
by using custom Python-based image processing libraries [23] to identify the magnetic configuration of each
ring, and counting the number of each microstate configuration across the array. Confidence intervals for the
state populations were calculated by measuring standard deviations of the counts of each state over three
runs of the each measurement. The net magnetisation of the array was calculated by finding the weighted
sum of the magnetisation components along the PEEM sensitivity direction for the relative population of
different magnetic states.

In order to provide a more complete assessment of the range of computational behaviours available to a
given reservoir, we employed task agnostic metrics to characterise the different lattice arrangements’
computational properties instead of optimising the reservoirs to perform a specific task. We used the metrics
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computational quality (CQ), which was evaluated from the kernel rank (KR) and generalisation rank (GR)
[24, 25] and linear memory capacity (MC) [26] to evaluate the computational properties of a reservoir along
two different axes using randomly generated data. These have been shown to be good predictors of task
performance [25]. For full details on the implementation of each of the metrics, refer to the Supplementary
material.

The metrics of KR and GR were evaluated similarly but measured opposite properties. Both evaluated the
number of linearly independent output states when driven with uncorrelated (KR)/correlated inputs (GR).
This measured the reservoir’s ability to separate distinct input sequences (KR), as well as generalise similar
inputs (GR). Both metrics were bounded by the number of output nodes the reservoir has. A system with
good separation properties will have a high KR, while a system with good generalisation properties will have
a low GR. CQ= KR-GR [27] is thus a basic heuristic and is an approximate measure of the classification
ability of a physical reservoir. For a given application, the specific KR/GR values associated with ideal
reservoir performance is highly dependent upon the task data. For example, a task which requires grouping
of noisy repetitions of similar inputs to the same class requires a low GR value, while tasks which require
seemingly similar inputs to be mapped to different output classes require high KR. A more extensive study
into correlation between metrics and task performance can be found in [25].

Another important property of reservoir computers is their ability to retain information on past inputs.
To measure this, MC evaluates how well the reservoir is able to reconstruct past inputs from its current
reservoir state using a linear output layer. To do this, the readout layer of the reservoir was trained to
reproduce delayed states over an input signal, then evaluated on an unseen test set. Again, MC was bounded
by the number of output nodes in the network.

To explore the full range of dynamic regimes of the NRA, and hence measure the different computational
properties of each regime, the input data was scaled to cover different ranges of the NRA’s response. Each
input datum uτ was encoded into the amplitude of a single rotation of the global rotating field at a frequency
of 37Hz. The encoding was linear and of the form Hrot =Hc +Hr × uτ , where Hc is the centre field and Hr

is field range of the transformation (or input scaling parameters).
Previous work has shown that the full range of computational properties available to a given material

cannot be accessed under a single time multiplexed reservoir architecture, since different architectures are
able to better able to exploit given dynamic properties of a system’s response for computational advantage
[11]. Hence, it is important to test a range of different architectures in order to explore the full range of
computational behaviours a given system can exhibit. Here we explore three reservoir architectures: the
signal sub-sample reservoir (SSR), the single dynamical node reservoir (SDN), and the rotating neurons
reservoir (RNR). The following section provides a phenomenological overview of each of the reservoir
architectures. For further details on implementation, see supplementary material or [11].

The SSR architecture harnesses the oscillatory dynamics of the NRAs’ electrical response. Due to the
different nonlinear relationships between field and the different frequency components in the AMR signal,
the shape of the AMR trace for a given rotation changes drastically according to field strength. When taking
the amplitude of signal at multiple fixed points within the field rotation as output, both nonlinearity and
dimensionality expansion is provided.

The SDN architecture, introduced by Appeltant et al [28], utilises the transient behaviours of the
dynamic system to transform input data. The network consists of a single node (here, a single NRA)
multiplexed in time, generating ‘virtual’ nodes. A fixed random mask provides different linear combinations
of input dimensions to each virtual node, which are are connected to one another sequentially via the
dependence of current system state on its past states. Again, both nonlinearity and dimensionality expansion
are provided, plus the ability for the multiple dimensions of input data to interact with each other across
time to form a richer representation.

Introduced by Liang et al [29], the RNR architecture employs multiple dynamical nodes unconnected
from one another (here, each node is an isolated NRA). Instead, the input and output connections to each
node synchronously rotate, which changes the input/output weights associated with each node over time.
Considering the time series of a given output dimension, the output will have contributions from different
nodes over time, emulating connections between nodes. By distributing information across the many real
nodes, coupled with each node’s inherent non-volatile response described in [11], information can stay in
the system for long periods of time, enhancing memory.

