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Short title: Insect-inspired model for active vision 15 

 16 

Abstract: Bees' remarkable visual learning abilities make them ideal for studying active information 17 

acquisition and representation. Here, we develop a biologically inspired model to examine how flight 18 

behaviours during visual scanning shape neural representation in the insect brain, exploring the 19 

interplay between scanning behaviour, neural connectivity, and visual encoding efficiency. 20 

Incorporating non-associative learning—adaptive changes without reinforcement—and exposing the 21 

model to sequential natural images during scanning, we obtain results that closely match 22 

neurobiological observations. Active scanning and non-associative learning dynamically shape neural 23 

activity, optimising information flow and representation. Lobula neurons, crucial for visual integration, 24 

self-organise into orientation-selective cells with sparse, decorrelated responses to orthogonal bar 25 

movements. They encode a range of orientations, biased by input speed and contrast, suggesting co-26 

evolution with scanning behaviour to enhance visual representation and support efficient coding. To 27 

assess the significance of this spatiotemporal coding, we extend the model with circuitry analogous 28 

to the mushroom body, a region linked to associative learning. The model demonstrates robust 29 

performance in pattern recognition, implying a similar encoding mechanism in insects. Integrating 30 

behavioural, neurobiological, and computational insights, this study highlights how spatiotemporal 31 

coding in the lobula efficiently compresses visual features, offering broader insights into active vision 32 

strategies and bio-inspired automation. 33 

 34 

Impact statements: Active vision dynamically refines spatiotemporal neural representations, 35 

optimising visual processing through scanning behaviour and non-associative learning, providing 36 

insights into efficient sensory encoding in dynamic environments. 37 

 38 

Keywords: active vision, image statistics, lobula, mushroom bodies, non-associative learning, 39 

orientation selective neurons, scanning behaviour, visual recognition. 40 
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Introduction 41 

Bees are capable of remarkable cognitive feats, particularly in visual learning (Chittka, 2022; 42 

Srinivasan, 2010; Turner, 1911; Von Frisch, 1914; Wehner, 1967). They can not only learn to 43 

associate a colour or orientation of a bar with reward (Dyer et al., 2011; Guiraud et al., 2025b; 44 

MaBouDi et al., 2020b; Srinivasan, 1994; Stach et al., 2004) but are also able to identify specific 45 

features to categorise visual patterns, by finding the relevant stimuli properties (Benard et al., 2006; 46 

Guiraud et al., 2025a; Stach et al., 2004). Furthermore, bees have demonstrated the capacity to grasp 47 

abstract concepts (Avarguès-Weber et al., 2011; Giurfa et al., 2001; Guiraud et al., 2018; MaBouDi 48 

et al., 2020c; Menzel, 2012) and solve numerosity tasks by sequentially scanning the elements within 49 

a stimulus (MaBouDi et al., 2020a). These exceptional capabilities position bees as a valuable animal 50 

model for investigating the principles of visual learning through the analysis of their behavioural 51 

responses (Menzel and Giurfa, 2006; Srinivasan, 2010). Nevertheless, it remains unclear how bees, 52 

despite their supposedly low visual acuity (Gribakin, 1975; Spaethe and Chittka, 2003a; Srinivasan 53 

and Lehrer, 1988) and limited neural resources, recognise complex patterns and perceive the 54 

intricacies of the natural world encountered during foraging (Chittka and Niven, 2009; Giurfa, 2013).  55 

The natural scene that animals encounter is structured differently from random or artificial ones (Clark 56 

et al., 2014a; Ruderman and Bialek, 1994; Simoncelli and Olshausen, 2001; Zimmermann et al., 57 

2018). It has been hypothesised that visual sensory neurons evolve to exploit statistical regularities 58 

in natural scenes, efficiently encoding information through their spatiotemporal structures (Barlow, 59 

1961). Over evolutionary time, insect visual neurons have developed mechanisms that provide robust 60 

and efficient responses to naturalistic inputs (Dyakova et al., 2019, 2015; Dyakova and Nordström, 61 

2017; Juusola et al., 2025; Song and Juusola, 2014; Zheng et al., 2006). For instance, Song and 62 

Juusola (2014) showed that fly photoreceptors extract more information from naturalistic time series 63 

than from artificial stimuli or white noise, yielding stronger responses with a higher signal-to-noise 64 

ratio (Song and Juusola, 2014). Additionally, numerous studies have demonstrated that insect 65 

sensory pathways and their associated behaviours dynamically adapt to varying environmental 66 

conditions, adjusting their responses based on input parameters such as contrast, spatial frequency, 67 

and spatiotemporal correlations (Arenz et al., 2017; Brinkworth and O’Carroll, 2009; Clark et al., 68 

2014b; Dyakova et al., 2019; Dyakova and Nordström, 2017; Juusola et al., 2025; Juusola and Song, 69 

2017; Schwegmann et al., 2014; Serbe et al., 2016; Song and Juusola, 2014, 2014; van Hateren, 70 

1997; van Hateren, 1992). Experience-dependent adaptation has been observed in fly photoreceptors 71 

and motion-sensitive neurons in the lobula plate, enabling efficient visual processing under varying 72 

conditions. For instance, photoreceptors adapt their response dynamics to different light intensities, 73 

optimizing sensitivity to natural stimuli (Juusola and Hardie, 2001a, 2001b). Similarly, motion-sensitive 74 

neurons such as the H1 neuron adjust their response properties based on prior motion exposure, 75 
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enhancing motion detection in dynamic environments (Maddess et al., 1997). This dynamic plasticity 76 

allows insects to process ecologically relevant information in real time. However, the precise neural 77 

mechanisms underlying natural scene processing remain elusive and require further investigation. 78 

Here we examine how insect visual circuitry has adapted to regularities in natural scenes, focusing 79 

on the efficient coding strategies and robust response mechanisms that enhance visual pattern 80 

recognition.  81 

 82 

In animal vision, active sampling strategies—wherein animals actively scan their environment to 83 

extract visual information over time—are widely observed across species (Land, 1999; Land and 84 

Nilsson, 2012; Severance and Washburn, 1907; Varella et al., 2024; Washburn, 1926, 1916; Yarbus, 85 

2013). Primates employ eye movements, including saccades and microsaccades, to enhance fine 86 

spatial resolution and improve the encoding of natural stimuli (Anderson et al., 2020; Land, 1999; 87 

Näher et al., 2023; Rucci et al., 2007; Rucci and Victor, 2015). Similarly, insects utilise active vision 88 

strategies, incorporating characteristic head and body movements or specific approach trajectories to 89 

optimise visual processing during behavioural tasks (Bertrand et al., 2021; Chittka and Skorupski, 90 

2017; Dawkins and Woodington, 2000; Egelhaaf et al., 2009; Land, 1973; Land and Nilsson, 2012; 91 

Langridge et al., 2021; MaBouDi et al., 2021b). Recent studies have shown that Drosophila generate 92 

photomechanical photoreceptor microsaccades and can move their retinas to stabilise their retinal 93 

images, achieving hyperacute vision and enhancing depth perception (Fenk et al., 2022; Hardie and 94 

Franze, 2012; Juusola et al., 2017; Kemppainen et al., 2022b, 2022a). Likewise, honeybee vision 95 

may require sequential sampling and integration of colour information due to their limited ability to 96 

discriminate between similar hues in brief flashes (<50 ms) (Nityananda et al., 2014). To overcome 97 

this constraint, bees engage in systematic scanning movements, continuously sampling their 98 

surroundings to construct an internal neural representation of their environment (Boeddeker et al., 99 

2015; Collett et al., 1993; Doussot et al., 2021; Guiraud et al., 2018; Kemppainen et al., 2022a; 100 

Langridge et al., 2018; Lehrer and Collett, 1994; MaBouDi et al., 2020a; Werner et al., 2016). For 101 

instance, bumblebees enumerate visual elements sequentially rather than processing them in 102 

parallel, suggesting a reliance on scanning behaviour for feature extraction parallel  (MaBouDi et al., 103 

2020a), and their flight trajectories further indicate that they prioritise specific pattern regions before 104 

making a decision, rather than processing the entire pattern globally (Langridge et al., 2021; MaBouDi 105 

et al., 2021b). Given the low-resolution nature of compound eyes and the potentially reduced parallel 106 

processing capacity in insects compared to vertebrates, it is likely that bees rely on active vision and 107 

sequential sampling to construct a more robust neural representation of their (Chittka and Skorupski, 108 

2017; Nityananda et al., 2014). These active strategies, akin to primate eye movements, play a crucial 109 

role in early visual processing, redundancy reduction, and efficient encoding of visual stimuli (Doussot 110 

et al., 2021; Kuang et al., 2012; Odenthal et al., 2021). However, it remains poorly understood how 111 

such mechanisms allow bees to overcome representational constraints, detect visual regularities, and 112 
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solve complex discrimination tasks. Understanding these strategies is key to uncovering the 113 

fundamental principles of insect vision and their broader implications for visual processing across 114 

biological and artificial systems. 115 

Building on our previous work analysing bee flight paths during a simple visual task (MaBouDi et al., 116 

2021b), we further investigated the main circuit elements that contribute to active vision in achromatic 117 

pattern recognition, focusing on a simplified yet biologically plausible model. Our primary objective 118 

was to determine how bees’ scanning behaviour contributes to the functional organisation and 119 

connectivity of neurons in the visual lobe. We hypothesised that the bees’ scanning behaviours have 120 

co-adapted to sample complex visual features in a way that efficiently encodes them into 121 

spatiotemporal patterns of activity in the lobula neurons, facilitating distinct and specific 122 

representations that support learning in the bees’ compact brain. To test this, we developed a 123 

neuromorphic model of the bee optic lobes incorporating efficient coding principles via a novel model 124 

of non-associative plasticity. This model demonstrates how spatial scanning behaviour in response 125 

to naturalistic visual inputs has shaped the connectivity within the medulla (the 2nd optic ganglion) to 126 

facilitate an efficient representation of these inputs in the lobula (the 3rd optic ganglion). This efficiency 127 

is achieved through the self-organisation of a specific set of orientation-selective neuron in the lobula, 128 

highlighting the combined impact of scanning behaviour and non-associative learning on shaping the 129 

neural circuitry within the bees' optic lobes.  130 

To evaluate the proposed visual network, we enhance our visual processing framework by 131 

incorporating a secondary decision-making module inspired by insect associative learning 132 

mechanisms, grounded in previous neurobiological evidence (Cassenaer and Laurent, 2012; Fiala 133 

and Kaun, 2024; Fisher et al., 2015; Li et al., 2017; Okada et al., 2007; Paulk et al., 2009; Paulk and 134 

Gronenberg, 2008). Visual input and flight dynamics for the model were derived from our observations 135 

of bee behaviour during a visual discrimination task (MaBouDi et al., 2021b). This allowed us to 136 

evaluate and test the hypothesis of active sampling from our model against real-world behaviour 137 

results (MaBouDi et al., 2021b), as well as other published visual discrimination tasks performed by 138 

bees (Benard et al., 2006; Dyer et al., 2005; Guiraud et al., 2022, 2025a; Srinivasan, 2010, 1994; 139 

Zhang and Horridge, 1992). Furthermore, we conducted a detailed analysis comparing the neural 140 

response features emerging from our model with existing neurobiological findings (James and Osorio, 141 

