
This is a repository copy of ConvolutionalFixedSum: Uniformly Generating Random
Values with a Fixed Sum Subject to Arbitrary Constraints.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/226630/

Version: Published Version

Conference or Workshop Item:
Griffin, David Jack orcid.org/0000-0002-4077-0005 and Davis, Robert Ian orcid.org/0000-
0002-5772-0928 (2025) ConvolutionalFixedSum: Uniformly Generating Random Values
with a Fixed Sum Subject to Arbitrary Constraints. In: UNSPECIFIED.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/226630/
https://eprints.whiterose.ac.uk/

ConvolutionalFixedSum: Uniformly Generating

Random Values with a Fixed Sum Subject to

Arbitrary Constraints

David Griffin

University of York, UK

david.griffin@york.ac.uk

Robert I. Davis

University of York, UK

rob.davis@york.ac.uk

AbstractÐThis paper addresses the problem of uniform ran-
dom generation of vectors of values with a fixed sum, subject
to upper and lower constraints on the individual component
values. Solutions to this problem are used extensively in the
generation of tasksets, specifically task utilization values, in
support of the performance assessment of schedulability tests
for real-time systems. This paper introduces a general-purpose
solution in the form of an Inverse Volume Ratio Sampling
method that is applicable provided that it is possible to determine
the ratio of the volume below a given hyperplane to the total
volume of the valid region in n-dimensional space, as demarcated
by the constraints and the fixed sum. An efficient approach
is derived for volume calculation using numerical convolution,
thus instantiating the ConvolutionalFixedSum algorithm, which
provides a user-specified level of precision, while scaling at
O(n3 log(n)). A stringent uniformity test is developed, called
the slices test, which is able to fully explore the extent of the
valid region in each of the n dimensions. The slices test reveals
that while the outputs of UUnifast and ConvolutionalFixedSum
form uniform distributions, in some cases the outputs of prior
state-of-the-art algorithms do not.

I. INTRODUCTION

Assessing the performance of schedulability tests in real-

time systems requires the use of tasksets with uniformly

generated random utilization values that sum to a fixed value,

i.e., the total utilization. Without this property of uniformity,

bias can occur in the testing process [3], meaning that the

results can become invalid and potentially misleading. How-

ever, the problem of creating such uniformly generated random

utilization values is non-trivial, and several intuitive but naÈıve

approaches can lead to non-uniform distributions [3], [4].

The first commonly used algorithm to address these issues

in real-time systems was UUnifast [3], [4], derived by Bini

and Buttazzo in 2004. UUnifast solves the problem for single

processor systems, where the task utilization values generated

are between 0 and 1, and the total utilization is no greater than

1. Hence, there are no constraints on the individual utilization

values, except for the fixed sum itself.

The problem of creating uniformly generated random val-

ues with a fixed sum becomes harder as more constraints

are added. Generating such values to support assessment of

schedulability analyses for multiprocessor systems requires

that the utilization of each task is constrained, between 0 and

1, so that the task fits on a single processor; however, unlike

in the single processor case, the total utilization can greatly

exceed this value. The UUnifast-Discard algorithm [9], [10],

developed by Davis and Burns in 2009, addressed this problem

via a simple extension to earlier work. UUnifast-Discard has

the drawback that it is not fully scalable, in particular it is

not viable when the average number of tasks per processor

is low. This issue was subsequently addressed in 2009, when

Emberson et al. identified the RandFixedSum algorithm [11],

originally developed in 2006 as a MATLAB routine by

Stafford [35]. Nevertheless, RandFixedSum is unable to deal

with individual constraints applied to the utilization of each

task, such as those needed to support performance assessment

of schedulability analyses for mixed-criticality systems [5].

The more general problem, with both upper and lower

constraints on individual task utilizations, was first addressed

by the Dirichlet Rescale Algorithm (DRS) [14], derived by

Griffin et al. in 2020. Unfortunately, as subsequently shown in

the evaluation in Section VI, the outputs of the DRS algorithm

can form a non-uniform distribution in the case where one

constraint is sufficiently small. The DRS algorithm also has

high complexity and is thus expensive to compute, compared

to RandFixedSum and UUnifast.

In this paper, we introduce the Inverse Volume Ratio Sam-

pling (IVoRS) method for uniform random sampling from

a constrained region of n-dimensional space. This general-

purpose method is applicable provided that it is possible to

determine the ratio of the volume below a given hyperplane

to the total volume of the valid region in n-dimensional space,

as demarcated by the constraints. Root-finding algorithms

such as Interpolate-Truncate-Project (ITP) [29] can invert this

calculation, providing a way to sample via inverse transform

sampling To illustrate IVoRS, we show that the UUnifast

algorithm is a specific case of the IVoRS method.

To provide uniform sampling from an n-dimensional valid

region demarcated by upper and lower constraints, we in-

troduce the ConvolutionalFixedSum algorithm, which utilizes

the IVoRS method in conjunction with a convolution-based

volume calculation and ITP. Two implementations of Convo-

lutionalFixedSum are provided: an analytical method, which

scales at O(2n), and a numerical approximation, which pro-

vides uniformity to a user-specified level of precision, and

scales at O(n3 log(n)).

https://orcid.org/0000-0002-4077-0005
https://orcid.org/0000-0002-5772-0928

Alternative approaches that were briefly considered in-

clude Gibbs sampling [13], which is an application of the

Metropolis-Hastings algorithm [17]. Gibbs sampling is effec-

tive if the conditional probability distribution is fast to sample

from. However, for the problem considered, this distribution

takes exponential time to calculate, and the valid region is

a complex shape; an n-dimensional hull of up to 2n points.

Further, Gibbs sampling uses a ’warm-up’ period to converge

to the target distribution. These properties render Gibbs sam-

pling inefficient in this case. In addition, the output from

these methods is auto-correlated and therefore not necessarily

appropriate in this context.

To verify that the outputs from the ConvolutionalFixedSum

algorithm form a uniform distribution, we developed a highly

sensitive uniformity test, called the slices test. The slices test

divides the valid region into a number of slices of equal

volume, and compares the number of points generated in each

of these slices to the expected number via a χ2 test [34]. As the

slices span the full volume of the valid region, the slices test

is sensitive to non-uniformity wherever it occurs. The slices

test was used to evaluate both analytical and numerical Con-

volutionalFixedSum algorithms, with both passing a stringent

array of tests. These tests were also applied to the UUnifast,

RandFixedSum, and DRS algorithms. The outputs of UUnifast

and RandFixedSum were verified as uniform; however, the

outputs of DRS were shown to be non-uniform in some cases.

Runtime performance assessment of the numerical Convo-

lutionalFixedSum algorithm shows that it improves upon the

performance of the DRS algorithm by several orders of magni-

tude. Further, with optimizations to select when convolution-

based volume calculation is appropriate, ConvolutionalFixed-

Sum can employ a UUnifast-like mode to provide comparable

performance to UUnifast in cases with no constraints.

ConvolutionalFixedSum supersedes the DRS algorithm. It

provides an effective solution that supports appropriate taskset

generation, when constraints are applied per task. As shown

in Section V of [14] this can improve understanding of

scheduling policies that were previously evaluated using less

sophisticated methods. ConvolutionalFixedSum has a wide

range of potential uses. It is applicable to problems where

modeling of an unbiased partitioning of a fixed resource is

required, subject to individual constraints. Diverse examples

include packet and message scheduling in telecommunications,

the division of an overall budget or investment into different

categories in economics, and bed allocation between depart-

ments in a hospital setting [21].

A. Organization

The remainder of the paper is organized as follows: Sec-

tion II reviews the literature on the problem of uniformly

generating vectors of random values with a fixed sum, from

the perspective of real-time systems. Section III derives the

IVoRS method for uniform sampling from a valid region

demarcated by upper and lower constraints in n-dimensional

space. Section IV illustrates how the IVoRS method works by

using it to derive the UUnifast algorithm. Section V provides

a method based on convolution and Fast-Fourier Transforms

(FFT) to calculate the volume ratio required, thus instantiating

the ConvolutionalFixedSum algorithm. Section VI evaluates

the uniformity of the outputs from ConvolutionalFixedSum and

the existing state-of-the-art algorithms. The run-time perfor-

mance of ConvolutionalFixedSum is also compared to that of

the DRS algorithm. Section VII concludes with a summary and

directions for future work. The Appendix gives an account of

the implementation issues that cause the outputs from the DRS

algorithm to form a non-uniform distribution in some cases.

II. RELATED WORK

When assessing the performance of schedulability tests [8]

for real-time systems, it is necessary to ensure that the input

data used is free from bias. However, this problem has a

non-trivial constraint: that the total utilization, U , is divided

between n tasks. This results in the distribution of utilization

values to each task being non-uniform. Therefore, it is not

sufficient to simply allocate random numbers from a uniform

distribution, as would be the case when randomly selecting

a point on a square, cube, or hypercube. Indeed, no linear

transformation is capable of generating a uniform distribution,

as demonstrated by the UScale algorithm, the outputs of which

were shown to be non-uniform and a cause of bias [3], [4].