3. Results and discussion

3.1. Microstate characterisation
We begin by studying the differences between the microstates formed in NRAs with different lattice
arrangements (figure 2). In the X-PEEMmeasurements, the rings were first saturated and then 30 cycles of
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Figure 2. The X-PEEM responses for the (A) square, (B) trigonal and (C) Kagome lattice arrangements for as the rotating field
amplitude was increased ((i)–(iv)). The table specified types of magnetic states seen in the different arrays along with schematics
as well as representative images.

rotating fields of different amplitudes were applied with images subsequently being taken. As MDWs in the
NRAs tend to pin in the junctions between rings, and these junction points differ in number and position
between the three lattice-types, we defined a set of states in the table in figure 2. Here, we refer to three
different types of domain microstates: the ‘onion’ microstate which reflects a pair of domain walls at opposite
ends of the ring, and hence maximum net magnetisation in the direction of the domain walls, ‘fractional’
microstates which represents a variant of the ‘onion’ state in which a single MDW has shifted within the ring
(with the fraction denoting the relative size of the larger domain in the ring), and the ‘vortex’ microstate with
no domain walls and flux closure within the ring.

Figure 2(a) presents example microstates observed in the square lattice as a function of rotating field
amplitude. At Hrot = 20Oe the field was too weak to depin MDWs from the junctions within which they
were initialised, and hence all rings were in bi-domain states (‘onion’ states [30]), with net magnetisation
aligned along the direction of initial saturation (figure 2(i)). At Hrot = 24Oe the field became strong enough
to cause occasional MDWmovement in some rings, thus forming ‘3/4’ states with individual MDWs rotated
by 90◦ from their initial position (figure 2(a-ii)). As the field was increased to Hrot = 29Oe, stochastic MDW
depinning events increased in frequency, leading to MDW pairs colliding and annihilating to form
flux-closed ‘vortex’ states (figure 2(a-iii)). We note that the ground state of a square-lattice NRA is a
checker-board pattern of ‘vortex’ states with alternating circulation direction, but this is not typically reached
due to the re-nucleation of MDWs pairs into ‘vortex’ states by MDW activity in neighbouring rings. Full
details of these emergent effects can be found in our previous work [18]. At higher fields still
(Hrot = 29− 31Oe) large numbers of MDWs were active, meaning that MDW re-nucleation events
dominated over annihilation events, and the array progressively repopulated with MDWs. By Hrot = 31Oe
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Figure 3. The magnetic state populations for the (a) square, (b) trigonal and (c) Kagome lattice NRAs as Hrot is varied. The
magnetic states are schematically shown in figure 2. (d) The variation of the net magnetisation along the saturation direction with
Hrot for the three lattice arrangements.

this re-population was complete and NRA was saturated with ‘onion’ states, which rotated coherently with
the applied field (figure 2(a-iv)).

Field-dependent state populations for the square lattice are shown in figure 3(a). A strongly non-linear
variation of the these was observed in the region of emergent dynamics, resulting in a plurality of MDW
states, being observed at intermediate applied fields (Hrot = 24− 31Oe). The decrease in ‘onion’ states
(between Hrot = 20− 24Oe) was accompanied by an increase in ‘3/4’ states. The ‘3/4’ states then gave way to
a majority of ‘vortex’ states, the population of which continued to increase until they peaked at Hrot = 29Oe.
Further increases in field resulted in a relatively sharp re-population with ‘onion’ states. These behaviours
were reflected in the variation of the NRAs net magnetisation (along the PEEM sensitivity direction) with
field (figure 3(d)) which was significantly reduced in the emergent regime due to the large population of ‘3/4’
and ‘vortex’ states.