1996; Paulk et al., 2008; Seelig and Jayaraman, 2013; Yang and Maddess, 1997). This alignment 142 

enhances the credibility of our model in capturing essential aspects of neural processing underlying 143 

active vision. 144 

 145 

 146 
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Results 147 

A bio-inspired neural network for active vision 148 

To investigate how bee scanning behaviour optimises neural activity in the visual lobes and enhances 149 

visual information processing for efficient pattern recognition, we developed a neural network model 150 

inspired by the key morphological and functional characteristics of the bee brain (Figure 1A, C). The 151 

network abstracts the circuitry responsible for the initial processing of visual input in the bee’s lamina 152 

and medulla (the first and second optic ganglia). To mimic temporal encoding during scans (Figure 153 

1B), we introduced a progressive time delay of 1–5 ‘temporal instances’ between the outputs of 154 

medulla neurons and wide-field neurons in the lobula (the third optic ganglion; Figure 1D, see 155 

Methods). This temporal structuring facilitates sequential sampling of specific locations along the scan 156 

trajectory, gradually integrating visual information into a coherent internal representation that emerges 157 

as the final output of the lobula neurons. 158 

Building on findings from bee scanning behaviour (MaBouDi et al., 2021b), the model extracts image 159 

input in five sequential patches of 75 × 75 pixels, sampled at a speed of 0.1 m/s, corresponding to a 160 

lateral displacement of 15 pixels between consecutive patches (Figure 1B; see Methods for details). 161 

The green pixel intensities of each patch modulate the membrane potentials of 5,625 (75 × 75) grid 162 

photoreceptors within the simulated bee’s single eye. These photoreceptor responses converge onto 163 

625 lamina neurons via recurrent neural connectivity, providing a feedforward mechanism for 164 

transferring visual information. The lamina neurons then project to 250 small-field medulla neurons 165 

through a simple feedforward pathway (Figure 1C, see Methods). 166 

For each of the five sequential patches that compose a full scan, medulla neuron responses are 167 

computed using a spiking neural model. These responses are progressively integrated into the 168 

synapses of their corresponding lobula neuron with a structured time delay. As depicted in Figure 1D, 169 

the synaptic weights dynamically encode the visual information at different temporal instances (T, 2T, 170 

3T, 4T, 5T), effectively aligning sequentially sampled spatial information into a temporally coherent 171 

representation. This ensures that the lobula neuron accumulates and processes the underlying 172 

medulla input signals at a synchronised time point, mirroring mechanisms that may occur in biological 173 

systems (see Discussion). Additionally, lateral inhibitory connections (red connections in Figure 1C) 174 

are proposed between lobula neurons to reduce correlation between them, enhancing redundancy 175 

reduction in the process. 176 

It is important to note that this proposed spatiotemporal coding is a simplification. In the bee brain, 177 

similar processes are likely mediated through dendritic and synaptic latencies, as well as intermediate 178 

neuron transmission within the medulla, influenced by non-associative learning in the visual lobe 179 

(Figure 1C, D). We hypothesise that connectivity in the medulla and lobula can be refined through 180 

exposure to sequences of time-varying images, incorporating non-associative learning rules and 181 

efficient coding principles. These mechanisms are optimised and shaped through a generative 182 
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learning process to align with the statistical properties of natural scenes, enhancing the system’s 183 

capacity for processing complex visual inputs (see next section). 184 

 185 

 

 
Figure 1. Neural network of active vision inspired by neurobiology and flight dynamics of 

bees. (A) The right side displays the front view of the bumblebee head showing the component 

eye and antenna. Left hand side presents a schematic view of the bee's brain regions. Part of 

neural pathways from the retina to the mushroom bodies are also represented. Labels: AL – 

Antennal lobe; LH – Lateral horn; CC – Central complex; La – Lamina; Me – Medulla; Lo – Lobula; 

MB – Mushroom body. Figure was designed by Alice Bridges (B) A representation of the 

modelled bee’s scanning behaviour of a flower demonstrating how a sequence of patches project 

to the simulated bee’s eye with lateral movement from left to right. Below are five image patches 

sampled by the simulated bee. (C) Representation of the neural network model of active vision 

inspired by micromorphology of the bee brain that underlie learning, memory and experience-
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dependent control of behaviour. The photoreceptors located in the eye are excited by the input 

pattern. The activities of photoreceptors change the membrane potential of a neuron in the next 

layer, Lamina. The lamina neurons send signals (through W connectivity matrix) to the medulla 

neurons to generate spikes in this layer. Each wide-field lobula neuron integrates the synaptic 

output of five small-field medulla neurons. The lobula neurons are laterally inhibited by local 

lobula interconnections (via Q connectivity matrix). Lobula neurons project their axons into the 

mushroom body, forming connections with Kenyon Cells (KCs) through a randomly weighted 

connectivity matrix, S. The KCs all connect to a single mushroom body output neuron (MBON) 

through random synaptic connections D. A single reinforcement neuron (yellow neuron) 

modulates the synaptic weights between KCs and MBON by simulating the release of 

octopamine or dopamine when presented with specific visual stimuli (see Method section). (D) A 

temporal coding model that is proposed as the connectivity between medulla and lobula neurons. 

Each matrix shows the inhibitory (blue) and excitatory (red) connectivity between lamina neurons 

to a medulla neuron at a given time delay. In this model, the five small-field medulla neurons that 

are activated by the locally visual input, at different times of scanning, send their activities to a 

wide-field lobula neuron with a synaptic delay such that the lobula neuron receives all medulla 

input signals at the same instance (i.e. in the presented simulation the lobula neuron is maximally 

activated by the black vertical bar passing across the visual field from the left to right. Each 

underlying medulla neuron encodes the vertical bar in a different location of the visual field). 

 186 

The neural representation of the visual inputs was subsequently transmitted and processed in the 187 

mushroom body - the learning centre of the bee brain  (Ehmer and Gronenberg, 2002; Li et al., 2017; 188 

Paulk et al., 2008; Paulk and Gronenberg, 2008; Schmalz et al., 2022) (Figure 1C). To simplify the 189 

model, we incorporated a single mushroom body output neuron (MBON), whose firing rate reflects 190 

the simulated bee’s preference for a given visual input. By adjusting synaptic weights within the 191 

mushroom body, the network was trained to classify visual patterns as either positive (low MBON 192 

firing rates) or negative (high MBON firing rates; see Discussion). Following non-associative learning 193 

and extensive exposure to natural images, the entire network was trained and tested on various 194 

pattern recognition tasks commonly used in experimental studies (Benard et al., 2006; Dyer et al., 195 

2005; Srinivasan, 2010, 1994; Zhang and Horridge, 1992), including the discrimination of “plus” and 196 

“multiplication sign” patterns, as previously examined in real bumblebees (MaBouDi et al., 2021b) 197 

(Figure 4A). 198 

To evaluate the performance of the active vision model, we analysed MBON activity, which functions 199 

as a decision-making unit. A lower MBON response from its baseline activity to a particular pattern 200 

indicates preference, whereas a higher response suggests rejection. After multiple training trials 201 

through a novel associative learning (see Methods and Discussion), the MBON exhibited a distinct 202 

response pattern, with reduced activity towards the chosen visual stimulus and increased activity 203 

towards the rejected one. This suggests that the MBON plays a role akin to a decision neuron in 204 

pattern recognition tasks. Importantly, no reinforcement learning, or synaptic updates were applied 205 

during the testing phase, ensuring that the observed responses reflected the network’s learned 206 

capacity for visual discrimination rather than online adaptation. 207 
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 208 

 

 
 

Figure 2. Neural responses of the simulated bee model to visual patterns. (A) Top: each 
square in the matrix corresponds to a single time slice of the obtained spatiotemporal receptive 
field of a lobula neuron (5x10 lobula neurons) that emerged from non-associative learning in the 
visual lobes after exposing the model to images of flowers and nature scenes (see Video 3). 
Bottom: spatiotemporal receptive field of two example lobula neurons are visualised in the five-
time delay slices of the matrices of synaptic connectivity between lamina and five medulla 
neurons (See Figure 1D). The lobula neuron integrates signals from these medulla neurons at 
each of five time periods as the simulated bees scan a pattern (time goes from left to right). Blue 
and red cells show inhibitory and excitatory synaptic connectivity, respectively. The first example 
lobula neuron (#1) encodes the 150° angled bar moving from lower left to the upper right of the 
visual field. The second example lobula neuron (#48) encodes the movement of the horizontal 
bar moving up in the visual field. (B) An example of an image sequence projected to the simulated 
bee’ eye with lateral movement from left to right. Below shows the five images patched sampled 
by the simulated bee. The right side presents the firing rate of all lobula neurons responding to 
the image sequence. The spatiotemporal receptive field of two highest active neurons to the 
image sequence are highlighted in purple. (C) The polar plot shows the average orientation 
selectivity of one example lobula neuron (#1) to differently angled bars moving across the visual 
field in a direction orthogonal to their axis (average of 50 simulations). This neuron is most 
sensitive to movement when the bar orientation is at 150°. (D) The spiking response of the lobula 
neuron to the preferred orientation raised as the contrast was increased, whereas the response 
of the lobula neuron to a non-preferred orientation is maintained irrespective of contrast. (E) The 
average velocity-sensitivity curve (±SEM) of the orientation-sensitive lobula neuron (#1) is 
obtained from the responses of the lobula neuron to optimal (angle of maximum sensitivity) 
moving stimuli presented to the model at different velocities. The red line shows the Gamma 
function fitted to the data.  
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 209 

Video 1: Spatiotemporal dynamics of receptive fields in 50 lobula neurons emerging from 
non-associative learning and active scanning. Each square in the matrix represents a single 
time slice of the spatiotemporal receptive field for a lobula neuron (5 × 10 array of neurons). 
These receptive fields illustrate the connectivity matrix between five medulla neurons and their 
corresponding lobula neuron, operating under a temporal coding structure. In this framework, 
each of the five medulla neurons sequentially transfers a portion of the visual input to the lobula 
neuron through excitatory (red) and inhibitory (blue) synaptic connections. These receptive fields 
develop within the visual lobes after the model is exposed to natural images, including flowers 
and scenery. As the simulated bee scans a visual pattern, lobula neurons dynamically integrate 
inputs from medulla neurons over time, forming a temporally structured neural representation of 
the visual scene. 

 210 

Non-associative learning shapes spatiotemporal coding in the lobula to align with the 211 

statistical features of natural scenes. 212 

The synaptic weights in the optic lobe were updated through exposure to natural images during the 213 

model’s lateral scanning process (see Methods, Figure 1B). While lamina-to-medulla connections are 214 

structured based on temporal coding (Figure 1D), lobula neurons are configured to laterally inhibit 215 

each other, facilitating competitive interactions. Synaptic connections were updated using Oja’s 216 

implementation of Hebb’s rule (Oja, 1982). Simultaneously, a symmetric inhibitory spike-timing-217 

dependent plasticity (iSTDP) rule was applied to lateral inhibitory connections among lobula neurons 218 

(Vogels et al., 2011). These local synaptic plasticity rules, which govern interactions between lamina, 219 

medulla, and lobula neurons, support non-associative learning—i.e., synaptic modifications occurring 220 

in the absence of reward (see Methods). Together, these plasticity mechanisms drive the network 221 

toward an efficient representation of visual input, reducing redundancy while preserving essential 222 

visual information.  223 

Figure 2A illustrates the receptive fields of lobula neurons, which exhibit spatiotemporal orientation 224 

selectivity after training on 100 flower and natural images (comprising 50,000 time-varying image 225 

patches). Each square in the figure represents one of the 50 lobula neurons, with the heat map 226 

indicating the synaptic weights of the corresponding lamina neurons (connected via the medulla 227 

neurons). To aid interpretation, the lower portion of Figure 2A provides examples of two individual 228 

lobula neurons, detailing their lamina synaptic weights for each of the five medulla neurons. For a 229 

more dynamic representation of these receptive fields over time, see Video 1. The receptive fields of 230 

lobula neurons are characterised by an elongated "on" area (regions representing positive synaptic 231 

weights) adjacent to an antagonistic "off" area (regions with negative synaptic weights). These regions 232 

are generally aligned along a specific orientation, and their balance changes dynamically across time-233 

delayed instances of medulla responses. For instance, one lobula neuron responds most strongly to 234 

a 135° bar moving orthogonally to its "on" or "off" areas while exhibiting little or no response to other 235 

orientations (Figure 2C). The population of 50 lobula neurons demonstrates specificity to both 236 

orientation and direction, closely resembling neuronal responses observed in bees and other insects 237 
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(James and Osorio, 1996; Paulk et al., 2008; Seelig and Jayaraman, 2013; Yang and Maddess, 238 

1997). 239 

 240 

Video 2: Spatiotemporal dynamics of receptive fields in 100 lobula neurons emerging from 

non-associative learning and active scanning. This follows the same structure as Video 1, 

depicting the receptive field evolution in a larger population of 100 lobula neurons under the 

temporal coding framework and non-associative learning.  