In 2004, Bini and Buttazzo derived the UUnifast algorithm

[3], [4]. This was the first algorithm within the real-time sys-

tems community that solved the uniformity problem. UUnifast

works by recognizing that the probability of selecting any

given value grows polynomially with the number of tasks,

and so uses an inverse-polynomial transformation to achieve

a uniform distribution. This approach was later identified by

Griffin et al. [14] as being equivalent to sampling from the flat

Dirichlet distribution [30] via the marginal Beta distribution

method [12], which also provided a formal mathematical proof

of uniformity for UUnifast.

While UUnifast solved the problem of sampling utilization

values to support traditional schedulability analyses of single

processor systems, advances in scheduling theory for real-

time systems provided new challenges. Scheduling multipro-

cessor systems provided an additional constraint: while the

total utilization U could potentially be as large as U = m
for m processors, no single threaded task could use more

than one processor, hence the utilization of each individual

task was constrained to be no more than 1. Initially, this

problem was addressed by Davis and Burns [9], [10] using a

simple extension to UUnifast called UUnifast-Discard, which

allows for U > 1 and discards outputs when any of the n
components exceeds 1. UUnifast-Discard is effective when

n≫ U ; however, when the number of tasks is low, it becomes

impractical due to the large number of discards required.

The problem of an extra constraint on each task was

addressed by the RandFixedSum algorithm [11] identified

in 2009 by Emberson at al., and originally developed as a

MATLAB routine by Stafford [35] in 2006. RandFixedSum

exploits the symmetry of the problem to sample from the valid

region demarcated by the constraints; however, it has higher

complexity O(n2), in both execution time and memory space

than UUnifast, and lacks a formal proof.

While RandFixedSum only supports a single constraint on

task utilizations, individual constraints restricting the utiliza-

tion values of individual tasks are required to support as-

sessment of schedulability analyses when task utilizations are

multi-valued or can be decomposed into multiple constituent

parts. This occurs with mixed-criticality systems [5], multi-

core systems [23], with typical and worst-case execution

times [31], [1], self-suspensions [6], and resource locking. As

an example, in mixed-criticality systems each task designated

as high-criticality typically has both high-criticality and low-

criticality execution time budgets. These correspond to a high-

criticality utilization and a smaller low-criticality utilization

for the task. When uniformly generating random values for

the tasks’ low-criticality utilizations, these values must not

exceed the corresponding high-criticality utilizations already

chosen. Thus, the latter values effectively form individual per-

task upper constraints. Alternatively, generating low-criticality

utilization values first, results in a set of individual per-task

lower constraints on the high-criticality utilization values.

NaÈıve approaches could be employed to the above problem,

such as the UAdd algorithm [14]. Using UAdd, high-criticality

tasks can be considered as having two uniformly sampled

components, with the first of these components designated as

the low-criticality utilization, and the sum of the two compo-

nents designated as the high-criticality utilization. While this

ensures that the model of mixed-criticality systems is met, the

Central Limit Theorem [2] shows that the sum of two or more

uniformly distributed variables does not itself form a uniform

distribution. Alternatively, the UUnifast-Discard approach [9],

[10] could be used. In this context, UUnifast-Discard would

generate sets of values using UUnifast, discarding any that

break the constraints given to it. This is guaranteed to result

in a uniform distribution of points that meet the constraints;

however, this comes at the expense of discarding a large num-

ber of points, to the point where the algorithm is impractical.

For example, if the constraints are [1, 10−3, 10−3], then only

about 1 in 5000 of all generated points will be accepted.

The Dirichlet Rescale Algorithm (DRS) [14] was designed

to address these issues, thus supporting individual constraints

on task utilization values. The DRS algorithm works by

observing that affine transformations preserve the uniformity

of points sampled across the transformed space. Therefore, it is

possible to sample a point using the flat Dirichlet distribution

and then apply linear transformations (rescaling) until that

point lies within the valid region, provided that those linear

transformations always include the entire valid region. While

the DRS algorithm is computationally expensive, as it always

moves towards a solution this was deemed by the authors to be

an acceptable trade-off. Unfortunately, the DRS algorithm has

multiple issues. The issue of complexity was acknowledged by

the authors. Each rescale operation has O(n2) complexity, and

many rescales may be required. While the DRS algorithm does

not have a formal proof of complexity, it was observed [14]

to have exponential scaling with respect to n.

A more insidious problem is that the DRS algorithm

does not always manage to generate a uniform distribution.

The uniformity test used by Griffin et al. [14] only provides

evidence of uniformity around the center of the region. The

slices test, defined in this paper, is a far more effective test

of uniformity close to the edges of the valid region. Using

the slices test, the outputs of the DRS algorithm are shown,

in Section VI, to be non-uniform. The reasons for this non-

uniformity are discussed in the Appendix.

III. IVORS: SAMPLING FROM A UNIFORM MULTIVARIATE

DISTRIBUTION OF FINITE ARBITRARY SHAPE

In order to sample from a distribution, two things are

required: firstly, a definition of the distribution, and secondly

an algorithm to sample from it. To accomplish the latter,

inverse transform sampling [34] is typically used for univariate

distributions: a random number is generated in the range [0, 1],
and then this value is transformed by the distribution’s Inverse

Cumulative Distribution Function (ICDF) [34].

The logic of inverse transform sampling is as follows: for

a given distribution and x ∈ [0, 1], the ICDF at point x gives

a value y such that the proportion of the distribution below y
is x. Therefore, it is possible to transform a point x from

one distribution A to a point from another distribution B
by transforming x by the Cumulative Distribution Function

(CDF) of A and the ICDF of B. Using the notation FA to

denote the CDF of the random variable A, The resulting point,

y = F−1
B (FA(x)) has the same properties with respect to

distribution B as x has with respect to distribution A. As

the CDF of uniform random numbers in the range [0, 1] is the

identity function, and uniform univariate random values can be

generated by a number of means, inverse transform sampling

can be trivially applied to generate univariate random values

that follow a given distribution, provided that the distribution’s

ICDF is known.

This intuition can also be applied to multivariate distri-

butions, by applying it to the inverse marginal CDF, as can

be seen in the marginal-beta distribution method of sampling

from the Dirichlet distribution [12, p.585], or the UUnifast

algorithm [3], [4], [14]. A marginal distribution is the dis-

tribution of a single variate, regardless of the values taken

by other variates. Traditionally, marginal distributions were

computed for discrete valued data by summing the frequencies

of each value a variate took in the margins of a table, hence

the name [34].

When using inverse transform sampling and the inverse

marginal CDF to sample from a multivariate distribution,

the process can be thought of as splitting the problem into

a sequence of 1-dimensional sampling problems. Given the

random variable to sample X = ⟨X1...Xn⟩, and a function

rand(), which returns a random value in the range [0, 1], the

first variate can be sampled from the inverse marginal CDF as

follows:

x1 = inverse(marginal(X1, FX))(rand()) (1)

For subsequent variates, the CDF becomes conditional on the

variates that have already been sampled, leading to sampling

from an inverse marginal conditional CDF as follows:

xi = inverse(marginal(Xi, FX | Xj=xj ∀j<i)(rand())
(2)

Therefore, to sample from a uniform distribution with a finite

arbitrary shape, it only remains to show how the inverse

marginal conditional CDF can be calculated.

To begin with, we first define the CDF by exploiting the

Probability Density Function (PDF) of the distribution. A PDF

defines the density of the probability distribution at a given

point, and can be used to calculate the relative likelihood of a

point being chosen. The PDF can be defined in relation to the

CDF, since the CDF is the integral of the PDF. However, in

the case of the uniform distribution, there is an extra piece of

information: since every point is equally likely, the PDF is a

constant for any point that is part of the distribution, and zero

otherwise. Denoting the PDF of the distribution of X as fX,

we can define the PDF and CDF of a univariate distribution

as follows:

fX(x) =

{

c if x is a valid value of X

0 otherwise

FX(x) =

∫ x

−∞
fX(u)du

(3)

Where the value of c depends on the distribution X, and in

particular, the finite shape that defines the valid values of X.

This can the be generalized to a multivariate distribution by

integrating over each variate:

fX(x) =

{

c if x is a valid value of X

0 otherwise

FX(x) =

∫ x1

−∞
...

∫ xn

−∞
fX(U)du1...dun

(4)

However, as fX is either c or 0, we can simplify (4) using the

validity function VX, which is 1 if x is a valid value of X, and

zero otherwise. As fX(x) = cVX(x), FX can be rewritten as

follows:

FX(x) = c

∫ x1

−∞
...