The trigonal NRA exhibited significant differences in behaviour to the square array. This was to be
expected as the increased number of nearest neighbour rings in these arrays (NN= 6) meant that the MDW
motion was inhibited by a greater number of pinning sites, and the formation of interlocking ‘vortex’ states
in triads of adjacent rings was inherently frustrated [31]. Following saturation the rings adopted
configurations, which were broadly identical to the bi-domain ‘onion’ states observed in the square array
(Figure 2(b-i)). As the applied field increased beyond the onset of MDW depinning (Hrot = 24− 27Oe), new
microstates were formed by MDWs moving either one (‘5/6’) or two (‘4/6’) junctions around the rings.
Notably, many less ‘vortex’ states were formed than in the square lattice, reflecting the inherent geometric
frustration of the lattice (figure 2(b-ii, iii)). At higher fields still (Hrot = 32Oe) the array was repopulated
with ‘onion’ states in a similar manner to the square lattice (figure 2(a-iv)). Field-dependent state
populations again showed strongly non-linear trends, with a progressive evolution from majority ‘onion’ to
‘5/6’, then ‘4/6’ to ‘vortex’ as MDW depinning became more likely, before an eventual re-saturation with
‘onion’ microstates when the field was strong enough to reliably overcome pinning at all junctions (figure
3(b)). The variation in net magnetisation was broadly similar to that observed in the square lattice, with a
dip occurring at intermediate fields, but with dramatically reduced magnitude due to the comparatively low
‘vortex’ population in the trigonal array.
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The Kagome NRA exhibited the simplest microstate behaviour of the three lattices studied. Following the
saturation, rings adopted ‘4/6’ states (figure 2(c-i)). These differed from the ‘onion’ state configurations
observed post-saturation in the other lattices, as the lower symmetry of the Kagome lattice meant no two
junction sites were directly opposite each other. As the applied field increased (Hrot = 22− 27Oe) almost all
rings progressively fell into interlocking ‘vortex’ states, thus reaching the magnetic ground state of the array
(figure 2(c-ii, iii)). This was enabled by the lower number of pinning sites in the Kagome lattice, which made
it easier for MDW pairs to meet, and annihilate with each other. Notably, a much higher applied field
(Hrot = 47Oe) was required to fully re-populate the array with ‘onion’ states than in the other two
geometries (figure 2(c-iv)). This was because the square and trigonal lattices always contained a residual
population of MDWs that could assist with MDW repopulation, while these had to be nucleated from the
ground state in the Kagome lattice. Plots of field-dependent microstate populations confirmed that the
Kagome array showed the largest population of ‘vortex’ states of all three lattice geometries (figure 3(c)).
This was also reflected in the array’s net magnetisation, which reached lower values at intermediate fields
than either of the other lattices (figure 3(d)).

Collectively, the analysis of microstates showed that the different lattices differed substantially in both the
microstates they formed, and the way the populations of these varied with applied fields. The NRAs were
always initialised by saturating them with a large magnetic field and then relaxing them to remanence, thus
placing them in a configuration with a large number of DWs. The precise magnetic configuration was
consistent for each NRA geometry, but depended somewhat on the lattice arrangement as seen in figure 2.
Since all the NRAs were fabricated in the same deposition run, we do not expect any significant material
differences in the array and attribute the varied microstate NRA behaviours to geometric variations in them.
Such differences would be expected to result in differences in computational behaviour were they able to be
accessed by a tractable readout mechanism. However, the net magnetisation data presented in figure 3(d)
showed that when the average properties of the arrays were considered these differences became less
profound. There, all three lattices showed a broadly similar non-linear trends, differing only in the
magnitude and field scaling of their responses.

3.2. Macroscopic NRA behaviour
Having explored the detailed microstate behaviour of the arrays we then explored the responses that were
accessible via magnetoresistance measurements, and were therefore device tractable.

The macroscopic electric responses of the NRAs were obtained using Au contacts on either side of the
NRA (shown in the SEM micrograph in figure 5(b)). The AMR characterisation procedure was the
following: The NRAs were initially saturated and relaxed which fully populated the NRAs with MDWs.
Subsequently, 30 cycles of a rotating magnetic field at a frequency of 19 Hz, which were created by applying
90◦ phase shifted waveforms to the x and y axis electromagnet coils (figure 4(a)), were applied and the AMR
signal was recorded (figure 4(b)). The FFT of the last 10 cycles of the AMR signal was then obtained and the
amplitudes of the f1 = 19 Hz (input field frequency) and f2 = 38Hz (2× input field frequency) components
(marked in figure 4(c)) were extracted. This was repeated for different field amplitudes. As explained in our
previous work [11], the f 1 component corresponded to pinned MDWs stretching and contracting as the
applied field rotated relative to their internal magnetisation and the f 2 component corresponded to the
irreversible DW propagation transitions around the rings.