 241 

To illustrate how lobula neurons process natural visual inputs, Figure 2B depicts the sequence of 242 

image patches scanned during a simulated horizontal movement. The results show that only a small 243 

subset of lobula neurons respond at any given moment, indicating that their activity is decorrelated 244 

and relatively selective—an outcome of non-associative learning mechanisms in the visual lobe (see 245 

Discussion). Notably, the two most active lobula neurons captured distinct structural features of the 246 

flower petal: one neuron’s receptive field aligned with the left 45° edge of the petal, while another 247 

matched the right-angled edge. This suggests that the model effectively extracts distinct visual 248 

features with a minimal number of filters (lobula neurons). 249 

To examine the selectivity of lobula neurons further, we analysed the spiking activity of a 250 

representative neuron tuned to a 150° orientation. As expected, the neuron showed maximal firing 251 

 

Figure 2- figure supplement 1: (A) 
Spatiotemporal receptive fields of 
lobula neurons emerging from non-
associative learning when the 
number of lobula neurons is set to 
100 (see Video 2). The details follow 
those described in Figure 2A. (B) 
Spatiotemporal receptive fields of 50 
lobula neurons trained with shuffled 
natural images. The neurons fail to 
develop meaningful connections, 
resulting in random synaptic weight 
distributions, indicating that spatial 
coherence in training images is 
essential for efficient feature 
extraction.  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2025. ; https://doi.org/10.1101/2023.06.04.543620doi: bioRxiv preprint 



Insect-inspired model for active vision 

11 

 

(26 spikes/sec) when presented with a 150° moving bar. It also exhibited moderate responses to a 252 

horizontal bar and a 120° moving bar (18 spikes/sec) but remained largely unresponsive to other 253 

orientations (Figure 2C). Consistent with experimental findings  (Yang and Maddess, 1997), the firing 254 

rate of lobula neurons increased with contrast at their preferred orientations, whereas responses to 255 

non-preferred orientations remained unchanged across contrast levels (Figure 2D). 256 

Finally, Figure 2E highlights the velocity sensitivity of lobula neurons. Each neuron responds 257 

maximally at a specific velocity, demonstrating a tuning curve that aligns with known insect neural 258 

responses (Paulk et al., 2008; Yang and Maddess, 1997). This reinforces that our model successfully 259 

captures key quantitative properties of lobula edge detector neurons, including their joint selectivity 260 

for orientation, contrast, and motion velocity. 261 

The model demonstrates robustness in generating spatiotemporal receptive fields, even as the 262 

number of lobula neurons increases. Training the non-associative learning model with a larger lobula 263 

neuronal population while maintaining the same underlying structure from photoreceptors to the 264 

medulla, enhances the diversity of orientation-selective responses (see Figure 2 -Supplementary 265 

figure 1A and Video 2). As the number of lobula neurons increases, their tuning properties become 266 

more distributed, enabling a finer and more precise encoding of different orientations and motion 267 

patterns. This scalability highlights the model’s ability to generalise its representation of natural scene 268 

statistics while achieving varying levels of resolution in visual encoding.  269 

 270 

Lobula neuron responses become sparse and decorrelated through non-associative learning 271 

with natural images 272 

To assess the impact of training on the population activity of lobula neurons, we quantified their 273 

response sparsity and decorrelation before and after learning. Figure 3A presents the correlation 274 

matrix of lobula neurons in response to 10,000 sequential scans of natural images after training. The 275 

results reveal a highly decorrelated response pattern, with a strong diagonal structure indicating that 276 

each lobula neuron maintains a distinct response profile. This demonstrates that non-associative 277 

learning enhances both the selectivity and independence of neural representations, allowing the 278 

network to develop more efficient and diverse feature encoding. 279 

Further supporting this, Figure 3B displays the sparseness index of lobula neurons under different 280 

training conditions. Before training, lobula neuron activity was broadly distributed, as reflected in the 281 

high sparseness index (see Methods). Training on natural images significantly reduced the 282 

sparseness index, indicating that lobula neurons developed a more selective and efficient coding 283 

scheme, where only a small subset of neurons responded to any given input. In contrast, training on 284 

shuffled natural images led to only a moderate reduction in sparseness, suggesting that the 285 

implemented local synaptic plasticity rules alone are insufficient for optimal feature encoding without 286 

exposure to structured natural inputs. Notably, while shuffling natural images preserves pixel intensity 287 

and overall distribution, it disrupts spatial correlations and higher-order structures present in natural 288 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2025. ; https://doi.org/10.1101/2023.06.04.543620doi: bioRxiv preprint 



Insect-inspired model for active vision 

12 

 

scenes. Consequently, training on these shuffled datasets results in non-structured receptive fields, 289 

leading to broadly distributed and less selective coding in the lobula neurons (Figure 2- 290 

Supplementary figure 1B). 291 

 292 

 

Figure 3. Effect of 
non-associative 
learning on lobula 
neuron activity 
and response 
sparseness. (A) 
Correlation matrix 
of lobula neuron 
responses after 
training with natural 
images. The near-
diagonal structure 
indicates that 
neurons develop 
distinct and 
strongly 
uncorrelated 

responses, suggesting an efficient, decorrelated representation of visual input. (B) Sparseness 
index of lobula neurons before and after training with different image sets. Before training, 
neural responses are broadly distributed. Training with shuffled natural images does not 
change the sparseness of lobula population, whereas training with natural images significantly 
increases response sparseness, indicating that exposure to structured visual inputs enhances 
efficient coding. Error bars represent SEM. Asterisks (*) indicate p-values < 0.05, while 'n.s.' 
denotes non-significant results. 
 

 293 

These findings underscore the role of non-associative learning in shaping neural representations, 294 

fostering both sparsity and decorrelation in lobula neurons. Such sparse coding is crucial for efficient 295 

sensory processing, as it minimises redundancy while preserving essential visual information. 296 

Moreover, it optimises metabolic efficiency in neural networks, aligning with coding strategies 297 

observed in biological visual systems (see Discussions). 298 

 299 

Active vision enhances visual discrimination through sequential scanning 300 

To replicate bee behavioural findings reported in the literature (Benard et al., 2006; Dyer et al., 2005; 301 

MaBouDi et al., 2021b; Srinivasan, 1994, 2010; Zhang and Horridge, 1992), we implemented 302 

computational plasticity within the mushroom body circuitry, leveraging sparse lobula neurons that 303 

emerge through non-associative learning—critical for encoding both appetitive and aversive values. 304 

Specifically, we incorporated classical spike-timing-dependent plasticity (STDP), modulated by 305 

dopamine, to regulate synaptic modifications between mushroom body Kenyon cells (KCs) and 306 

extrinsic MBONs in response to negative (unrewarded) patterns. Additionally, we introduced a novel 307 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2025. ; https://doi.org/10.1101/2023.06.04.543620doi: bioRxiv preprint 



Insect-inspired model for active vision 

13 

 

STDP-based plasticity rule, modulated by octopamine (See Methods, Figure 9), which we hypothesise 308 

induces synaptic depression among KC-MBON connections in response to positive (rewarded) 309 

patterns. These plasticity mechanisms allowed us to explore synaptic dynamics underlying the 310 

discrimination of rewarded and non-rewarded stimuli (see Discussion). 311 

 

 
Figure 4. Simulated bees’ performance in a pattern recognition task using different 
scanning strategies. Twenty simulated bees, with random initial neuronal connectivity in 
mushroom bodies (see Methods) and a fixed connectivity in the visual lobe that were shaped 
from the non-associative learning, were trained to discriminate plus from a multiplication symbol 
(100 random training exposures per pattern). The simulated bees scanned different regions of 
the patterns at different speeds. (A) Top and below panels show the five image patches sampled 
from the plus and multiplication symbols by simulated bees, respectively. It is assumed that the 
simulated bees scanned the lower half of the patterns with lateral movement from left to right 
with normal speed (0.1 m/s). (B) The plot shows the average responses of the MBON to 

rewarding multiplication and punishing plus patterns during training procedure (multiplication 
symbol rewarding, producing an Octopamine release by the reinforcement neuron, and the plus 
symbol inducing a Dopamine release). This shows how the response of the MBON to the 
rewarding plus was decreased while its response to the punishing multiplication pattern was 
increased during the training. The MBON equally responded to both multiplication and plus 
before the training (at number of visits =0). (C) The performance of the simulated bees in 
discriminating the right-angled plus and a 45° rotated version of the same cross (i.e. multiplication 
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symbol) (MaBouDi et al., 2021b; Srinivasan, 1994), when the stimulated bees scanned different 
regions of the pattern (left corner, lower half, whole pattern) at different speeds: no speed 0.0m/s 
(i.e. all medulla to lobula temporal slices observed the same visual input), normal speed at 0.1 
m/s and fast speed at 0.3m/s), and from a simulated distance of 2cm from stimuli (default) and 
10cm (distal view). The optimal model parameters were for the stimulated bees at the default 
distance when only a local region of the pattern (bottom half or lower left quadrant) was scanned 
at a normal speed. (D) Mean performance (±SEM) of two groups of simulated bees in 
discriminating the plus from multiplication patterns when their inhibitory connectivity between 
lobula neurons were not modified by non-associative learning rules.  Asterisks (*) indicate p-
values < 0.05, while 'n.s.' denotes non-significant results. 