∫ xn

−∞
VX(U)du1...dun (5)

As FX is a CDF, the domain of FX is, by definition,

[0, 1]. As the function VX(x) ≥ 0 ∀x, the integrals of each

variate between −∞ and an upper limit are non-negative and

monotonically increasing as that upper limit increases. As VX

is non-zero only on a finite region, it follows that the integral

of VX must have an upper limit. Therefore, c is the inverse

of the maximum value that this integral can take. Substituting

for c in (5), it follows that:

FX(x) =

∫ x1

−∞ ...
∫ xn

−∞ VX(U)du1...dun
∫∞
−∞ ...

∫∞
−∞ VX(U)du1...dun

(6)

Intuitively, the integral over the function VX can be viewed

as a way of calculating the volume of the valid region

below the point specified by the upper limits of the integral.

Therefore, using vol(X) to denote the volume of the space of

valid values of X, the CDF can also be specified as:

FX(x) =
vol(X|Xi ≤ xi)

vol(X)
(7)

Thus FX can be determined solely in relation to the validity

function VX, with no dependence on the PDF.

Next, we define the marginal conditional CDF required

by (2). This is achieved by observing that as variates are

sampled and become fixed, the dimensionality of the valid

region for the unsampled variates decreases. For example, in

a 3-dimensional problem, if one value is fixed, then the plane

on which the remaining variates lie is 2-dimensional. Hence,

the marginal conditional CDF of the i′th variate, FXi
can be

written as follows:

FXi
(xi) =

∫ xi

−∞
∫∞
−∞ ...

∫∞
−∞ VX(U|Uj = uj∀j ≤ i)duidui+1...dun

∫∞
−∞

∫∞
−∞ ...

∫∞
−∞ VX(U|Uj = uj∀j ≤ i)duidui+1...dun

(8)

or as a volume ratio:

FXi
(xi) =

vol(X|Xj = xj∀j ≤ i,Xi ≤ xi)

vol(X|Xj = xj∀j ≤ i)
(9)

Finally, we come to inverting the marginal conditional

CDF for use in inverse transform sampling. Unfortunately,

analytically calculating the inverse of an arbitrary function

is not possible; however, numerically finding the inverse of

a function is a well-studied field. Several fundamental statis-

tical distributions, such as the beta and gamma distributions

have no exact distribution for their inverse, and yet iterative

methods can be used to approximate them [18], [26], [22].

Therefore, for this problem we employ a root finding algorithm

to calculate the inverse of the marginal conditional CDF

at the point specified by inverse transform sampling. Any

root finding method could be used, for example Newton’s

method [19] or Binary Search [20]. We use the ITP algorithm

[29], as it combines the efficiency of Newton’s method with

the guaranteed convergence and complexity bound of Binary

Search.

Putting all of this together gives the Inverse Volume Ratio

Sampling (IVoRS) method, listed in Algorithm 1. The IVoRS

method can sample from a uniform distribution defined over

a given valid region of n-dimensional space, provided only

that it is possible to calculate the ratio of the volume of a

subsection of the region to the volume of the entire region.

As an example, we demonstrate the generation of a uni-

formly selected point within a solid 3-dimensional shape

consisting of ten unit cubes shown in Figure 1. Here, the

valid values for each variate depend on the values for the

other variates, meaning that it is not possible to calculate the

variates independently. However, as the shape is made up of

cubes, it is possible to calculate a hyperplane such that a given

ratio of the volume lies beneath that hyperplane. Applying the

Algorithm 1 IVoRS Algorithm

Input: ρ, the initial valid region, and vr(P, x), a function

that calculates the volume below x of a given region P .

Output: p, a uniformly sampled point from the region

described by ρ and vr.

1: p← []
2: for k ∈ [0, n] do

3: r → a random number in [0, 1]
4: Set λ such that vr(ρ, λ) = r ▷ Use root finding if

necessary

5: ρ→ ρ intersected with the hyperplane xi = λ
6: append λ to p

7: end for

8: return p

Fig. 1: Demonstrating Uniform CDFs from Volume Ratios

IVoRS method, we can calculate the inverse marginal CDF of

the uniform distribution.

We begin by using the inverse marginal CDF to apply

inverse transform sampling to the marginal distribution of the

x axis. In Algorithm 1, Line 3, we generate the random number

0.72, and then on Line 4 calculate that 0.72 of the volume of

the shape lies below the hyperplane x = 1.8. Next, on Line

5, the valid region is intersected with the hyperplane x = 1.8,

reducing the problem to a 2-dimensional problem along the y
and z axes. Considering the y axis, we follow the same steps to

apply inverse transform sampling to the marginal distribution

of y, conditional on x = 1.8. We generate 0.45 as our random

number, and calculate that 0.45 of the area of this shape lies

below y = 0.9. Finally, considering the z axis, we intersect the

shape with x = 1.8, y = 0.9. The resulting line represents the

marginal distribution of z, conditional on x = 1.8, y = 0.9.

We generate our final random number of 0.31, and calculate

that 0.31 of the length of the line lies below z = 0.62. The

uniformly sampled random point is therefore [1.8, 0.9, 0.62].

IV. IVORS IMPLEMENTATION OF UUNIFAST

To illustrate how the IVoRS method works, we now use it to

derive the UUnifast algorithm. A pseudocode implementation

of UUnifast is given below in Algorithm 2.

The UUnifast algorithm selects a uniform random point

such that each component is greater than zero and the com-

ponents sum to a given value U . Geometrically, for a vector

of length n, this can be represented by a simplex in n + 1

Algorithm 2 UUnifast Algorithm

Input: U , the total utilization to allocate, and N , the

number of tasks

Output: p a list of length N containing a uniformly

sampled point that divides U into N components

1: p← []
2: k ← 0
3: while k < (N − 1) do

4: r ← U · random()
1

N−k

5: append U − r to p

6: U ← r
7: end while

8: append U to p

9: return p

dimensional space where the vertices of the simplex are at the

intersection of the axes at the value U . This simplex lies on

the hyperplane Σn
i=0xi = U .

The volume of the valid region can be found by observing

that when U = 1, the valid region is the standard simplex and

therefore for an arbitrary U , the volume is a scaled form of

the volume of the standard simplex, which is given by:

vol(n) =

√
n+ 1

n!
(10)

Scaling the standard simplex in each dimension by the same

factor gives the UUnifast simplex for total utilization U . Such

scaling also gives a formula for calculating the volume of a

standard simplex by it’s ªheightº h i.e., the difference between

two parallel hyperplanes that enclose the simplex.

volh(h, n) = hn

√
n+ 1

n!
(11)

To obtain the volume ratio, it is necessary to find the volume

below a hyperplane of the form xi = c. Cutting off the top of

a simplex in this manner results in a more complex shape;

however, the portion that is cut off is guaranteed to be a

simplex of height U − xi. Therefore, it is simpler to calculate

the volume below a hyperplane by subtracting the volume

above it from the entire volume. The volume ratio used for

the CDF in the IVoRS method can thus be written as:

V RUUniFast(x, U, n) =
volh(U, n)− volh(U − x, n)

volh(U, n)

=
Un − (U − x)n

Un

= 1−
(

U − x

U

)n

(12)

Note, that when calculating the volume ratio, the term
√
n+1
n!

cancels out, since every component is a simplex volume

calculated via its height, eliminating the need to calculate n!
To complete the derivation of the UUnifast algorithm using

the IVoRS method, it remains to calculate the inverse CDF.

In general, the IVoRS method uses root finding algorithms

to accomplish this; however, in this case the function can be

rearranged to achieve an analytical solution, where x is the

returned value of the inverse CDF and y is a uniform random

number in the range [0, 1]:

y = 1−
(

U − x

U

)n

(

U − x

U

)

= (1− y)
1

n

U − x = U(1− y)
1

n

x = U − U(1− y)
1

n

x = U − Uy
1

n

(13)

With the final step holding since y is a uniform random number

in the range [0, 1], and therefore the distribution of y and

(1 − y) are identical, given that the function k : [0, 1] →
[0, 1], k(y) = 1− y is a continuous bijective function.

To show this is the same as the iterative step of UUnifast,

we note that x is the variate appended to p in Algorithm 2.

Hence, x = U − r, and rewriting y as the result from the

function random() in Algorithm 2, we can show equivalence

as follows:

x = U − U(y
1

n) = U − r

r = U(random()
1

n)
(14)

Letting n = N − k, corresponding to the k’th iteration of

UUnifast, this matches the assignment to r in Algorithm 2.

Hence, UUnifast performs an equivalent calculation to the

IVoRS method using this volume calculation.

V. CONVOLUTIONALFIXEDSUM

In this section, we show how to calculate the volume of

the valid region of a simplex demarcated by upper and lower

constraints. We assume that the problem has been converted

into a canonical form, where the lower constraints are all

zero, the total utilization is 1, and the upper constraints

have been scaled accordingly. Later, we show how the same

transformations used by the DRS algorithm [14] can be applied

to convert any valid problem to and from this form.