The AMR responses of the different lattice arrangement NRAs are shown in figures 5(a) and (c). All the
different lattice arrangements show maxima in the f 1 response which denote the onset of MDWmovement.
Similarly, the f 2 responses for all the lattice arrangements start with a slow increase in amplitude and show a
sigmoidal form due to MDWmovement in the NRA.

We initially explain the form of the AMR plots in figures 5(a) and (b) by considering the data for the
square lattice. The prominent peak in the f 1 response (marked by P2) at Hrot ≈ 25Oe also appears as a
harmonic in the f 2 response. This marks the field at which some of the MDWs depin from junctions
stochastically (after maximum distortion) and start propagating and therefore no longer show the periodic
stretching and contraction that produces the f 1 response [11]. The prominent transition in the f 2 response
occurs at the Hrot ≈ 29Oe (marked by P3) and corresponds to MDWs progressively depinning and starting
to move with the rotating field. There is a corresponding peak observed in the f 1 response at this transition
which is smaller than the peak observed at P2. The field regime between the 1st and 2nd peaks in the f 1
response is when a variety of the different microstates shown in the PEEM images are stochastically formed.
The decrease seen in the amplitude of the f 2 response is due to the formation of ‘vortex’ states.

The data for the other lattice arrangements were broadly similar, with a few minor differences. The large
peak in the f 1 response for the trigonal lattice occurs atHrot ≈ 20Oe (marked by P1 in figure 5(a)) suggesting
a lower energy barrier for the MDWs to overcome to start propagation in the trigonal lattice. The smaller
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Figure 4. (a) The Hx and Hy components of the field profile that was applied to the sample and (b) the measured AMR signal for
the first 10 rotations. (c) The Fourier transform of the signal with the f 1 and f 2 components marked.

Figure 5. The (a) f 1 and (c) f 2 AMR responses as a function of Hrot show the different transitions in MDW dynamics in the
NRAs. (b) An SEMmicrograph of the square NRA showing the Au contacts used for the AMR measurements. (d) The time scales
of settling for the different NRAs extracted from the AMR measurements.

peak in the f 1 response at Hrot ≈ 29Oe for the trigonal lattice (marked by P3 and which correlated with the
sharp transition in the f 2 response) is larger in amplitude compared to the same peak for the square and
Kagome lattices. The sharp f 2 response transition for the Kagome lattice happens at a higher field of
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Figure 6. Comparison of peak computational quality (CQ) scores between each lattice arrangement for each of the the single
subsample reservoir (SSR), single dynamical node (SDN), and rotating neurons reservoir (RNR) architectures.

Hrot ≈ 32Oe (marked by P4) and is a consequence of the higher field required to repopulate the array with
MDWs from the interlocking ‘vortex’ states as described above.

Thus we see that, as was observed for the magnetisation variation of the arrays, the differences between
the AMR responses measured from the different latices are relatively minor; the features of the microstates
seen in the state population variation of figures 3(a)–(c) do not manifest in the macroscopic ensemble AMR
response of these arrays.

In addition to the non-linearity of its transfer function, the transient nature of a reservoir’s dynamics is
key to it is computational properties [4]. To understand these we also studied the time scales over which the
NRAs’ AMR signals settled at select field points.

In these measurements, the magnetisation of the array was again initially saturated and relaxed, creating
MDWs at remanance. Then, 50 cycles of a rotating field was applied to the array and the AMR signal
simultaneously recorded. The time constants (τ ) were obtained by fitting an exponential dependence of the
form y= A

(

1− e−
x
τ
+B

)

to the envelope of the AMR signal. Note that above and below these field values, the
time constants could not be extracted. This was because at lower fields, the change in AMR signal was not
appreciable and at higher fields, the signal settled into high amplitude oscillations (corresponding to
propagating MDWs) by one field rotation. It was observed from figure 5(c) that all the lattice arrangements
exhibit a similar range of maximum and minimum settling times.

Collectively the analysis of the AMR responses of the arrays show that, while the different lattice
arrangements show clear differences in their microstate behaviours, global AMR measurements showed only
slight variations in the global response of the NRAs, representing smaller perturbations on top of consistent
general trends.