 312 

The model was trained using a differential conditioning paradigm, where the correct stimulus (S⁺) was 313 

paired with a reward and the incorrect stimulus (S⁻) was associated with punishment. For simplicity, 314 

we denote positive patterns as S⁺ and negative patterns as S⁻. During associative learning 315 

simulations, only the synaptic weights between KCs and MBONs corresponding to the presented 316 

patterns were updated, while randomly weighted connections between the lobula and KCs were 317 

incorporated to ensure sparse activity in KCs (Figure 1C; see Methods). To capture individual 318 

variability observed in bees, we repeated the simulations with different initial conditions, including 319 

random neural connectivity between lobula neurons and Kenyon cells, as well as between KCs and 320 

MBONs. The model’s performance was then assessed across multiple visual discrimination 321 

paradigms (Figures 4, 6 and 7). 322 

In the initial implementation, simulated bees were trained to distinguish a plus sign from a 323 

multiplication sign, with training focused on the lower half of the plus pattern (Figure 4A). Following 324 

training, MBON activity decreased in response to the plus (S⁺) while increasing in response to the 325 

multiplication sign (S⁻), whereas prior to training, MBON responses to both patterns were similar 326 

(Figure 4B). This demonstrates that the model successfully discriminated between S⁺ and S⁻ through 327 

temporal coding and sequential scanning of the visual pattern (Figure 4C). In contrast, a model with 328 

fixed, random connectivity in the visual lobe failed to differentiate between the plus and multiplication 329 

patterns (Figure 4D). This underscores the importance of structured connectivity that emerges in the 330 

bee visual lobes through non-associative learning—specifically, the development of spatiotemporal 331 

receptive fields in lobula neurons—for successful visual learning. 332 

Our model further revealed that rewarding patterns elicited a reduction in extrinsic neuron responses, 333 

while punished patterns led to increased responses (Figure 4B), a phenomenon consistent with neural 334 

activity recorded from alpha lobe PE1 neurons in the mushroom body (Okada et al., 2007). Initially, 335 

the simulated bees performed worse than real bees in the plus versus multiplication discrimination 336 

task (Figure 4C, last pair of bars). Using experimentally derived parameters from bumblebee 337 

studies—including an average scanning speed of 0.1 m/s (referred to as normal speed) for whole-338 

pattern scanning and a viewing distance of 20 mm—simulated bees achieved a correct choice rate 339 

of only 63% for the plus stimulus and 60% for the reciprocal cross-protocol (averaged over 20 340 

simulations; see Figure 4C, fifth pair of bars). 341 
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However, when the experimental conditions were adjusted so that simulated bees scanned only the 342 

lower half of the patterns or focused on the lower left corner—consistent with real bee behaviour 343 

(MaBouDi et al., 2021)—correct choice performance improved significantly, reaching ≥96% and 344 

≥98%, respectively (Figure 4C, first two pairs of bars). Conversely, increasing scanning speed 345 

(resulting in larger separations between sampled image patches) reduced accuracy to 70%, while 346 

stationary simulated bees—those that did not actively scan—achieved only 60% correct choices. 347 

In additional experiments where the model bees were trained from a greater distance (>100 mm), 348 

they failed to discriminate between patterns. This aligns with behavioural findings in bees, where they 349 

initially select a pattern at random and move closer to scan it before making a decision (MaBouDi et 350 

al., 2021). Studies show that bumblebees approach stimuli to scan patterns at close range, and their 351 

initial approach choices are random (Guiraud et al., 2018; MaBouDi et al., 2021b). These findings 352 

underscore the critical role of active vision in visual learning and discrimination, demonstrating that 353 

the model effectively captures key aspects of biological visual processing, including sequential 354 

sampling, spatial integration, and plasticity-driven adaptation. 355 

 356 

Scanning strategy modulates lobula neural representations: Enhanced selectivity with 357 

localised sampling 358 

To further investigate how scanning behaviour influences the distinctiveness of neural representations 359 

in the lobula and impacts performance in visual learning tasks, we analysed activity patterns and 360 

response magnitudes under two different scanning conditions from the first experiment (Figure 4C). 361 

Heatmaps of lobula neuron activity (Figure 5A, B) illustrate neural responses to two stimulus 362 

conditions: scanning only the lower half of the pattern at normal speed (Panel A) and scanning the 363 

entire pattern at normal speed (Panel B). 364 

The activity maps indicate that different subsets of lobula neurons responded preferentially to the 365 

lower half of the stimulus, exhibiting stronger activation in a smaller neuronal subset. In contrast, 366 

scanning the entire pattern resulted in a more widespread and overlapping activation across the lobula 367 

neuron population. Corresponding spike rate plots (Figure 5, right panels) further highlight these 368 

differences, revealing that neurons displayed stronger selectivity when scanning was restricted to the 369 

lower half at normal speed compared to whole-pattern scanning. These findings suggest that lobula 370 

neurons exhibit stimulus-specific selectivity that is modulated by the spatial dynamics of scanning 371 

behaviour. 372 

To quantify the separability of these population responses, we computed the angular distance (θ) 373 

between their activity vectors over 20 stimulations using the cosine similarity metric (see Methods). 374 

The results (Figure 5C) indicate that neural responses exhibited a significantly larger angular 375 

distance when the model scanned only the lower half of the stimuli at normal speed compared to 376 

scanning the entire of the same pattern. This suggests that neural activity population were more 377 
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distinct when scanning was confined to a localised region of these visual patterns, reinforcing the 378 

idea that restricted sampling enhances neural discriminability. 379 

 
 
 

  
Figure 5. The effect of scanning behaviour on the spatiotemporal encoding of visual 
patterns in lobula neurons responses. (A, B) Neural responses of simulated lobula neurons 
to different scanning conditions. Left panels: heatmaps showing the spiking activity of 50 lobula 
neurons in response to visual patterns when scanning either the lower half of the pattern at 
normal speed (A) or the whole pattern at normal speed (B). Right panels: the mean and standard 
deviation of the spike rate responses of individual lobula neurons to two distinct visual patterns 
(plus and multiplication), with colour-coded responses (purple for ⊕, green for ⊗). Scanning 
behaviour significantly alters the neural responses, with distinct sets of neurons preferentially 
responding to each stimulus. (C) Mean angular distance between lobula neuron responses for 
different scanning conditions. Lower half-normal speed scanning results in greater separation 
between neural representations, suggesting that scanning of local region enhances feature 
selectivity. Error bars represent SEM. Asterisks (*) indicate p-values < 0.05, while 'n.s.' denotes 
non-significant results. 
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 380 

These findings demonstrate that lobula neurons encode visual stimuli in a structured manner, with 381 

response contrast influenced by both spatial and temporal properties of scanning behaviour 382 

(Figures 4, 5). By selectively sampling specific regions of a stimulus, the system enhances the 383 

differentiation of these visual patterns, supporting the hypothesis that active vision plays a crucial 384 

role in effective neural coding and discrimination. 385 

 386 

Neural network model of active vision bee behaviours across various visual experiments 387 

In this study, we evaluated our model - using scans from the lower half of the visual field - by 388 

comparing its performance with results from bee experiments reported in the literature. (Note: bees 389 

may exhibit variations in scanning behaviour under different patterns and training conditions; see 390 

Discussion). Our simulated bees successfully discriminated between angled bars (Hateren et al., 391 

1990), a 22.5° angled cross from a 90° rotated version (Srinivasan, 1994), and spiral patterns (Zhang 392 

and Horridge, 1992) (Figure 6A). When trained on grating patterns with -45° versus +45° orientations, 393 

the simulated bees successfully identified the correct pattern. Moreover, it demonstrated the ability to 394 

transfer the learned rule to novel patterns the model had never encountered during training, including 395 

single-bar patterns (Figure 6B). This suggests that the model captures key aspects of visual 396 

generalisation observed in real bees. Figure 6C shows that the proposed model not only learned to 397 

identify the correctly oriented bar pattern but also to distinguish the rewarding pattern from a novel 398 

one (two circles). Notably, the model exhibited a 22% lower preference for the negatively trained 399 

pattern compared to the novel pattern, validating the implementation of the rejection behaviour and 400 

demonstrating that the model can simultaneously learn rewarding and aversive stimuli.  401 

This was further explored by training the network with patterns containing two oriented bars in each 402 

lower quadrant (Figure 6D) (Benard et al., 2006; Stach et al., 2004; Zhang and Horridge, 1992). The 403 

simulated bees discriminated these training patterns with over 99% accuracy, but performance 404 

dropped to an average of 61% when presented with a simplified variant. When tested with the original 405 

positive pattern and novel patterns containing only one correct orientation, the bees showed a high 406 

preference for the correct stimulus. Similarly, the simulated bees exhibited a clear preference for a 407 

pattern with a single correct feature over the trained negative pattern, indicating that the model can 408 

extract multiple features during scanning.  409 

 410 
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Figure 6. Proposed neural network performance to published bee pattern experiments. 
Twenty simulated bees, with random initial neuronal connectivity in mushroom bodies (see 
Methods), were trained to discriminate a positive target pattern from a negative distractor pattern 
(50 training exposures per pattern). The simulated bees’ performances were examined via 
unrewarded tests, where synaptic weights were not updated (average of 20 simulated pattern 
pair tests per bee). All simulations were conducted under the assumption that model bees viewed 
the targets from a distance of 2 cm while flying at a normal speed of 0.1 m/s. During this process, 
the bees scanned the lower half of the pattern. (A) Mean percentage of correct choices (±SEM) 
in discriminating bars oriented at 90° to each other, 25.5° angled cross with a 45° rotated version 
of the same cross, and a pair of mirrored spiral patterns (MaBouDi et al., 2021b; Srinivasan, 
1994). The simulated bees achieved greater than chance performances. (B) Performance of 
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simulated bees trained with a generalisation protocol (Benard et al., 2006). Trained to 6 pairs of 
perpendicular oriented gratings (10 exposures per grating). Simulated bees then tested with a 
novel gating pair, and a single oriented bar pair. The simulated bees performed well in 
distinguishing between the novel pair of gratings; less well, but still significantly above chance, 
to the single bars. This indicates that the model can generalise the orientation of the training 
patterns to distinguish the novel patterns. (C) Mean performance (±SEM) of the simulated bees 
in discriminating the positive orientation from negative orientation. Additionally, the performance 
in recognising the positive orientation from the novel pattern, and preference for the negative 
pattern from a novel pattern. Simulated bees learnt to prefer positive patterns, but also reject 
negative patterns, in this case preferring novel stimuli. (D) Performance of simulated bees trained 
to a horizontal and -45° bar in the lower pattern half versus a vertical and +45° bar (Stach et al., 
2004). The simulated bees could easily discriminate between the trained bars, and a colour 
inverted version of the patterns. They performed less well when the bars were replaced with 
similarly oriented gratings, but still significantly above chance. When tested on the positive 
pattern vs. a novel pattern with one correctly and one incorrectly oriented bar, the simulated bees 
chose the positive patterns (fourth and fifth bars), whereas with the negative pattern versus this 
same novel pattern the simulated bees rejected the negative pattern in preference for the novel 
pattern with single positive oriented bar (two last bars). (E) The graph shows the mean 
percentage of correct choices for the 20 simulated bees during a facial recognition task (Dyer et 
al., 2005). Simulated bees were trained to the positive (rewarded) face image versus a negative 
(non-rewarded) distractor face. The model bee is able to recognise the target face from 
distractors after training, and also to recognise the positive face from novel faces even if the 
novel face is similar to the target face (fourth bar). However, it failed to discriminate between the 
positive and negative faces rotated by 180°. (F) The model was trained on spatially structured 
patterns from Stach et al. (2004), requiring recognition of orientation arrangements across four 
quadrants. Unlike bees, the model failed to discriminate these patterns, highlighting its limitations 
in integrating local features into a coherent global representation. Asterisks (*) indicate p-values 
< 0.05, while 'n.s.' denotes non-significant results. 