To calculate the required volume, we borrow, and deci-

pher, due to somewhat non-standard notation, a trick from

Wolpert and Wolf [37], as follows. The integral of a function

H(x) =
∏n

i=1 hi(xi), where xi are the components of x, over

the scaled standard simplex can be written in the form:

∫ 1

0

· · ·
∫ 1−

∑n−2

i=1
xi

0

∫ 1−
∑n−1

i=1
xi

0

H(x)dxn−1dxn−2 · · · dx1

(15)

Note that, as expected, this describes the volume of an n− 1
dimensional simplex as the variable xn is not integrated over,

and xn = 1 −∑n−1
i=1 xi. By defining a shorthand term σk =

1 −∑k−1
i=1 xi, and expanding H(x) to the hi(xi) functions,

we arrive at the following:

∫ 1

0

· · ·
∫ σn−2

0

∫ σn−1

0

n
∏

i=1

hi(xi)dxn−1dxn−2 · · · dx1 (16)

Noting that, by definition, xn = σn = σn−1 − xn−1, and that

the variables x1...xn−2 are constant multiplicands with respect

to an integral over xn−1 and therefore can be extracted from

the integration, we can rewrite (16) as follows:

∫ 1

0

· · ·
∫ σn−2

0

n−2
∏

i=1

hi(xi)

∫ σn−1

0

hn−1(xn−1)hn(σn−1 − xn−1)dxn−1

dxn−2 · · · dx1 (17)

Convolution, denoted by ⊗, is a commutative operator applied

to two functions as follows:

(f ⊗ g)(v) =

∫ t

0

f(v)g(t− v)dv

=

∫ t

0

g(v)f(t− v)dv = (g ⊗ f)(t) (18)

Recognizing that the middle line of (17) is the convolution of

hn−1 and hn over σn−1, we can perform a substitution and

further unraveling of the integral product to arrive at:

∫ 1

0

· · ·
∫ σn−3

0

n−3
∏

i=1

hi(xi)

∫ σn−2

0

hn−2(xn−2) · (hn−1 ⊗ hn)(σn−2 − xn−2)dxn−2

dxn−3 · · · dx1 (19)

Finally, we recognize that this rule can be applied inductively,

as the middle line of (19) is the convolution of hn−2 and

(hn−1⊗hn) over σn−2. Noting that convolution is commuta-

tive, and denoting multiple convolutions by
⊗

, we can rewrite

the integral of the function H(x) over the scaled standard

simplex as:
(

n
⊗

i=1

hi

)

(1) (20)

where the value 1, comes from the outermost integral of (19),

determining the value to convolve over. Therefore, to calculate

the volume of the valid region, we need to supply a function

of the correct form, which takes the value 1 within the valid

region, and 0 everywhere else. We define the function Vuc(x)
as follows, where uc is the vector of upper constraints:

Vuc(x) =
∏

vuci(xi) (21)

vuci(x) =

{

1 0 ≤ x ≤ uci

0 otherwise
(22)

By construction, Vuc(x) = 1 if and only if x is between

the lower constraints (assumed to be zero) and the upper

constraints, and therefore lies within the valid region. Note

that Vuc(x) is integrable everywhere on R. By construction,

Vuc(x) is of the correct form to be used in the above volume

calculation, and can therefore be used to calculate volumes

via convolution. Substituting into (20) yields the following

function for the volume of a valid region, vvr:

vvr(uc) =

(

n
⊗

i=1

vuci

)

(1) (23)

In order to calculate volume ratios for the IVoRS method, it

suffices to use the same process, but modifying the constraints

on the first variate to obtain the volume for a subsection of

the valid region. For this, we define a modification function

m which constructs the appropriate modified constraint vector

as follows:

m(uc, w) = ⟨min(uc1, w), uc2, ...ucn⟩ (24)

The modified constraint vector enables the volume of the valid

region below w to be calculated. A volume ratio function,

vr′cfs, appropriate for use in the IVoRS method, can then be

defined as:

vr′cfs(uc, w) =
vvr(m(uc, w))

vvr(uc)
(25)

Finally, we relax the simplifying assumption that the lower

constraints are all 0 and the total utilization is 1. To do this,

we use the method employed by the DRS algorithm [14]. The

lower constraints are subtracted from the corresponding upper

constraints and the total utilization, and the upper constraints

are scaled so that the total utilization is 1. (The inverse of

this transformation is subsequently applied to the generated

point to obtain the output from ConvolutionalFixedSum). The

vr′cfs function can be extended into the vrcfs function, which

encompasses the additional parameters required by the initial

transformation as follows:

vrcfs(U, lc,uc, w) = vr′cfs

(⟨uci − lci ∈ [1, n] ∀i⟩
U −∑n

i=1 lci
, w

)

(26)

where n is the number of tasks, and equates to the length

of the vectors lc and uc. Finally, we observe that the first

three parameters U, lc, and uc describe the shape of the

valid region, and can therefore be expressed as a single

parameter P . Utilizing the form vrcfs(P,w), the function can

be employed in the IVoRS method, see Algorithm 1, forming

the ConvolutionalFixedSum algorithm, with ITP [29] used to

find the required volume ratio. To compute the convolution in

(23), two methods are possible: Analytical and Numerical.

A. Analytical Method

Wolpert and Wolf [37] use their technique in conjunction

with the Laplace Transform [32], since in the Laplace domain

convolution behaves as function multiplication, making the

operation trivial. However, while it is possible to recover

functions from the Laplace domain, the function may become

more complicated. In the case of the ConvolutionalFixedSum

algorithm, again making the simplifying assumption that lc =
0 and U = 1, the functions vuci can be implemented with a

step function, which is a well-studied function with regards

to the Laplace transform [32]. However, once the functions

are multiplied within the Laplace domain, factored and then

recovered by a package such as SymPy [27], the convolution

of n step functions comprises 2n step functions1. This is

expected, since each upper constraint can interact with every

other upper constraint, giving a total of 2n combinations of

upper constraints to take into account.

Algorithm 3 Analytical Convolution

Input: uc, a vector of length n containing the upper

constraints.

Output: c, the value of the convolution at 1, giving the

volume of the valid region described by uc.

1: c← 0
2: A← {1...n} ▷ Set of values from 1 to n
3: for a ⊂ A do

4: if
∑

i∈a uci ≤ U then

5: c′ = (1−∑i∈a uci)
(n−1)

6: c← c+−1|a|c′
7: end if

8: end for

9: return c

A generic version of the analytical convolution algorithm is

given in Algorithm 3. As can be seen on Line 3, every subset

of the constraints must be checked individually. Including the

empty set, there are 2n subsets of A (the set of values from

1 to n). Line 4 checks to see if a given set of constraints is

applicable, i.e. the constraints intersect with the valid region.

If so, Line 5 calculates the volume of this intersection and

Line 6 updates the current volume. Note that if the number

of constraints that make up a region is odd, its volume

is subtracted from the valid region, otherwise it is added.

This can be explained by analogy to the volume calculation,

considering what each region represents:

1) For 0 constraints, the volume is the entire upper con-

straint simplex, and should therefore be added.

2) For 1 constraint, the volume is a corner of the upper con-

straints simplex that is greater than an upper constraint,

and should therefore be subtracted.

3) For 2 constraints, the volume is the intersection of two of

the previous constraints, and should therefore be added

to correct for the double counting that occurred in the

previous step for 1 constraint.

and so on.

As the complexity of Algorithm 3 is O(2n), it is unfortu-

nately intractable for large n, especially as the use of the ITP

algorithm for calculating the inverse CDF results in multiple

calls to the volume calculation. This leads us to the numerical

approximation for convolution.

B. Numerical Approximation

Convolution is frequently used in signal processing [33],

and so numerical methods for convolution are well studied.

1If the lower constraints are not normalized to zero, this becomes 22
n

step
functions, since for each set of upper constraints, each set of lower constraints
must be checked.

It is possible to approximate the convolution of functions by

transforming the functions into signals. These signals can then

be sampled, numerically convolved, and then an approximation

of the convolution returned. To accomplish this, the first step

is to define the functions vsuc(x), which encode the functions

vuc(x) as signals with s samples.

vsuc(x) =

{

1 0 ≤ x ≤ ⌈min(uc, 1) · s+ 1
2⌉

0 otherwise
(27)

We can then construct signals by sampling the functions vsuc
over the range [0, s]. As expected, the number of samples s
controls the accuracy of the numerical approximation. While

this calculation uses a canonical form where U = 1, the actual

value of U is however important in terms of precision. For

example, s = 1000 and U = 1 yields 3 decimal places of

precision, whereas s = 1000 and U = 10 only yields 2

decimal places of precision. As experiments assessing the

performance of scheduling algorithms may require a fixed

degree of accuracy, the sample length s can be specified

in terms of a required granularity ϵ and U . This results in

setting s = ⌈Uϵ⌉. With this formulation, the total utilization

U affects the runtime of the numerical approximation, since

larger values of U lead to commensurately larger sample sizes.