3.3. Computational evaluation of lattice arrangements
Having characterised the basic behaviours of the devices, we quantified the computational properties of the
NRAs in each of the three lattice arrangements according to the metrics and architectures defined in
section 2. Figure 6 plots the peak CQ metric score for each of the three lattice arrangements, with each of the
three reservoir architectures. The plots of CQ for each lattice arrangement and architecture as a function of
Hc and Hr can be found in the Supplementary material. The computational architectural choice is the
dominant factor when determining the computational properties of the constructed reservoirs, with smaller
variance in between the lattice arrangements for a given reservoir architecture. This implies that a change
into the data input/output paradigm has a more significant effect on the computational properties of a
reservoir than perturbing a device’s response via geometric changes. It was only the SDN architecture that
showed appreciable variation in CQ between the different lattice arrangements. CQ here is correlated with
the number of states available for each ring within the three lattices: trigonal has the highest number of
available states, and the highest metric score, while Kagome lattices have the fewest available states and the
lowest metric scores, tying the greater computational complexity offered by the square and trigonal arrays to
the greater microstate complexity available to these arrays. The poor CQ of the Kagome lattice is also likely
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Figure 7. Peak memory capacity (MC) metric maps for the nine architecture/lattice arrangement pairs.

due to the increased tendency of Kagome lattices to form ‘vortex’ states compared to the other arrays, since
the lack of mobile domain walls with increased ‘vortex’ states leads to a suppression the dynamic behaviours
which the SDN architecture relies upon [11]. Overall, we observe that the SDN architecture both provides
the highest CQ and is most expressive of array geometry, suggesting it is able to draw out the effects of
microstate differences to some degree. CQ is typically lower for the RNR architecture, and is lower still for
the SSR architecture.

Memory is another important computational property of reservoirs as it determines the timescale over
which the reservoir responds to input and for how long information stays in the reservoir. This allows strong
performance in time-series analysis tasks if the timescales of the task are well-matched to the timescales of
the reservoir [32]. Figure 7 shows the peak linear MC obtained for the different lattice and architecture
combinations. The plots of MC for each lattice arrangement and architecture as a function of Hc and Hr can
be found in the SI. Once again we observe that reservoir architecture had a much more profound effect on
computational properties than lattice arrangements, with the RNR providing the highest degree of memory
and the square and trigonal arrays performing slightly better than the Kagome lattice in this architecture
(due to the relative lack of complexity in the behaviour of the Kagome NRA). This is due to the ability of the
RNR architecture to store information across the distinct real nodes, whereas the single/virtual nodes in the
SSR and SDN will have information washed out of the node as more inputs are provided.

While the task-independent metrics KR, GR, and CQ provide a good means for comparing between
similar reservoir initialisations, many design choices and experimental factors can make direct comparisons
between different devices difficult. For example, past studies have shown stark differences between calculated
metrics for nominally similar nodes depending upon their input/and output granularity from binary to
analogue input/outputs [24], the filtering of noise [33], or the number of output nodes which acts as a hard
bound for KR and GR [25]. However, to provide context, the ‘peak’ metric scores listed here (32 output
nodes for SSR, 50 for SDN/RNR, all analogue inputs and outputs) can be tentatively compared with
simulations of spintronic systems in the literature, such as a CQ of 7 for spin-wave interference based RC
with 20 nodes with analogue input/output [34], and a CQ of 130 for an artificial spin ice with 220 nodes for
binary inputs but analogue readouts [27]. We note however that the above are simulation studies, rather than
experimental measurements as we present here. Furthermore, the improved CQ measured on the trigonal
lattice arrangement outperformed those obtained for the square lattices used in previous studies [11, 19].

Memory capacity also has a range of similar factors that complicate comparions with other systems, such
as the size of the network, with more nodes leading to greater memory capacities (with diminishing returns)
[26], whether analogue or binary inputs are recalled (with analogue inputs being more difficult), whether
delayed feedback is used to increase temporal dependencies of the network, and whether studies are done
experimentally or numerically. For comparison, numerical studies of a time-multiplexed spin-torque nano
oscillator showed memory capacities of 3.29 with binary inputs and 50 virtual nodes [35], while arrays of
oscillators had memory capacities of 15 for binary inputs and 50 distinct nodes [36]. Experimental
demonstrations with spin-torque nano oscillators in a time-multiplexed arrangement with 200 nodes and
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Figure 8. Comparison between peak performances of the combined networks (red) and the highest performing single network
(green) for both computational quality (CQ) and memory capacity (MC).

binary inputs showed memory capacities of 1.8 [37]. Here, the NRAs rivalled the memory capacities
observed in simulations using binary inputs, with experimentally gathered data and with analogue inputs.