 
 411 

To present a more complex pattern recognition task, we replicated a facial recognition experiment 412 

performed on honeybees (Dyer et al., 2005) by training the neural network with images of two human 413 

faces (Figure 6E). As with honeybees, our simulated bees were able to identify the positive trained 414 

face from the negative one, as well as distinguish two novel faces and a caricature. Both the real and 415 

simulated bees failed to discriminate the faces when rotated through 180°. These results demonstrate 416 

that complex visual features can be condensed through spatiotemporal encoding in the lobula 417 

neurons into specific and distinct neuronal representations that are critical for learning in the miniature 418 

bee brain.  419 

To evaluate the model's ability to discriminate more complex visual stimuli, we trained it on a set of 420 

patterns from (Stach et al., 2004), which require recognising the spatial arrangement of orientations 421 

across four quadrants (Figure 6F). Unlike previous experiments where scanning behaviour was 422 

confined to specific regions, the complexity of these stimuli necessitated training the model using 423 

whole-pattern exposure. The results indicate that the model failed to replicate the bees’ ability to 424 

discriminate these patterns (Figure 6F), despite successfully distinguishing between the plus and 425 

multiplication signs when scanning the entire pattern (Figure 4C), even if its performance remained 426 

lower than that of real bees. Moreover, the model was unable to generalise this capability to more 427 

configurations testing patterns, suggesting that while it can process simple spatial features through 428 
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sequential scanning, it lacks the longer and more dynamic scanning required for assembling and 429 

integrating local features into a coherent global representation, as observed in bees (see Discussion). 430 

 431 

What is the minimally sufficient number of lobula neurons and the necessary connectivity for 432 

active vision in bees? 433 

As reported above, our model successfully accomplishes various pattern recognition tasks (Figures 434 

4, 6). We then asked whether our neural networks could perform with a very limited number of lobula 435 

neurons that transfer visual information to the mushroom body. To investigate this, we ran the non-436 

associative learning process with different numbers of lobula neurons – specifically, 4, 16, or 36 437 

neurons (the original model had 50). The visual network was subsequently trained using the same 438 

set of natural images and protocol as the original model (Figure 7A). 439 

 

 
Figure 7. Minimum number of lobula neurons that are necessary for pattern recognition. 
(A) Obtained spatiotemporal receptive field of lobula neurons when the number of lobula neurons 
were set at 36, 16 or 4 during the non-associative learning in the visual lobe (See Figure 5A). 
This shows the models with lower number of lobula neurons encode less variability of orientations 
and temporal coding of the visual inputs (see Videos 5,6) (B, C & D) The average correct choices 
of the three models with 36, 16 or 4 lobula neurons after training to a pair of plus and multiplication 
patterns (B) mirrored spiral patterns (C) and human face discrimination (D). The model with 36 
lobula neurons still can solve pattern recognition tasks at a level above chance. It indicates that 
only 36 lobula neurons that provide all inputs to mushroom bodies are sufficient for the simulated 
bees to be able to discriminate between patterns.  Asterisks (*) indicate p-values < 0.05, while 
'n.s.' denotes non-significant results. 
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 440 

 
Video 3: Spatiotemporal dynamics of receptive fields in 36 lobula neurons emerging from 
non-associative learning and active scanning. This follows the same structure as Video 1, 
depicting the receptive field evolution in a larger population of 36 lobula neurons under the 
temporal coding framework and non-associative learning. 

 441 

 
Video 4: Spatiotemporal dynamics of receptive fields in 16 lobula neurons emerging from 
non-associative learning and active scanning. This follows the same structure as Video 1, 
depicting the receptive field evolution in a larger population of 16 lobula neurons under the 
temporal coding framework and non-associative learning (compare to Videos 1, 3). 

 442 

 
Video 5: Spatiotemporal dynamics of receptive fields in only 4 lobula neurons emerging 
from non-associative learning and active scanning. This follows the same structure as Video 
1, depicting the receptive field evolution in a larger population of 4 lobula neurons under the 
temporal coding framework and non-associative learning (compare to Videos 1, 3 & 4). 

 443 

Interestingly, the non-associative learning process led to the emergence of distinct spatiotemporal 444 

structures in the lobula neurons. We found that reducing the number of lobula neurons decreased the 445 

variability in their spatiotemporal receptive (Figure 7A and Videos 3, 4 ,5). In particular, when the 446 

network was limited to four neurons, it could not encode the full spatiotemporal structure of the training 447 

patterns obtained with the model with 50 lobula neurons - only vertical and horizontal receptive fields 448 

were produced (Video 1, 5). As expected, the overall performance of the model decreased as the 449 

number of lobula neurons was reduced. Although the model with 16 lobula neurons demonstrated the 450 

ability to discriminate more complex patterns beyond the plus and multiplication signs (Figure 7B, C), 451 

it remained insufficient for recognising highly complex stimuli such as human faces (Figure 7D, 7E). 452 

 453 

Moreover, to investigate the effect of inhibitory neurons within the visual lobe on lobula neuron output, 454 

we trained the model using the same protocol but fixed the synaptic weights of the inhibitory 455 

connections (i.e., these weights were not updated during exposure to the training images). These 456 

fixed inhibitory connections limited the ability of the lobula neuron population to encode moving 457 

orientations (Figure 8 and Video 6), indicating that the plasticity of inhibitory interneurons in the visual 458 

lobe plays a crucial role in facilitating an efficient representation of the visual environment. While this 459 

suggests that increasing the network size can enhance the model's capacity for discriminating 460 

complex visual patterns, the results (Figure 4) indicate that scanning behaviour plays a crucial role in 461 

overcoming this limitation. Specifically, adopting a more targeted scanning strategy can improve 462 

discriminability by directing visual sampling to the most informative regions of the stimulus (see 463 

Discussion). 464 

 465 

Taken together, these findings demonstrate that our assumption regarding non-associative plasticity 466 

in the visual lobe successfully replicates the neural responses of lobula neurons across various 467 
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patterns and conditions. This plasticity yields a sparse, uncorrelated representation of the visual input 468 

that benefits subsequent learning processes in the mushroom body. Importantly, these results closely 469 

align with theoretical studies (see Discussion), further supporting the effectiveness of the active vision 470 

in capturing the underlying principles of information encoding in the insect visual system.  471 

 472 

 473 

Figure 8. The role of lateral inhibitory connections between lobula neurons. Obtained 

spatiotemporal receptive field of lobula neurons (B) when the lateral inhibitory connectivity 

between lobula neurons is fixed (A) during the non-associative learning (see Video 6 and 

Figure 2A & Video 1).  

 474 

Video 6: Spatiotemporal dynamics of receptive fields in 50 lobula neurons emerging from 
non-associative learning and active scanning. This follows the same structure as Video 1, 
but with fixed lateral inhibitory connectivity between lobula neurons during non-associative 
learning. The video illustrates how receptive fields evolve under the temporal coding framework, 
providing a comparison to Video 1, where lateral inhibition was plastic. 

 475 

Discussion  476 

In this study, we investigated the core computational requirements for visual pattern recognition by 477 

examined a minimal neural network Inspired by the active scanning flight behaviours of bees 478 

(MaBouDi et al., 2021b). We developed a novel model based on the insect visual system, simulating 479 

how a small population of lobula neurons encodes the visual environment through spatiotemporal 480 

responses. By incorporating non-associative learning, the model self-organises its connectivity within 481 

the visual lobe, generating efficient environmental representations (Figures 2, 3, 5). The process leads 482 

to the emergence of orientation-selective cells in the lobula, which are essential for encoding complex 483 

visual scenes (Figure 2).  484 

Our simulations reveal that a small subset of lobula neurons, sensitive to specific orientations and 485 

velocities, can condense complex visual environments into spatiotemporal representations expressed 486 
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as firing rates (Figure 2). These sparse representations effectively discriminate between the plus and 487 

multiplication patterns used in behavioural experiments (MaBouDi et al., 2021b) while also 488 

generalising to novel stimuli—including successful recognition of human faces—highlighting the 489 

model’s broader applicability (Figures 4, 6). 490 

Furthermore, our findings highlight the crucial role of bee movement, or active vision, in optimising 491 

the analysis and encoding of environmental information (Figure 4). Spatiotemporal encoding in the 492 

visual lobe emerges as a key mechanism driving the efficiency of minimal intelligent systems. Our 493 

study underscores the fundamental computational principles of visual pattern recognition, particularly 494 

the interplay between active vision and spatiotemporal encoding in insect information processing. 495 

These insights not only advance our understanding of biological vision but also inspire the 496 

development of novel computational models for visual recognition tasks (Figures 3, 4, 5). 497 

The question of how animals cope with a noisy and complex natural world has long been a central 498 

topic in neuroscience and behavioural ecology (Barlow, 1961; Gibson, 1979; Menzel and Giurfa, 499 

2006; Srinivasan, 2010). One key theoretical framework addressing this challenge is the efficient 500 

coding hypothesis, which posits that early sensory systems compress incoming information into a 501 

more efficient format, optimising the transmission of relevant signals to higher brain regions (Barlow, 502 

1961). According to this hypothesis, individual visual neurons should maximise their output capacity 503 

(e.g., reaching their maximum firing rate) when responding to natural stimuli while population 504 

responses should exhibit statistical independence (Simoncelli and Olshausen, 2001). Despite the 505 

relative simplicity of our model compared to  recently available full Drosophila connectome data  (Lin 506 

et al., 2024; Schlegel et al., 2024), our findings suggest that insects optimise visual coding through 507 

non-associative learning while actively exploring their environment (see below). Specifically, we 508 

demonstrate that neural features of the insect brain, combined with active vision, facilitate this 509 

optimisation by developing uncorrelated and sparse coding in the lobula (Figures 2, 3, 5). This 510 

supports the idea that efficient coding is not merely a passive process but one actively shaped by an 511 

animal’s interactions with its surroundings. However, bees exhibit a remarkably diverse behavioural 512 

repertoire despite their small brains—ranging from fine-scale object inspections to long-distance 513 

navigation (Chittka, 2022; Juusola et al., 2025; Menzel, 2012; Srinivasan, 2010). This behavioural 514 

diversity makes them an excellent model for investigating how ecological constraints shape neural 515 

computation and, ultimately, efficient coding. Understanding how insects dynamically refine sensory 516 

representations in response to environmental demands offers broader insights into the fundamental 517 

principles of neural information processing in biological systems. 518 

The non-associative model presented in this study operates as a linear generative model that 519 

effectively captures the receptive fields of lobula neurons, linking the spatiotemporal statistics of 520 

natural environments to principles of efficient neural coding (Barlow, 1961; Olshausen, 2003). 521 
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Following training, lobula neuron activity in response to naturalistic spatiotemporal signals becomes 522 

highly decorrelated, with only a limited subset of neurons selectively responding to specific visual 523 

stimuli (Figure 5). This sparse coding strategy enhances energy efficiency by minimising overall 524 

neural activity while maintaining distinct stimulus encoding. By ensuring that only a small fraction of 525 

neurons is active at any given moment, this mechanism optimises information processing, reduces 526 

redundancy, and enhances metabolic efficiency, reinforcing the adaptive advantages of efficient 527 

coding in visual systems. Our model introduces a novel generative framework that can be extended 528 

to other species, including primates, to investigate how movement contributes to visual-spatial 529 

encoding in larger brains. Given the ubiquity of active vision across the animal kingdom (Land, 1973; 530 

Land and Nilsson, 2012; Washburn, 1926, 1916; Yarbus, 2013), the principles identified in this study 531 

may be broadly conserved across different taxa, underscoring the fundamental role of sensorimotor 532 

interactions in shaping neural representations. These insights provide a valuable foundation for future 533 

comparative studies on the interplay between movement, efficient coding, and sensory processing 534 

across diverse neural architectures. 535 

Our findings align with previous studies on bumblebees' discrimination of plus and multiplication sign 536 

patterns (MaBouDi et al., 2021b), demonstrating improved model performance when scanning the 537 

lower half of patterns at specific velocities (Figure 3). However, bees exhibit variations in scanning 538 

behaviour depending on pattern complexity and training (Giurfa et al., 1999; Guiraud et al., 2018, 539 

2025b). Research has shown that both honeybees and bumblebees solve visual tasks by extracting 540 

localised or elemental features within patterns, adapting their discrimination strategies accordingly  541 