To avoid excluding any part of the valid region, the signals

used represent a volume slightly larger than that of the

valid region. This can result in the ConvolutionalFixedSum

algorithm initially generating a point that lies outside of the

valid region. If this happens, then the point is discarded, and

the algorithm retries, generating a new point. In practice,

retries are a rare event that occurs with a probability that is

inversely proportional to the signal size. For example, in our

experiments, the retry rate was approximately 0.1%, with a

negligible effect on performance.

Once the sampled signals are obtained, than they can be

convolved. As with the analytical method, a transformation

exists that reduces convolution to pairwise multiplication: the

Fourier Transform [32]. The Fast Fourier Transform (FFT)

[7] is the most efficient method for this, with complexity of

O(s log(s)), with optimizations available for real valued data.

Once all of the signals are transformed by FFT, then they can

be multiplied, the inverse FFT applied, and the result of the

convolution extracted at the end of the sampled interval. An

outline of this approach is given in Algorithm 4.

The complexity of the numerical method of volume calcu-

lation is O(n2 s log(sn)), which makes it far more appropriate

than the analytical method for use with large n. When used

with the IVoRS method, this results in a total complexity

of O(n3 s log(sn)) for the numerical ConvolutionalFixedSum

algorithm2.

There are some practical concerns when implementing

the numerical method of convolution that relate to floating

point precision. Firstly, it is important to sort the constraints

2An optimization to O(n2 log(n) slog(sn) log(s)) is theoretically possi-
ble, but has not yet been implemented.

Algorithm 4 Numerical Convolution

Input: uc, a vector of length n containing the upper

constraints, s, the number of samples to use

Output: c, the value of the convolution, giving the volume

of the valid region described by uc.

1: conv ← fft([vsuc1(x) x ∈ [0, s]])
2: for y ∈ [2...n] do

3: conv ← conv ⊙ fft([vsucy (x) x ∈ [0, s]])
4: end for

5: c← ifft(conv)[s]
6: return c

from largest to smallest, as precision is expressed relative to

the largest constraint under consideration. By processing the

largest constraints first, for which smaller constraints have

less impact, error from the numerical approximation can be

minimized. Similarly, normalizing the convolved signal after

each convolution reduces the effect of large values causing

error. Finally, as FFT libraries implement circular convolution

[25], it is necessary to pad the signal for each convolution.

To improve performance, best practice techniques were

employed, taken from state of the art implementations of

convolution [16], as well as the academic literature [24]. This

included ensuring that all arrays were trimmed of leading and

trailing zeros, and no unnecessary convolutions were carried

out. We also implemented a caching strategy, exploiting the

fact that when searching for a root to calculate the inverse

CDF only one constraint is changed. Hence, caching the

convolution of the remaining constraints reduces the number of

convolutions required significantly. Without this optimization,

the algorithm would have had a complexity of O(n4log(n))
rather than O(n3log(n)).

C. Example of applying ConvolutionalFixedSum

Figure 2 shows an illustrative example of how the Convolu-

tionalFixedSum algorithm solves a 3-dimensional problem. In

this example, we assume a total utilization of 1.0, represented

by the green simplex. There are three upper constraints,

x < 0.5, y < 0.7, z < 0.8, and implicit lower constraints of

x, y, z > 0, represented by the red simplex. The valid region

is the intersection of the two simplicies. The algorithm begins

by solving for the largest constraint in the z axis. To perform

inverse transform sampling, a random number is generated in

the range [0, 1]; in this case 0.59. ITP is then used with either

the analytical or numerical volume ratio calculation to find the

value of z such that 0.59 of the volume of the valid region lies

below z. To a precision of three decimal places, ITP makes

an initial guess of 0.250, before refining this value to 0.324,

then 0.289, before finally reaching an answer of 0.290. Hence,

z = 0.290 is selected. The x and y coordinates are simpler to

solve for, as the line defined by z = 0.290 only need be split at

a randomly selected point. Solving for y, the value of y must

lie between 0.210 and 0.7. (The lower bound occurs because

allocating y < 0.210 would cause x = 1.0 − z − y > 0.5,

breaking the constraint on x). Once again, a random number is

Fig. 2: Application of ConvolutionalFixedSum to the con-

straints [x < 0.4, y < 0.7, z < 0.8]

generated for inverse-transform sampling, this time 0.12. The

line segment is therefore split such that 0.12 of the length of

the line is before the point, thus obtaining y = 0.269. Finally,

solving x+y+z = 1 gives x = 0.441. The uniformly sampled

random point is therefore [0.441, 0.269, 0.290].

VI. EVALUATION

This section evaluates the uniformity of the outputs of the

ConvolutionalFixedSum, DRS, RandFixedSum and UUnifast

algorithms. To reduce the number of variables, our evaluation

only considers problems in their canonical form, i.e. U = 1
and lc = 0, since all problems can be transformed to

this form. The validity of the numerical approximation used

in ConvolutionalFixedSum is also investigated. Finally, the

runtime performance of the numerical ConvolutionalFixedSum

algorithm is determined, considering different sample sizes.

A. Uniformity Testing: the Slices Test

To verify that the outputs from a given algorithm form a uni-

form distribution, we developed a highly sensitive uniformity

test, called the slices test, which utilizes volume calculations.

In each of the n dimensions, the slices test divides the valid

region into k slices of equal volume with the slice boundaries

defined by hyperplanes parallel to the axes. N points are then

generated by the algorithm, and allocated to the appropriate

containing slice. Since each slice has the same volume, the

expected number of points in each slice is N/k, subject to

statistical variation. A Chi-squared (χ2) test [34] is then used

to determine how likely the observed distribution is to occur,

assuming the null hypothesis of a uniform distribution. The

slices test has the advantage that it explores the whole of the

valid region in each dimension and is sensitive to any non-

uniformity at the edges, as well as to any gradient effects.

Figures 3 and 4 illustrate the slices test showing a uniform

distribution for UUnifast and ConvolutionalFixedSum respec-

tively. Note, the normalized density is given by the number

of points contained in each slice divided by the expected

number N/k. In each figure the density is close to 1, subject to

Fig. 3: Slices uniformity test in 3 dimensions for UUnifast.

Range of Normalized Point Density Values [0.929, 1.06].

Fig. 4: Slices uniformity test in 3 dimensions for Convolu-

tionalFixedSum. Range of Normalized Point Density Values

[0.970, 1.04].

statistical variation. The distribution of points to slices shown

in these figures pass the χ2 test, indicating uniformity.

To calculate the volume of the slices, the inverse CDF

from ConvolutionalFixedSum was used. This allowed each

slice to be expressed as being bounded by ICDF (k
10) and

ICDF (k+1
10) for k ∈ [0, 10). To calculate the slices, the

analytical method was used. To verify that these slices were

correct, the slices test was conducted on the provably uniform

UUnifast algorithm; if the slices were incorrect, then the slices

test would fail UUnifast, creating a contradiction.

We used the slices test to evaluate the uniformity of the

outputs from the ConvolutionalFixedSum, DRS, RandFixed-

Sum and UUnifast algorithms. In each case N = 10,000
points were generated across k = 10 slices in each of n
dimensions. Further, the number of dimensions (tasks) was

varied in the range [3, 15], with the total utilization set to

U = 1. In addition, the following parameters were used:

• UUnifast: No other parameters

• RandFixedSum: Single upper constraint drawn from a

uniform distribution between [1.01
n

, 1]. The lower bound

0 5 10 15 20 25 300.00

0.02

0.04

0.06

0.08

0.10 Observed Distribution
2 (9 DoF)

Fig. 5: Distribution of χ2 values for

117,000 UUnifast experiments

0 5 10 15 20 25 300.00

0.02

0.04

0.06

0.08

0.10 Observed Distribution
2 (9 DoF)

Fig. 6: Distribution of χ2 values

for 117,000 analytical Convolutional-

FixedSum experiments

0 5 10 15 20 25 300.00

0.02

0.04

0.06

0.08

0.10 Observed Distribution
2 (9 DoF)

Fig. 7: Distribution of χ2 values

for 117,000 numerical Convolutional-

FixedSum experiments

0 5 10 15 20 25 300.00

0.02

0.04

0.06

0.08

0.10 Observed Distribution
2 (9 DoF)

Fig. 8: Distribution of χ2 values for

117,000 RandFixedSum experiments

0 25 50 75 100 125 1500.00

0.02

0.04

0.06

0.08

0.10 Observed Distribution
2 (9 DoF)

Fig. 9: Distribution of χ2 values distri-

bution for 117,000 DRS experiments

10 20 30 40 50
Number of Tasks

10 3

10 2

10 1

100

101

102

se
co

nd
s/

ta
sk

se
t

CFS, analytical
CFS, samples=1000
CFS, samples=3000
CFS, samples=10000
DRS

Fig. 10: Performance of Convolution-

alFixedSum and DRS algorithms

of this distribution is chosen to ensure sufficient volume

in the valid region for the slices test to be effective.