3.4. Combining lattice outputs
Whilst the lattice arrangements showed slight differences in terms of maximum scores achieved in metrics,
they often showed considerable differences in the input scaling parameters at which these areas of peak
performance were reached, implying different behaviours in different lattices at a given applied field. This
enabled multiple behaviours to be captured at a given Hc and Hr by combining the different lattices’
responses. To show the difference in computational properties resulting from the combination of the lattice
arrangements, the metric calculations were repeated with the output for each lattice concatenated together to
form a single reservoir state matrix with three times as many outputs per input.

Figure 8 shows the resulting peak CQ and MC values compared to the best performing single
lattice/architecture pair for the three reservoir architectures. It can be observed that there was a considerable
increase in the CQ for all three reservoir architectures compared to the best performing single case for a given
architecture. This is due to the different nonlinear representations provided by each lattice providing better
ability to separate/generalise data. When considering MC, the combined reservoirs performed similarly in
terms of peak score. For the SSR and SDN cases, this is likely tied to the inability to store information beyond
2 inputs in any of the lattices in a single node/single time multiplexed node configuration. There is slight
improvement for the RNR, likely due to the presence of varied timescales for the three lattices as shown in
figure 5(d).

Figure 9 shows the metric heatmaps of the combined reservoir. There is a broadening of the optimal
regions of operation compared to the single lattices (refer to heat maps in the SI) due to the different ranges
of activity of each lattice arrangement, ensuring at least one is operating in a dynamically interesting regime
for a broader range of input scaling parameters. This highlights the potential scalability of the NRAs in terms
of expanding computational capability via geometrical manipulation, as improved CQ is obtained when
combining the different nonlinear relationships between input and output provided by each of the different
lattice arrangements. Similar expansion of the range of computational properties available at a given input
scaling are expected for other RC platforms, providing that their dynamic properties can be manipulated
into different dynamical regimes for a given input stimuli via geometrical manipulation. Combining the
outputs also provides a means of exploiting the different timescales of response from the three lattice
arrangements highlighted in figure 5(d). This behaviour is functionally similar to the unconnected
hierarchical ESNs presented in [38], which showed improvement in solving tasks on data with multiple
timescales of auto-correlation.

4. Conclusions

In conclusion, we have studied the effects of lattice geometry and time-multiplexed reservoir architecture on
the computational properties of magnetic nanoring array reservoir computers. High-resolution XPEEM
measurements showed that the different lattices showed a wide variety of microscopic magnetic states, and
different evolution of states with applied stimulus. However, when the computational capabilities of the
arrays were measured via their AMR responses, similar computational metric scores were observed within a
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Figure 9. The memory capacity metric maps as a function of the centre field (Hc) and field range (Hr) for the SSR (a)–(c), SDN
(d)–(f) and RNR (g)–(i) RC architectures for the different lattice arrangements. The stars mark the regions where maxima are
observed.

given reservoir architecture, highlighting the role of array-wide measurements in obscuring the different
microstate behaviours. This suggests that the manner with which external information is interfaced with the
dynamical system, such as time-multiplexing of information, is more significant for determining
computational properties than the exact response of the dynamical system itself. In spite of this, the ability to
exploit different dynamical regimes between the lattices at a given field allowed improved computational
performance when the different lattices were combined. These conclusions are likely to extend to different
physical systems whose responses to input stimuli can be perturbed via geometric manipulations.

Collectively, our measurements show that although the different lattice arrangements have considerably
different microstate responses (resembling considerably different underlying physical mechanisms of node
response), global 1D measurements of array state such as AMR provide limited differences in computational
behaviour due to minor differences between readouts of the state of the system (similar to slight
manipulation of the activation functions of nodes in conventional RC).We therefore surmise that the use of
global readouts for assessing computational performance of the NRAs mask some of the complex variations
in physical behaviours imaged in the NRAs, and evidences potential paths for improvements in readout
strategies.
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In order to exploit the microstate differences observed between the lattice arrangements, we anticipate
that coupling local inputs of data (via Oersted fields from current carrying microstrip lines, or spin-orbit
torque induced DW propagation) with spatially-sensitive readouts of state would allow for better
exploitation of the spatially-distributed responses observed in the NRAs. Additionally, a measurement
technique such as ferromagnetic resonance [12] can be used in which the measured spin-wave spectrum can
help resolve the microscopic MDW configuration and thus be sensitive to spatial information configuration
of the NRA. For other physical systems with spatially-distributed responses, it will be similarly important to
develop measurement techniques that can capture these differences.
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