(Giurfa et al., 1999; MaBouDi et al., 2021b; Stach et al., 2004; Stach and Giurfa, 2005). This suggests 542 

that bees develop tailored flight manoeuvres during training, optimising their scanning behaviour to 543 

maximise visual information extraction. Although our model simplifies visual flight dynamics by 544 

employing a five-step constant-speed horizontal scan (Figure 1B), this abstraction was useful for 545 

isolating key computational principles. However, its failure to solve the complex pattern recognition 546 

task in Figure 6F underscores its limitations, suggesting that incorporating longer and more dynamic 547 

scanning strategies could enhance visual processing capacity. Extending the scanning duration while 548 

integrating multiple visual features across quadrants—alongside mechanisms such as working 549 

memory and sequential learning—could improve performance by enabling the model to retain and 550 

integrate previously acquired visual information. Real-world insect vision, however, relies on more 551 

flexible and adaptive scanning behaviours shaped by flight speed, head movements, and 552 

environmental feedback. Future work should leverage recent advances in insect connectomics, which 553 

reveal a diverse range of neuron types—including small object-detecting neurons, motion-sensitive 554 

neurons, and colour-processing cells—alongside machine learning techniques for analysing animal 555 

movement to develop a more comprehensive flight dynamics model. Incorporating variable scan 556 
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trajectories and real-time sensorimotor feedback will offer deeper insights into how active vision 557 

optimises information acquisition and enhances learning in dynamic environments. 558 

 559 

A key advantage of our model lies in its ability to leverage sparsity and selectivity to efficiently process 560 

sequential visual data (Figures 2B, 3, 6), in contrast to models that rely on pixel-wise image 561 

representation for training. Traditional models that directly process raw pixel values often require 562 

substantial computational resources and struggle with scalability, particularly when handling large-563 

scale visual inputs (Amin et al., 2024, 2024; Ardin et al., 2016; Baddeley et al., 2012). In contrast, our 564 

model extracts and encodes sequential visual information within a small population of lobula neurons 565 

(Figures 2B, 6), significantly compressing the visual input while preserving essential features. This 566 

sparse representation reduces redundancy, enhances computational efficiency, and ensures that only 567 

the most informative aspects of the scene are processed for pattern recognition. Furthermore, our 568 

model demonstrates adaptive selectivity, dynamically adjusting to different visual inputs by learning 569 

lobula responses optimised to the statistical features of the scene. Unlike pixel-based models, which 570 

require processing every individual pixel in an image, our approach extracts compact, high-contrast 571 

signals that are more robust to noise and enhance generalisability. This is particularly relevant for bio-572 

inspired visual processing, as it aligns with known sparse and decorrelated representations in 573 

biological vision systems. By integrating biologically inspired sparse coding, adaptive selectivity, and 574 

motion-driven encoding, our model provides a robust alternative to conventional pixel-based 575 

architectures. This not only improves computational efficiency but also enhances discriminability and 576 

generalisation, making it well-suited for real-world applications, including robotic vision and 577 

autonomous navigation, where rapid adaptation to dynamic environments is crucial. 578 

 579 

The results of our model suggest that passive visual exposure to natural images alters the connectivity 580 

in the visual lobes, leading to enhanced pattern recognition abilities (Figures 4, 6). Notably, these 581 

synaptic connections develop independently of the initial connectivity profiles of the simulated bees.  582 

We propose that, beyond the  general gross neuroanatomy of the insect optic lobes—which has been 583 

preserved since the Cambrian period for efficient neural representation (Ma et al., 2012)—the specific 584 

visual experiences encountered by real bees during early life play a crucial role in shaping their 585 

individual visual representations. This, in turn, may influence their subsequent performance  in 586 

behavioural tasks (Hertel, 1983, 1982; MaBouDi et al., 2017a; Vetter and Visscher, n.d.). There is 587 

direct empirical evidence for such neural developmental processes in olfactory systems of bees, 588 

where early passive exposure improves subsequent odour discrimination (Arenas and Farina, 2008; 589 

Locatelli et al., 2013). Our previous research in olfactory coding demonstrated that the iSTDP learning 590 

rule can establish specific connectivity in the sensory system and enhance the separability of odour 591 

representations in antennal lobe outputs (MaBouDi et al., 2017a). A similar mechanism was observed 592 

here among lobula neurons, where only a limited subset is activated by specific visual inputs, resulting 593 
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in sparse and distinct outputs to the mushroom body learning centres (Figures 2B, 5). The  receptive 594 

fields of lobula cells, maintained with the fixed lateral connectivity, shows that inhibition is required for 595 

orientation selectivity and temporal coding in the visual lobe (Fisher et al., 2015). These findings 596 

highlight the critical role of inhibitory connections within the visual lobes. Accordingly, our model 597 

predicts that bees with limited early-life visual experiences will perform worse in visual learning and 598 

memory compared to bees with rich visual experiences. Further behavioural and neurobiological 599 

studies are needed to test this prediction.  600 

 601 

Mushroom bodies are critical centres for associative learning and memory in insects (Fiala and Kaun, 602 

2024; Heisenberg, 2003; Menzel, 2022, 2012). Synapses between Kenyon Cells and extrinsic 603 

mushroom body neurons follow a Hebbian STDP rule (Aso et al., 2014; Cassenaer and Laurent, 2007; 604 

Markram et al., 1997); however, the STDP rule alone cannot maintain associative learning  (Abbott 605 

and Nelson, 2000; Meeks and Holy, 2008). In insects, associative learning appears to rely on the 606 

neurotransmitters octopamine and dopamine to signal  unconditioned appetitive and aversive values 607 

(Cognigni et al., 2018; Davidson et al., 2023; Fisher, 2024; Hammer, 1993; Hammer and Menzel, 608 

1995; Matsumoto et al., 2015; Mohammad et al., 2024; Perry and Barron, 2013; Schwaerzel et al., 609 

2003; Selcho, 2024). These neurotransmitters are released into the mushroom body lobes, where 610 

Kenyon cells connect to mushroom body output neurons (MBON) (Burke et al., 2012; Menzel, 2022; 611 

Okada et al., 2007; Strube-Bloss et al., 2011). Using in vivo electrophysiology in locusts, Cassenaer 612 

and Laurent (2012) reported that octopamine depresses synapses underlying STDP rule, leading to 613 

a lower response in MBONs when octopamine is present.  614 

 615 

Following this observation, we modelled associative learning by pairing the positive pattern with the 616 

reward via octopamine-modulated STDP (Equation 4; Figure 1). In this formulation, the temporal 617 

ordering of pre- or postsynaptic spikes depresses the synaptic connection between Kenyon cells and 618 

the MBONs. Conversely, synapses are updated according to classical STDP when negative patterns 619 

are paired with the punishment (Equation 3; Figure 9). This combination produces a complex interplay 620 

between synaptic changes and reinforcer signals, enabling the model to not only learn to select the 621 

positive patterns but to reject incorrect ones (Figure 4B, 6C). The resulting changes in MBON 622 

response to positive patterns during associative learning are consistent with the PE1 extrinsic neuron 623 

in the honeybee brain, which exhibits a lower response to the positive patterns (Ce et al., 2022; Fiala 624 

and Kaun, 2024; Okada et al., 2007) (Figure 4B).  625 

 626 

However, further studies are required to investigate the novel combination of octopamine and 627 

dopamine modulation of STDP that is introduced in this study. Combining non-associative learning in 628 

the optic lobes with supervised learning in the mushroom bodies produced a model capable of not 629 

only discriminating simple patterns but also generalisation (Figure 6B), and correct judgments in 630 
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conflicting stimulus experiments (Figure 6D). The real power of this approach is exemplified in the 631 

facial recognition task (Figure 6E), where the complexity of the human face is reduced to a set of 632 

sparse lobula neuron activations that can be learnt by the mushroom bodies. Moreover, the 633 

spatiotemporal receptive fields formed during non-associative learning respond differently for different 634 

faces, allowing fine differences to be encoded. Although real bees rarely have to discriminate between 635 

human faces, these processes likely enable bees to select rewarding flowers without requiring a 636 

complex visual memory within their miniature brains. 637 

 638 

We used natural scenes with a statistical structure similar to those that visual systems have adapted 639 

to over evolutionary time (Geisler, 2008; Hyvärinen et al., 2009; MaBouDi et al., 2016; Simoncelli and 640 

Olshausen, 2001). Because bee navigation and foraging primarily involve locating food among a 641 

variety of flowers, our non-associative network was trained with a set of different flower images. As 642 

with all theoretical models, this is a simplification, since real bees navigate a 3D environment with a 643 

large field of view. Here, we assume that receptive field formation in real bees is comparable to our 644 

2D simulations. Nevertheless, further studies are necessary to refine and expand our model based 645 

on a more comprehensive understanding of the function and structure of the bee eye components 646 

(Juston et al., 2013; Juusola et al., 2017; Kemppainen et al., 2022b; Viollet and Franceschini, 2010). 647 

Moreover, investigating the neural mechanisms underlying visual learning in the bee brain will allow 648 

us to fine-tune our model’s architecture and parameters, leading to a more faithful representation of 649 

the bee visual system.  650 

 651 

In this study, we restricted the model’s input to green photoreceptors to align with the known visual 652 

processing mechanisms of honeybees. This decision was based on the hypothesis that bee pattern 653 

recognition primarily relies on the green component of visual input, as green-sensitive photoreceptors 654 

are the most abundant, comprising approximately two-thirds of the ommatidia in the compound eye 655 

(Briscoe and Chittka, 2001; Giger and Srinivasan, 1996; Spaethe et al., 2001; Spaethe and Briscoe, 656 

2004). There is also empirical evidence that the green channel provides the predominant input to 657 

movement and edge detection, as well as detailed spatial information for visual discrimination. 658 

Moreover, natural images exhibit a strong correlation among colour channels, meaning that excluding 659 

certain channels does not substantially alter the structure of the visual scene. By focusing on the 660 

green photoreceptor input, our model remains biologically plausible while ensuring computational 661 

efficiency. Future work could explore the contributions of other photoreceptor types to assess their 662 

impact on visual pattern recognition and potential interactions between colour and spatial information 663 

processing in the insect visual system. 664 

 665 

Our model provides a functional abstraction of the insect visual system, focusing on core 666 

computational principles rather than replicating the detailed structural connectivity available from 667 
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recent connectome studies (Lin et al., 2024; Schlegel et al., 2024). By prioritising the identification of 668 

fundamental mechanisms underlying active vision and visual learning, our approach avoids the 669 

challenges associated with highly parameterised models that can be difficult to interpret 670 

mechanistically. Integrating known physiological properties and behavioural findings from bees, our 671 

model generates testable hypotheses on how motion-driven visual processing enhances pattern 672 

recognition. This functional simplification allows us to isolate key mechanisms that might otherwise 673 

be obscured in large-scale anatomical reconstructions. Additionally, our study emphasises the critical 674 

role of motion in visual recognition—an aspect often overlooked in static-image studies—and 675 

demonstrates how sequential visual input dynamically shapes neural encoding, reinforcing the 676 

importance of active vision in efficient sensory processing. 677 

 678 

Recent studies have shown that bees often employ efficient, low-cost strategies to solve cognitive 679 

tasks (Cope et al., 2018; Guiraud et al., 2018; Langridge et al., 2021; MaBouDi et al., 2023a, 2023b, 680 