• DRS and ConvolutionalFixedSum: Upper constraints gen-

erated by UUnifast with a fixed sum of 1.5.

• Numerical ConvolutionalFixedSum: Signal size s =
10,000

Each test was repeated 1000 times, thus 117,000 χ2 tests

were run on each algorithm. To run these tests 117,000,000
points were generated by each algorithm (10, 000 for each of

the 1,000 experiments for each n ∈ [3, 15]).

To evaluate the 117,000 χ2 tests, the distribution of the ob-

served χ2 test statistic was plotted against the χ2 distribution

with 9 Degrees of Freedom (9-DoF). These distributions were

then compared using the Kolmogorov-Smirnov (KS) test [34]

to determine if the observed cumulative distribution differed

from the χ2 distribution with a significance of 0.05.

Figure 5 shows the distribution of the observed χ2 statistic

vs. the χ2 (9-DoF) distribution for UUnifast. The results from

UUnifast produce values matching the χ2 (9-DoF) distribution

and pass the KS-test with a p-value of 0.45. Figure 6 similarly

shows that the results from the analytical ConvolutionalFixed-

Sum algorithm also pass the KS-test with a p-value of 0.70.

The χ2 results for the numerical ConvolutionalFixedSum

algorithm, shown in Figure 7 show a similar result, and again

passes the KS-test with a p-value of 0.66. However, note that

the numerical ConvolutionalFixedSum algorithm is an approxi-

mation. For this experiment, a signal size of 10,000 was used;

however, with a signal size of 1,000, the approximation is

insufficient and fails the KS-test with a p-value of ≈ 10−83.

(See Section VI-D for a discussion of best practice in using

the numerical ConvolutionalFixedSum algorithm).

Figure 8 shows the distribution of the observed χ2 statistic

vs. the χ2 (9-DoF) distribution for RandFixedSum, again

showing the expected distribution and passing the KS-test with

a p-value of 0.23.

Fig. 11: Slices test illustrating non-uniformity of DRS. Range

of Normalized Point Density Values [0.878, 1.21].

Finally, Figure 9 illustrates that the outputs from the DRS

algorithm lack uniformity. In this case, the observed χ2

distribution fails the KS-test (p-value 0). Examining the data

in detail reveals that as the number of constraints increases,

so the non-uniformity also increases. This is expected as the

number of constraints increases, so the probability of smaller

constraints increases since the constraints sum to 1.5. The

presence of very small constraints appears to cause issues

for the DRS algorithm. This is forced in Figure 11, which

shows a 3-dimensional view of a 4-dimensional problem with

constraints [1.0, 1.0, 0.25, 10−4]. As the dimension not shown

has a constraint with a tiny magnitude, it should not impact

uniformity with respect to the remaining dimensions; however,

Figure 11 shows a clear gradient, and a significantly greater

variation in normalized point density than observed in Figures

3 and 4. The distribution of points to slices shown in this

figure fails the χ2 test, indicating non-uniformity.

B. Validity Testing

The analytical ConvolutionalFixedSum algorithm was stress

tested by conducting checks as part of the slices test to

ensure that the slices returned were of equal volume. As each

slice is constructed by the difference between two sets of

constraints, this validity test is able to determine if analytical

ConvolutionalFixedSum is behaving as expected. For some sets

of constraints, the validity test did not pass due to floating point

precision issues, which are largely unavoidable. Algorithm 3

(Lines 5 and 6) sums values across a potentially very wide

range. Our implementation uses Kahan-BabuÈshka-Neumaier

summation [28] to mitigate error, which is detectable by

monitoring the compensation term in the Kahan-BabuÈshka-

Neumaier sum. This is performed automatically within the

ConvolutionalFixedSum algorithm. Using this method, approx-

imately 0.3% of the generated sets of points have observable

floating point error. However, such non-uniformity is confined

to the dimensions with the smallest upper constraints, which

were observed to have an upper constraint < 3.3×10−5, with

dimensions that have larger constraints unaffected. Hence, the

absolute deviation from uniformity across the whole of the

valid region is negligible.

To stress test the validity of the numerical Convolutional-

FixedSum algorithm, we conducted tests by comparing the nu-

merical volume calculation to the analytical convolution with

a single constraint set, which is equivalent to the derivation

of UUnifast in Section IV. This method is used for testing

the maximum value of n as the numerical convolution based

slices test may be subject to similar degradation with large

n, invalidating the test. From these tests, we observed that

the volume calculation used in the numerical Convolution-

alFixedSum algorithm with 10,000 samples provides a good

approximation of the UUnifast volume ratio calculation until

n = 50. Given that the worst case for numerical convolution

is maximizing the signal, this provides confidence that the

numerical ConvolutionalFixedSum algorithm provides good

accuracy up to at least n = 50. Beyond n = 50, numerical

ConvolutionalFixedSum begins to degrade due to floating point

accuracy limitations.

C. Performance Testing

Figure 10 shows the runtime performance of the Convolu-

tionalFixedSum and DRS algorithms when run on a Raspberry

Pi 4. The Pi 4 was chosen as a readily available computer

for replicability of results, while providing sufficient computa-

tional power. Observe that increasing the sample size s, while

necessary for accuracy, is relatively expensive leading to a

polynomial increase in runtime, O(s log(s)). The numerical

ConvolutionalFixedSum algorithm, however, still significantly

outperforms the DRS algorithm, and is approximately two

orders of magnitude faster with the default sample size of

s = 10,000. The runtime of the analytical ConvolutionalFixed-

Sum algorithm grows exponentially, with a slight deviation

around n = 17, likely due to the memory architecture of

the Raspberry Pi 4, indicating that it is ill-suited to problems

where n is substantially greater than 20.

The UUnifast and RandFixedSum algorithms have complex-

ities of O(n) and O(n2) respectively, both are substantially

faster than ConvolutionalFixedSum and should be used if the

flexibility to cater for individual constraints is not required.

D. Best Practice when using ConvolutionalFixedSum

The ConvolutionalFixedSum algorithm can exhibit limited

non-uniformity arising from accuracy issues, due to the inher-

ent approximation of numerical convolution, e.g., too small

a sample size, and due to how floating point precision af-

fects the implementation of both analytical and numerical

convolution. This section discusses best practice in mitigating

these issues. In the implementation of analytical convolution,

a check has been implemented that detects if floating point

error may be of concern. This check can sometimes give false

positives, indicating potential floating point errors when they

are none, but not false negatives, which would indicate that

accuracy is fine, when it is not. Floating point error typically

occurs when the canonical form of an upper constraint is

very small. This was encountered in our experiments when

a single constraint was < 3.3 × 10−5. It can also occur

when there are multiple somewhat larger constraints. Any

dimension affected by floating point error will have values

that may not be completely uniform, but other dimensions

will not be affected. This issue can therefore be mitigated

by removing dimensions with a very small range of potential

values from the problem description, and instead treating those

values as fixed. Alternatively, users may choose to accept the

non-uniformity in very small dimensions, given that the impact

on overall uniformity across the whole of the valid region is

negligible.

For numerical ConvolutionalFixedSum, a signal size that is

too small to represent the constraints accurately can compro-

mise uniformity. This can be completely avoided by ensuring

that the signal size is at least ⌈ 10x
U

min(U,max(uci−lci)
min(ucj−lcj)

⌉ | i, j ∈
[1, n], where x is the number of decimal places of precision

required. For example, with U = 1, a minimum range

min(ucj − lcj) = 0.01, and x = 2 decimal places of

accuracy, equates to a minimum recommended signal size

of s = 10,000. Alternatively, the slices test can be used

to check for accuracy. In the event that it is not possible

to use analytical convolution to calculate the volume of the

slices, e.g., for large n, numerical convolution can be used,

with a sample size that is 10 times larger than that used by

the numerical ConvolutionalFixedSum algorithm, albeit with a

higher probability of false negatives occurring.

VII. CONCLUSIONS

Work on this paper originally started with an assessment of

the DRS algorithm that revealed an issue with the uniformity

of its outputs. On further investigation, this non-uniformity

appeared to be due to insurmountable implementation issues.

Having identified the need for an alternative algorithm, we

designed the IVoRS method. This method employs standard

techniques for drawing from a multivariate distribution with

volume calculation and root finding algorithms to allow sam-

pling from any region whose volume can be calculated.

Having established the IVoRS method, we showed how the

UUnifast algorithm can be derived via the IVoRS method,

providing an alternative proof of correctness for UUnifast. We

then derived a method for calculating the volume of the valid

region and sections of it using convolution, thus instantiating

the ConvolutionalFixedSum algorithm. As the analytical form

of ConvolutionalFixedSum has a complexity of O(2n), we also

developed a numerical approximation that uses Fast Fourier

Transforms to achieve a complexity of O(n3 log(n)).

To demonstrate the correctness of ConvolutionalFixedSum,

we developed the highly sensitive slices test for uniformity

that provides an effective test over the entire valid region. To

verify that this test was correct, we applied it to the UUnifast

algorithm, which is proven to produce outputs that follow a

uniform distribution. We used the slices test to verify that

the outputs from the RandFixedSum algorithm also follow a

uniform distribution, while those from the DRS algorithm do

not. Both the analytical and numerical ConvolutionalFixed-

Sum algorithms were shown to provide outputs that follow

a uniform distribution. The accuracy of both methods under

extreme conditions was also investigated, and best practices

for avoiding floating point error in the analytical method

and approximation error in the numerical method devised.

Performance testing showed that the analytical Convolutional-

FixedSum algorithm is tractable for small values of n ≤ 20.

For larger values of n, the numerical ConvolutionalFixedSum

algorithm provides substantially better scaling, and is therefore

the practical choice.

In summary, ConvolutionalFixedSum presents a precise, but

O(2n) analytical method and a more tractable O(n3 log(n))
numerical approximation, with the required statistical tests

provided to show that neither method suffers from the sub-

stantial non-uniformity issues of DRS. We recommend that

the use of the DRS algorithm is deprecated, and replaced

by ConvolutionalFixedSum, which provides both superior per-

formance and uniformity. All source code for the analytical

and numerical ConvolutionalFixedSum algorithms, and the

evaluation methods is available online [15].

As further work, we intend to produce a version of Convolu-

tionalFixedSum that takes advantage of GPUs for performing

convolution, and examine extensions to support task sets of

size greater than 50. We also intend to produce a version of

the algorithm that directly supports a discrete version of the

problem. This requires that a vector of n values is generated

that sum to within some small error ϵ of a fixed value, and

that the values produced are from a discrete lattice.

Finally, while this paper was under review, we were con-

tacted by the authors of [36]. They had independently shown,

both analytically and empirically, that the DRS algorithm

can produce outputs that are not uniformly distributed. They

proposed a revision of the algorithm called DRSC that resolves

this issue. However, the current version of DRSC achieves this

at substantial computational cost, with complexity that lies

between that of the DRS and UUniFast-Discard algorithms,

reducing its viability for large n and for small normalized

constraints. The DRSC algorithm [36] also adds support for

multivariate constraints, such as x1 + x2 < 1.

APPENDIX: UNIFORMITY ISSUES WITH DRS

When investigating the observed lack of uniformity in the

DRS algorithm, we focused on the use of floating point as

this was noted as a potential weakness [14] in the DRS

implementation. The issues we found included:

• Floating Point Error: The mitigation used in the DRS

algorithm checks if the sum of the generated values is

within a parameter ϵ of the total required. However, this

assumes that all floating point errors are in the same

direction, which is not necessarily the case.

• Finite Entropy: The double precision floating points used

by the DRS algorithm encode 53 bits of entropy, since

they are within the range [0, 1]. This places a hard limit

on the number of rescales that can be performed before

the randomness of the initial point is exhausted.

From our experiments, we concluded that the issues with the

DRS algorithm can potentially be mitigated by: (i) ensuring

that the ϵ parameter is substantially smaller than the small-

est constraint, and (ii) limiting the maximum magnitude of

rescales applied to counter concerns about floating point error

and finite entropy. Both mitigations increase the probability

of retrying. As DRS already appears to scale exponentially, as

shown in Figure 10, increasing the probability of retrying will

increase the runtime further. An alternative mitigation using

arbitrary precision floating points was considered, which does

not increase the probability of retrying, but this was deemed

not to be computationally tractable. Therefore, while the DRS

algorithm can theoretically be fixed, the fixes are not practical

and hence we cannot recommend its use.

ACKNOWLEDGMENTS

This research was funded in part by the MARCH Project

(EP/V006029/1), Innovate UK SCHEME project (10065634)

and the CHEDDAR Communications hub (EP/Y037421/1,

EP/Y036514/1, EP/X040518/1). EPSRC Research Data Man-

agement: No new primary data was created during this study.

REFERENCES

[1] Sanjoy K. Baruah. Rapid routing with guaranteed delay bounds. In 2018

IEEE Real-Time Systems Symposium, RTSS 2018, Nashville, TN, USA,

December 11-14, 2018, pages 13±22. IEEE Computer Society, 2018.
doi:10.1109/RTSS.2018.00012.

[2] Patrick Billingsley. Convergence of Probability Measures, volume 23.
Wiley Series in Probability and Statistics, 1999. doi:10.1002/

9780470316962.

https://doi.org/10.1109/RTSS.2018.00012
https://doi.org/10.1002/9780470316962
https://doi.org/10.1002/9780470316962

[3] Enrico Bini and Giorgio C. Buttazzo. Biasing effects in schedula-
bility measures. In 16th Euromicro Conference on Real-Time Sys-

tems (ECRTS 2004), 30 June - 2 July 1004, Catania, Italy, Proceed-

ings, pages 196±203. IEEE Computer Society, 2004. URL: https://
doi.ieeecomputersociety.org/10.1109/ECRTS.2004.7, doi:10.1109/

ECRTS.2004.7.

[4] Enrico Bini and Giorgio C. Buttazzo. Measuring the perfor-
mance of schedulability tests. Real Time Syst., 30(1-2):129±154,
2005. URL: https://doi.org/10.1007/s11241-005-0507-9, doi:10.

1007/S11241-005-0507-9.

[5] Alan Burns and Robert I. Davis. A survey of research into mixed
criticality systems. ACM Comput. Surv., 50(6):82:1±82:37, 2018. doi:
10.1145/3131347.

[6] Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang,
BjÈorn B. Brandenburg, Konstantinos Bletsas, Cong Liu, Pascal Richard,
FrÂedÂeric Ridouard, Neil C. Audsley, Raj Rajkumar, Dionisio de Niz,
and Georg von der BrÈuggen. Many suspensions, many problems: a
review of self-suspending tasks in real-time systems. Real Time Syst.,
55(1):144±207, 2019. URL: https://doi.org/10.1007/s11241-018-9316-9,
doi:10.1007/S11241-018-9316-9.

[7] James W. Cooley and John W. Tukey. An algorithm for the machine
calculation of complex fourier series. Mathematics of Computation,
19(90):297±301, 1965. URL: http://www.jstor.org/stable/2003354.

[8] Robert I. Davis. On the evaluation of schedulability tests for real-
time scheduling algorithms. In Proceedings International Workshop on

Analysis Tools and Methodologies for Embedded and Real-time Systems

(WATERS), July 2016. URL: https://waters2016.inria.fr/files/2017/02/
WATERS16-proceedings-final.pdf#page=4.

[9] Robert I. Davis and Alan Burns. Priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems. In
Theodore P. Baker, editor, Proceedings of the 30th IEEE Real-Time

Systems Symposium, RTSS 2009, Washington, DC, USA, 1-4 December

2009, pages 398±409. IEEE Computer Society, 2009. doi:10.1109/
RTSS.2009.31.

[10] Robert I. Davis and Alan Burns. Improved priority assignment for
global fixed priority pre-emptive scheduling in multiprocessor real-time
systems. Real Time Syst., 47(1):1±40, 2011. URL: https://doi.org/10.
1007/s11241-010-9106-5, doi:10.1007/S11241-010-9106-5.

[11] Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for
the synthesis of multiprocessor tasksets. In Proceedings International

Workshop on Analysis Tools and Methodologies for Embedded and Real-

time Systems (WATERS), pages 6±11, July 2010. URL: https://retis.sssup.
it/waters2010/waters2010.pdf#page=6.

[12] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin.
Bayesian data analysis (3rd edn)., volume 23. Chapman & Hall/CRC,
2021.

[13] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distribu-
tions, and the bayesian restoration of images. IEEE Trans. Pattern Anal.

Mach. Intell., 6(6):721±741, 1984. doi:10.1109/TPAMI.1984.

4767596.

[14] David Griffin, Iain Bate, and Robert I. Davis. Generating utilization
vectors for the systematic evaluation of schedulability tests. In 41st

IEEE Real-Time Systems Symposium, RTSS 2020, Houston, TX, USA,

December 1-4, 2020, pages 76±88. IEEE, 2020. doi:10.1109/

RTSS49844.2020.00018.

[15] David Griffin and Robert I. Davis. ConvolutionalFixedSum Software,
March 2025. URL: https://github.com/dgdguk/convolutionalfixedsum/,
doi:10.5281/zenodo.15107012.

[16] Charles R. Harris, K. Jarrod Millman, StÂefan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime FernÂandez del RÂıo, Mark Wiebe, Pearu Peterson, Pierre GÂerard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357±362, September 2020. doi:

10.1038/s41586-020-2649-2.