2021a, 2020b; Roper et al., 2017; Vasas et al., 2019).Understanding these cognitive strategies not 681 

only advances our knowledge of neural computation in miniature brains but also provides a framework 682 

for improving artificial intelligence and autonomous systems. Our study highlights the minimal neural 683 

architectures required for visual learning and lays the foundation for bio-inspired, unsupervised 684 

machine learning algorithms. By emphasising active vision through movement-driven pattern 685 

recognition, our model offers insights into solutions for key AI challenges, such as visual invariance 686 

and robust 3D environmental understanding. Moreover, engineering implementations of eye 687 

micromovements have been shown to enhance edge and bar discrimination, improving the visual 688 

processing efficiency of flying robots (Juston et al., 2013; Viollet and Franceschini, 2010). Additionally, 689 

the non-associative learning model and local plasticity rules explored in this work closely align with 690 

unsupervised learning techniques, particularly sparse coding models, where sparsity constraints 691 

enhance efficiency by reducing redundancy and promoting selective coding. This bio-inspired 692 

framework enables the extraction of latent structures in high-dimensional temporal data, with 693 

applications ranging from sensory signal processing to more adaptive and robust autonomous 694 

perception. Bridging biological and machine intelligence through evolutionarily optimised 695 

computational strategies paves the way for the next generation of AI, driving advancements in 696 

robotics, autonomous navigation, and real-world learning systems (de Croon et al., 2022; 697 

Manoonpong et al., 2021; Serres and Viollet, 2018; Webb, 2020).   698 

 699 

Materials and Methods 700 

Network topology of active vision model  701 

The model architecture of the bee visual pathway is illustrated in Figure 1A. The bumblebee has a 702 

pair of compound eyes that are composed of ~5,500 ommatidia (Spaethe and Chittka, 2003b; 703 
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Streinzer et al., 2013). Each eye contains three different types of photoreceptors, short, medium and 704 

long wavelength sensitive peaking in the UV, blue and the green respectively (Menzel and Blakers, 705 

1976; Skorupski et al., 2007). Since the green photoreceptors are those that predominantly mediate 706 

visual pattern recognition (Giger and Srinivasan, 1996; Spaethe et al., 2001), we modelled that 75x75 707 

green photoreceptors in one eye component are activated by the pixel values of the input pattern. 708 

Photoreceptors then project to 625 (25x25) neurons in the lamina, which is the first centre of visual 709 

processing. In this model, each lamina neuron, 𝑟𝑟𝑙𝑙𝐿𝐿𝐿𝐿, receives input from a non-overlapping 3x3 grid of 710 

neighbouring photoreceptors, corresponding to adjust ommatidia. The response of a lamina neuron 711 

is computed as 𝑟𝑟𝑙𝑙𝐿𝐿𝐿𝐿 = 𝑓𝑓(∑ 𝑟𝑟𝑝𝑝𝑃𝑃=9𝑝𝑝=1 ;  𝐴𝐴0,𝑚𝑚 , 𝑏𝑏). Here, the activation function 𝑓𝑓 is defined as: 712 

𝑓𝑓(𝑟𝑟;𝐴𝐴0,𝑚𝑚, 𝑏𝑏) = 𝐴𝐴0 /(1 + 𝑒𝑒𝑒𝑒𝑒𝑒(𝑚𝑚𝑟𝑟 + 𝑏𝑏), 713 

 where r is the input to the lamina neuron 𝐿𝐿𝐿𝐿,  and 𝐴𝐴0  represent the maximum possible activity of 714 

lamina neurons. The parameters 𝑚𝑚 and 𝑏𝑏 define the shape of the activation function, controlling its 715 

steepness and midpoint, respectively. For simplicity, the activation function in our model is fixed with  716 𝐴𝐴0 = 1, 𝑚𝑚 = −1, and 𝑏𝑏 = 0.5. This function imposes a constraint where weak inputs result in low 717 

activity, while stronger inputs drive the response toward its maximum value in a sigmoidal manner. 718 

Each photoreceptor’s output, 𝑟𝑟𝑝𝑝,is derived directly from the pixel intensity at the corresponding location 719 

in the input image, representing the green channel's brightness. The values are normalised between 720 

0 and 1, ensuring a continuous response that reflects the natural variation in luminance.  721 

In this study, each spiking neuron operates according to the integrate-and-fire model.  The dynamics 722 

of the subthreshold membrane potential of a neuron, 𝑢𝑢(𝑡𝑡) is described by the following standard 723 

conductance- based leaky integrate-and-fire model: 𝜏𝜏 𝑑𝑑𝑑𝑑(𝑡𝑡)𝑑𝑑𝑡𝑡 = −𝑢𝑢(𝑡𝑡) + 𝑅𝑅. 𝐼𝐼(𝑡𝑡), where 𝑅𝑅 = 10 and 𝜏𝜏 =724 

10𝑚𝑚𝑚𝑚 are the resistance and membrane time constant of the neuron respectively. Here, the input 𝐼𝐼(𝑡𝑡) 725 

exhibit the total synaptic input to the cell from presynaptic neurons. The membrane potential is reset 726 

to the base activity, 𝑣𝑣0 = −80 𝑚𝑚𝑚𝑚, if it exceeds the threshold, 𝑚𝑚𝑇𝑇 = 0 𝑚𝑚𝑚𝑚.  727 

Each medulla neuron is activated by the summed activity of lamina neurons through the synaptic 728 

connectivity matrix W. The input of the 𝑚𝑚 − the medulla neuron, 𝐼𝐼𝑚𝑚𝑀𝑀𝑀𝑀 ,  is calculated 𝐼𝐼𝑚𝑚𝑀𝑀𝑀𝑀 =729 ∑ 𝑊𝑊𝑚𝑚,𝑙𝑙 𝐿𝐿𝑙𝑙=1 𝑟𝑟𝑙𝑙𝐿𝐿𝐿𝐿. The value 𝑊𝑊𝑙𝑙,𝑚𝑚 specifies the strength of a synaptic input from the 𝑙𝑙 −th lamina neuron 730 

to the 𝑚𝑚 − the medulla neuron. To account for the inherent variability in neural responses, we 731 

incorporated stochasticity by adding signal noise generated from a Poisson distribution to the output 732 

of each neuron. The Poisson distribution was chosen because it closely models the statistical 733 

fluctuations observed in biological neural firing, where the variance of the response scales with the 734 

mean activity. This noise was applied independently to each neuron, ensuring that the variability in 735 

responses remains biologically plausible while preserving the overall signal structure. By introducing 736 
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this element, the model better reflects the natural dynamics of neural processing, capturing the 737 

probabilistic nature of spike generation and sensory encoding in biological systems. 738 

We propose a temporal coding model that captures the interaction between medulla and lobula 739 

neurons in the visual pathway, incorporating sequential scanning of visual stimuli to optimise 740 

information processing. In this model, each wide-field lobula neuron receives synaptic input from M 741 

small-field medulla neurons, with a structured progressive delay T (Figure 1D). Here, 𝑀𝑀 = 5 742 

represents the number of temporal instances within the model’s input sequence. Each medulla neuron 743 

is activated by visual information sampled from one of M overlapping segments of an image patch, 744 

determined by the scanning speed, and follows the hierarchical processing pathway from 745 

photoreceptors to lamina neurons (Figure 1C). While individual medulla neurons encode only a 746 

fraction of the visual stimulus, the lobula neuron integrates input from all medulla neurons to generate 747 

spiking activity, thereby forming a holistic representation of the entire visual scene. The synaptic 748 

transmission between medulla and lobula neurons incorporates structured temporal delays at distinct 749 

instances (𝑇𝑇, 2𝑇𝑇, 3𝑇𝑇, 4𝑇𝑇, 5𝑇𝑇) , ensuring that sequentially acquired visual information is temporally 750 

aligned. This results in the synchronized activation of the lobula neuron at a single unified time point, 751 

effectively integrating spatially and temporally structured input into a cohesive internal representation. 752 

By simulating the dynamic interplay between spatial sampling and temporal integration, this model 753 

mirrors the way bees may optimise visual processing through active vision. The resulting alignment 754 

of visual signals enhances feature extraction and pattern recognition, providing a biologically plausible 755 

mechanism for encoding complex scenes efficiently (Figures 2, 3, 6).  756 

The model incorporates lateral inhibitory connections between lobula neurons (Figure 1C, depicted 757 

in red), 𝑄𝑄 = �𝑞𝑞𝑖𝑖,𝑗𝑗� , where 𝑞𝑞𝑖𝑖,𝑗𝑗  represents the lateral connectivity between 𝑖𝑖 − th and 𝑗𝑗 − th lobula 758 

neurons. This connectivity along with 𝑊𝑊𝑚𝑚,𝑙𝑙 are updated during a non-associative learning process, to 759 

reduce redundancy and decorrelate overlapping inputs (see next subsection). This inhibitory 760 

mechanism enhances contrast and improves pattern recognition by selectively amplifying novel 761 

spatial features (Figures 3, 6). 762 

The processed visual information is then transformed to the Kenyon cells (KCs) in the mushroom 763 

body. The synaptic connectivity matrix 𝑆𝑆𝐿𝐿𝐿𝐿→𝐾𝐾𝐾𝐾 = �𝑚𝑚𝐿𝐿,𝑘𝑘�  determines the excitatory connections 764 

between lobula neurons and KCs in the mushroom body, following previous findings on sparse, 765 

random connectivity (Caron et al., 2013; Szyszka et al., 2005). Kenyon cells exhibit sparse activity, 766 

with fewer than 5% of KCs activated per stimulus, ensuring high selectivity for particular image 767 

features (Honegger et al., 2011). This sparsity emerges naturally from the random connectivity and 768 

thresholder activation dynamics, reinforcing the sparseness in the model. Each connection weight 769 𝑚𝑚𝐿𝐿,𝑘𝑘 is randomly initialized from a uniform distribution in the range [0,𝑤𝑤𝑚𝑚𝐿𝐿𝑚𝑚], where ,𝑤𝑤𝑚𝑚𝐿𝐿𝑚𝑚  is a scaling 770 

factor ensuring the limitation of input to the KCs. For each simulated bee, the connectivity matrix 771 
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𝑆𝑆𝐿𝐿𝐿𝐿→𝐾𝐾𝐾𝐾 is randomly reinitialised, ensuring that each instance of the model has a unique but statistically 772 

comparable connectivity structure. This reinitialization reflects individual variations in synaptic wiring 773 

and allows us to assess the robustness of the model’s pattern recognition ability across different 774 

randomly generated network configurations.  775 

All Kenyon cells project to a single mushroom body output neuron (MBON), which is the final output 776 

of the model. The input of the of the MBON, 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , is computed by the KC-MBON connections 𝐷𝐷 such 777 

that  𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝐷𝐷𝑘𝑘𝑟𝑟𝑘𝑘𝐾𝐾𝐾𝐾𝐾𝐾𝑘𝑘=1 , where 𝑟𝑟𝑘𝑘𝐾𝐾𝐾𝐾 is the spiking activity of the 𝑘𝑘-th KCs. Finally, a reinforcement 778 

neuron makes reinforcement-modulated connections with the KCs and MBON in the presence of the 779 

positive and negative patterns (see the next section). 780 

Each neuron type is denoted with a superscript corresponding to its respective processing stage. For 781 

example, 𝑟𝑟𝑝𝑝, represents the response of an individual photoreceptor, while rLa denotes the activity of 782 

a lamina neuron, where ‘La’ refers to the lamina layer. Similarly, other superscripts—Me, Lo, KC, and 783 

MBON—correspond to specific network components: the medulla, lobula, Kenyon cells, and 784 

mushroom body output neurons, respectively. This ensures consistency in notation throughout the 785 

model description. 786 

Training the network via a non-associative learning  787 

We trained the model using 50,000 time-varying image patches randomly sampled from a dataset of 788 

100 natural flowers and scene images. During each training step, the model received an input 789 

sequence of five sequential 75 × 75-pixel patches, extracted by shifting 15 pixels across the image 790 

from the left or right or the reverse orientation (Figures 1B, 2B). This patchwise input simulates the 791 

sequential scanning behaviour of bees as they explore visual stimuli. 792 

Using the described network architecture, each time-varying patch dynamically drives spiking activity 793 

in lobula neurons as the simulated movement progresses. At the start of training, all inhibitory 794 

connection strengths 𝑄𝑄  were initialized with values randomly drawn from a uniform distribution 795 

between 0 and 1. The feedforward synaptic weights 𝑊𝑊 were initialized using Gaussian white noise 796 𝒩𝒩(0, 1). As training progressed, the evoked neural responses of lobula neurons to time-varying 797 

patches were used to iteratively update both the inhibitory weights (𝑄𝑄) and feedforward connections 798 

(𝑊𝑊) simultaneously (see Discussion section). 799 

After the image presentation, the feed-forward weight 𝑊𝑊  is updated according to Oja’s 800 

implementation of the Hebbian learning rule (MaBouDi et al., 2017a; Oja, 1982) via  801 𝛥𝛥𝑊𝑊𝑖𝑖,𝑗𝑗 = 𝛾𝛾𝑟𝑟𝑗𝑗𝑀𝑀𝑀𝑀(𝑟𝑟𝑖𝑖𝐿𝐿𝐿𝐿 − 𝑟𝑟𝑗𝑗𝑀𝑀𝑀𝑀𝑊𝑊𝑖𝑖,𝑗𝑗)    (Equation 1) 802 
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Here, the 𝑟𝑟𝑗𝑗𝑀𝑀𝑀𝑀 and 𝑟𝑟𝑖𝑖𝐿𝐿𝐿𝐿 represent the activities of the j-th medulla and i-th lamina neurons, respectively. 803 

The positive constant 𝛾𝛾 defines the learning rate.  804 

At the same time of processing, the lateral inhibitory connectivity in the lobula is modified by inhibitory 805 

spike-time-dependent plasticity (iSTDP) (Vogels et al., 2011). Here, we model non-associative 806 

learning in lobula by a symmetric iSTDP between presynaptic of the inhibitory neurons and 807 

postsynaptic lobula neurons. In this learning rule, both temporal ordering of pre- or post- synaptic 808 

spikes potentiates the connectivity and the synaptic strength of j-th inhibitory neuron onto i-th lobula 809 

neuron (𝑄𝑄𝑖𝑖,𝑗𝑗) is updated as follows: 810 

𝛥𝛥𝑄𝑄𝑖𝑖,𝑗𝑗 = 𝜂𝜂(𝑟𝑟𝑖𝑖𝐿𝐿𝐿𝐿 ∗  𝑟𝑟𝑗𝑗𝐼𝐼𝐼𝐼 − 𝛼𝛼)  (Equation 2) 811 

where 𝑟𝑟𝑖𝑖𝐿𝐿𝐿𝐿 and 𝑟𝑟𝑗𝑗𝐼𝐼𝐼𝐼 exhibit the mean firing rate of the lobula and inhibitory neurons, respectively. The 812 

depression factor 𝛼𝛼 controls the target activity rate of the lobula neurons. Here, 𝜂𝜂 is the learning rate. 813 

To simplify, a one-to-one connection between the inhibitory and lobula neuron is assumed in the 814 

model such that the activity of the j-th inhibitory neuron is equal to the activity of the j-th lobula neuron. 815 

The training is terminated when the synaptic weights over time are changed less than a small 816 

threshold (0.001). In the training process, synaptic weights were constrained within the range [−1, +1] 817 

for the 𝑊𝑊  and  [0, +1] for 𝑄𝑄   to ensure stable convergence and to reflect biological limitations in 818 

synaptic transmission strength. 819 

Associative learning in Mushroom Bodies 820 

To verify if the lobula neurons can reproduce empirical behavioural results in different visual tasks, 821 

the model is enriched with associative learning process in the mushroom bodies (a bio-inspired 822 

supervised learning). When the training process of the non-associative learning is terminated, we use 823 

a reward-based synaptic wright modification rule in KCs-MBON connection (D), such that, if a stimulus 824 

is rewarding (i.e. positive), the corresponding synapses between activated neurons will be weakened 825 

while for a stimulus paired with punishment (i.e. negative), activated synapses are strengthened  826 

(Cassenaer and Laurent, 2012) (see Discussion section). The model behaves as the activity of 827 

mushroom body neurons in decreasing their firing rate in responding to the positive stimuli during 828 

training (Okada et al., 2007). In this model, two reinforcement neurons modulated strengths of 829 

synaptic connectivity at the output of the KCs in response to both reward and punishment. In the 830 

presence of the negative patterns, the synaptic strengths from the KCs to the MBON are modified, 831 

and modulated by dopamine, based on the classical STDP (Song et al., 2000; Zhang et al., 1998) 832 

(Figure S3A):  833 

𝑆𝑆𝑇𝑇𝐷𝐷𝑃𝑃𝐷𝐷𝐿𝐿𝑝𝑝 (𝛥𝛥𝑡𝑡) = � 𝐴𝐴 𝑒𝑒−𝛥𝛥𝑡𝑡/𝜏𝜏 , 𝛥𝛥𝑡𝑡 > 0−𝐴𝐴 𝑒𝑒𝛥𝛥𝑡𝑡/𝜏𝜏 , 𝛥𝛥𝑡𝑡 < 0
 ,          (Equation 3) 834 
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where 𝛥𝛥𝑡𝑡 = 𝑡𝑡𝑝𝑝𝐿𝐿𝑝𝑝𝑡𝑡 − 𝑡𝑡𝑝𝑝𝑝𝑝𝑀𝑀  implies the difference between the spike time of pre- and post- synaptic 835 

neurons. Further, applying the synaptic plasticity rule modulated by octopamine (octopamine 836 

modulated STDP) observed in the presence of rewarding stimuli to the synapses between KCs and 837 

MBON (Cassenaer and Laurent, 2012), the change in synaptic weight can be summarised as (Figure 838 

4B): 839 

𝑆𝑆𝑇𝑇𝐷𝐷𝑃𝑃𝑀𝑀𝐾𝐾𝑇𝑇 (𝛥𝛥𝑡𝑡) = �−𝐴𝐴 𝑒𝑒−𝛥𝛥𝑡𝑡/𝜏𝜏 , 𝛥𝛥𝑡𝑡 > 0−𝐴𝐴 𝑒𝑒𝛥𝛥𝑡𝑡/𝜏𝜏 , 𝛥𝛥𝑡𝑡 < 0
 ,      (Equation 4). 840 

Here, 𝐴𝐴 = 0.01  and 𝜏𝜏 = 20 𝑚𝑚𝑚𝑚  exhibit the maximum magnitude and time constant of the STDP 841 

function for the synaptic potentiation or depression. 842 

Figure 9. STPS 
curves. (A) 
Classical STDP 
curve showing 

relationship 
between 

synaptic weight 
change and the 
precise time 

difference 
between the 
Kenyon Cells 
and MBON 
spikes. The 
synaptic weight 

can be either depressed or potentiated. (B) STDP curve modulated by octopamine in the insect 
mushroom body. The Synaptic weights are depressed. The formula of these curves was 
described in Equations 3 and 4. 

 

 843 

To train the model in different conditions of scanning, the flight-scan forms of the positive and negative 844 

patterns were presented to the model. Each set of flight-scan input contained a set of five patches 845 

with size 75x75 pixels were selected from the test patterns by shifting 15 pixels over each pattern 846 

from the left to right (Figure 4A). The numbers of shifted pixels control the speed of scanning. The 847 

activity of the MBON was used to assess the performance of the model. Following the training, the 848 

performance of the model was calculated from a decrease in firing rate of the MBON to a pattern that 849 

had been rewarding and/or an increase in firing rate of MBON to a pattern that had been punishing in 850 

training. The bee’s final behavioural decision is proposed to come from a simple integration of these 851 

different valence-encoding neurons. 852 

 853 

Quantifying neural population sparseness and response separability 854 
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To quantify population sparseness in the lobula following training on natural images, we employed 855 

the Treves-Rolls sparseness index (MaBouDi et al., 2017b; Willmore and Tolhurst, 2001), defined as: 856 

𝑆𝑆𝐼𝐼 =
�∑ 𝑟𝑟𝑗𝑗/𝑁𝑁𝑀𝑀𝑗𝑗=1 �2�∑ 𝑟𝑟𝑗𝑗2𝑀𝑀𝑗𝑗=1 �/𝑁𝑁  857 

where 𝑟𝑟𝑗𝑗  represents the firing rate of the j-th lobula neuron, and N is the total number of lobula 858 

neurons.  859 

This metric provides insight into the population coding strategy of lobula neurons, distinguishing 860 

between broad distributed representations and sparse selective responses:  861 

• Maximum SI = 1 (low sparseness): Achieved when all neurons respond equally, indicating a 862 

fully distributed code where the entire population is uniformly active across all stimuli. 863 

• Minimum SI = 1/N (high sparseness): Occurs when only a single neuron is active while all 864 

others remain silent, reflecting a highly selective encoding scheme. 865 

 866 

To further assess the separability between response population of lobula neurons in response to 867 

different stimuli, we computed the angular distance (𝜃𝜃 ) using the cosine similarity formula: 𝜃𝜃 =868 

cos−1 ( 𝑅𝑅1.𝑅𝑅2 (|𝑅𝑅1| |𝑅𝑅1|)⁄ , where  𝑅𝑅1 and 𝑅𝑅2 represent the activity vectors of two neural populations, 869 

and  |𝑅𝑅1| 𝐿𝐿𝑎𝑎𝑎𝑎 |𝑅𝑅2| denote their responses Euclidean norms. This measure captures the geometric 870 

distinction between response patterns, with larger angles indicating greater separability between 871 

neural representations of different stimuli. A higher angular distance suggests that the population 872 

responses are more distinct, reflecting improved stimulus discrimination within the lobula. 873 

 874 

Simulation and Statistical Analysis 875 

To assess the model's performance across experiments, we conducted 20 independent simulations 876 

for each condition, ensuring statistical reliability and robustness. In each simulation, the synaptic 877 

connectivity matrix between lobula neurons and Kenyon cells was randomly initialised using a uniform 878 

distribution within a biologically plausible range, mimicking the individual variability observed in real 879 

bees. This stochastic initialisation prevented bias in learning outcomes and allowed us to examine 880 

how the model generalises across different neural configurations.  881 

Each simulated bee underwent multiple training exposures to visual stimuli. Following training, once 882 

the model parameters were fixed at the final stage of training, the model was tested across 50 883 

repetitions per condition with testing patterns to account for variability in responses. The model's 884 

performance was evaluated by averaging across simulations, with standard error of the mean (SEM) 885 

reported in the figures to provide a statistically robust representation of discrimination accuracy.  886 

Statistical analyses were conducted to compare pattern discrimination across conditions. To maintain 887 

clarity and focus on the modelling findings, detailed significance values are not reported in the main 888 
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text. Instead, figures indicate p-values < 0.05 with ‘*’ and non-significant results with ‘n.s.’. Since data 889 

distributions did not always meet normality assumptions, we used the Wilcoxon signed-rank test for 890 

matched data and the Wilcoxon rank-sum test (Mann-Whitney U test) for independent samples. For 891 

comparisons across multiple groups, we applied the Kruskal-Wallis test, followed by Dunn’s post-hoc 892 

test when necessary. 893 

Computing Environment: All modelling and visualisation were performed using MATLAB 894 

(RRID:SCR_001622) and Python (RRID:SCR_008394). MATLAB was also used for statistical 895 

analysis. 896 
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