[17] W. K. Hastings. Monte carlo sampling methods using markov
chains and their applications. Biometrika, 57(1):97±109, 04
1970. arXiv:https://academic.oup.com/biomet/

article-pdf/57/1/97/23940249/57-1-97.pdf,
doi:10.1093/biomet/57.1.97.

[18] Dhivya Prabhu K, Sanjeev Singh, and V. Antony Vijesh. A
third-order iterative algorithm for inversion of cumulative cen-

tral beta distribution. Numer. Algorithms, 94(3):1331±1353, 2023.
URL: https://doi.org/10.1007/s11075-023-01537-6, doi:10.1007/

S11075-023-01537-6.
[19] Carl T Kelley. Solving nonlinear equations with Newton’s method.

SIAM, 2003.
[20] Donald E. Knuth. The Art of Computer Programming, Volume III:

Sorting and Searching. Addison-Wesley, 1973.
[21] Jie Li, Sichen Li, Jun Luo, and Haihui Shen. Simulation optimization

for inpatient bed allocation with sharing. Journal of Systems Science and

Systems Engineering, 2024. doi:10.1007/s11518-024-5625-9.
[22] Alberto Llera and Christian Beckmann. Estimating an inverse gamma

distribution. 05 2016. doi:10.48550/arXiv.1605.01019.
[23] Claire Maiza, Hamza Rihani, Juan Maria Rivas, JoÈel Goossens, Sebas-

tian Altmeyer, and Robert I. Davis. A survey of timing verification
techniques for multi-core real-time systems. ACM Comput. Surv.,
52(3):56:1±56:38, 2019. doi:10.1145/3323212.

[24] Filip Markovic, Alessandro Vittorio Papadopoulos, and Thomas Nolte.
On the convolution efficiency for probabilistic analysis of real-time
systems. In BjÈorn B. Brandenburg, editor, 33rd Euromicro Conference

on Real-Time Systems, ECRTS 2021, July 5-9, 2021, Virtual Conference,
volume 196 of LIPIcs, pages 16:1±16:22. Schloss Dagstuhl - Leibniz-
Zentrum fÈur Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.
ECRTS.2021.16, doi:10.4230/LIPICS.ECRTS.2021.16.

[25] Clare D McGillem and George R Cooper. Continuous and discrete

signal and system analysis. Saunders College Publishing, 1991.
[26] M. E. Mead. Generalized inverse gamma distribution and

its application in reliability. Communications in Statistics

- Theory and Methods, 44(7):1426±1435, 2015. arXiv:

https://doi.org/10.1080/03610926.2013.768667,
doi:10.1080/03610926.2013.768667.

[27] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej ČertÂık,
Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov,
Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E.
Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam
Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R.
Terrel, ŠtěpÂan Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal,
Robert Cimrman, and Anthony Scopatz. Sympy: symbolic computing
in python. PeerJ Computer Science, 3:e103, January 2017. doi:10.
7717/peerj-cs.103.

[28] A. Neumaier. Rundungsfehleranalyse einiger verfahren zur summation
endlicher summen. ZAMM - Journal of Applied Mathematics and

Mechanics / Zeitschrift fÈur Angewandte Mathematik und Mechanik,
54(1):39±51, 1974. URL: https://onlinelibrary.wiley.com/doi/abs/10.
1002/zamm.19740540106, doi:10.1002/zamm.19740540106.

[29] Ivo F. D. Oliveira and Ricardo H. C. Takahashi. An enhancement of the
bisection method average performance preserving minmax optimality.
ACM Trans. Math. Softw., 47(1):5:1±5:24, 2021. doi:10.1145/

3423597.
[30] Ingram Olkin and Herman Rubin. Multivariate beta distributions

and independence properties of the wishart distribution. Annals of

Mathematical Statistics, 35(1):261±269, March 1964. doi:10.1214/
aoms/1177703748.

[31] Sophie Quinton, Matthias Hanke, and Rolf Ernst. Formal analysis of
sporadic overload in real-time systems. In Wolfgang Rosenstiel and
Lothar Thiele, editors, 2012 Design, Automation & Test in Europe

Conference & Exhibition, DATE 2012, Dresden, Germany, March 12-

16, 2012, pages 515±520. IEEE, 2012. doi:10.1109/DATE.2012.
6176523.

[32] Laurent Schwartz. Mathematics for the Physical Sciences. Addison-
Wesley Publishing Company, 1966.

[33] Steven W. Smith. The scientist and engineer’s guide to digital signal

processing. California Technical Publishing, USA, 1997.
[34] Murray R Spiegel and Larry J Stephens. Schaum’s outline of statistics.

McGraw Hill Professional, 2017.
[35] Roger Stafford. Random vectors with fixed sum. Techni-

cal Report Available at https://www.mathworks.com/matlabcentral/
fileexchange/9700-random-vectors-with-fixed-sum, MathWorks, 2006.

[36] Rick S. H. Willemsen, Wilco van den Heuvel, and Michel van de Velden.
Generating random vectors satisfying linear and nonlinear constraints,
2025. URL: https://arxiv.org/abs/2501.16936, arXiv:2501.16936.

[37] David H. Wolpert and David R. Wolf. Estimating functions of proba-
bility distributions from a finite set of samples. Phys. Rev. E, 52:6841±
6854, Dec 1995. URL: https://link.aps.org/doi/10.1103/PhysRevE.52.
6841, doi:10.1103/PhysRevE.52.6841.

https://doi.ieeecomputersociety.org/10.1109/ECRTS.2004.7
https://doi.ieeecomputersociety.org/10.1109/ECRTS.2004.7
https://doi.org/10.1109/ECRTS.2004.7
https://doi.org/10.1109/ECRTS.2004.7
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/S11241-005-0507-9
https://doi.org/10.1007/S11241-005-0507-9
https://doi.org/10.1145/3131347
https://doi.org/10.1145/3131347
https://doi.org/10.1007/s11241-018-9316-9
https://doi.org/10.1007/S11241-018-9316-9
http://www.jstor.org/stable/2003354
https://waters2016.inria.fr/files/2017/02/WATERS16-proceedings-final.pdf#page=4
https://waters2016.inria.fr/files/2017/02/WATERS16-proceedings-final.pdf#page=4
https://doi.org/10.1109/RTSS.2009.31
https://doi.org/10.1109/RTSS.2009.31
https://doi.org/10.1007/s11241-010-9106-5
https://doi.org/10.1007/s11241-010-9106-5
https://doi.org/10.1007/S11241-010-9106-5
https://retis.sssup.it/waters2010/waters2010.pdf#page=6
https://retis.sssup.it/waters2010/waters2010.pdf#page=6
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1109/RTSS49844.2020.00018
https://doi.org/10.1109/RTSS49844.2020.00018
https://github.com/dgdguk/convolutionalfixedsum/
https://doi.org/10.5281/zenodo.15107012
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf
https://arxiv.org/abs/https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1007/s11075-023-01537-6
https://doi.org/10.1007/S11075-023-01537-6
https://doi.org/10.1007/S11075-023-01537-6
https://doi.org/10.1007/s11518-024-5625-9
https://doi.org/10.48550/arXiv.1605.01019
https://doi.org/10.1145/3323212
https://doi.org/10.4230/LIPIcs.ECRTS.2021.16
https://doi.org/10.4230/LIPIcs.ECRTS.2021.16
https://doi.org/10.4230/LIPICS.ECRTS.2021.16
https://arxiv.org/abs/https://doi.org/10.1080/03610926.2013.768667
https://arxiv.org/abs/https://doi.org/10.1080/03610926.2013.768667
https://doi.org/10.1080/03610926.2013.768667
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19740540106
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19740540106
https://doi.org/10.1002/zamm.19740540106
https://doi.org/10.1145/3423597
https://doi.org/10.1145/3423597
https://doi.org/10.1214/aoms/1177703748
https://doi.org/10.1214/aoms/1177703748
https://doi.org/10.1109/DATE.2012.6176523
https://doi.org/10.1109/DATE.2012.6176523
https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum
https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum
https://arxiv.org/abs/2501.16936
https://arxiv.org/abs/2501.16936
https://link.aps.org/doi/10.1103/PhysRevE.52.6841
https://link.aps.org/doi/10.1103/PhysRevE.52.6841
https://doi.org/10.1103/PhysRevE.52.6841

	Introduction
	Organization

	Related Work
	IVoRS: Sampling from a Uniform Multivariate Distribution of finite arbitrary shape
	IVoRS implementation of UUniFast
	ConvolutionalFixedSum
	Analytical Method
	Numerical Approximation
	Example of applying ConvolutionalFixedSum

	Evaluation
	Uniformity Testing: the Slices Test
	Validity Testing
	Performance Testing
	Best Practice when using ConvolutionalFixedSum

	Conclusions
	References

