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Abstract—This paper presents a novel methodology for the 

detection and diagnosis of rotor faults in induction machines using 

signal estimation. The proposed approach is independent of the 

motor slip and relies on the isolation of main harmonics rather 

than on the investigation of signatures with traditional approaches 

such as the identification of fault-related sidebands. The method is 

applied on the stator line current capturing the transient nature of 

fault-related frequencies at the steady state. Thus, it enables a 

reliable diagnostic strategy by the isolated harmonics and their 

analysis over time and frequency. The method’s effectiveness was 
explored with electromagnetic simulations of two induction 

machines of different geometry, manufacture, and power scale. 

Then, the method was validated experimentally on a 1.1 kW 

induction motor. 

 
Index Terms— harmonic isolation, induction motors, rotor 

faults. 

I. INTRODUCTION 

NDUCTION motors are key devices in the modern industry, 

as they are the main electromechanical energy converters in 

industrial and production facilities worldwide. This is 

mainly due to their resilience, reliability, and low cost. Despite 

that, induction motors are subject to stresses such as thermal 

and mechanical. At the same time, they frequently operate in 

environments with adverse conditions that magnify the impact 

of stresses. Additionally, large motors experience intense 

electrical stresses due to the stator high voltage. These factors 

initiate a gradual degradation of motors and their components, 

resulting in cumulative damage that will progressively lead to a 

fault condition. The main challenge for diagnostic engineers is 

to detect faults at incipient levels, to prevent the evolution of 

the fault into a catastrophic failure. 

Rotors of induction motors experience severe stresses both 

during the transient and the steady-state operation. The impact 

of frequent start-ups under cold or hot state significantly 
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contributes to the degradation of the rotor cage [1]. Moreover, 

inherent manufacturing defects such as the porosity of the cage 

during the casting process create weak points in the rotor 

structure where hot spots appear, so specific locations of the 

rotor cage are thermally overstressed [2]. The combination of 

manufacturing anomalies and stresses during operation may 

lead to cracks or breakages of the bars and electrical 

disconnection from the rotor circuit. Rotor faults such as broken 

bars have been extensively studied over the years [3]. 

Historically, the Motor Current Signature Analysis (MCSA) 

was the first method adopted in the field for the detection of this 

fault. It was considered very reliable until approximately ten 

years ago, when researchers encountered multiple cases where 

the method provided false positive or false negative diagnostic 

outcomes [4]. Therefore, MCSA is still applied but mainly as a 

first step to identify fault indicators and not as a holistic 

diagnostic approach. This gap was bridged with the 

development of other methods exploring several different 

quantities for fault detection and diagnostics with more 

sophisticated signal processing techniques [5]-[6]. 

A false-negative diagnostic case is that of the non-adjacent 

broken rotor bars [7]. Especially for non-adjacent breakages at 

half pole pitch distance, the overall magnetic asymmetry can 

cancel out the signatures in the stator current spectrum making 

MCSA unreliable [8]. The main solution offered by the research 

community is to detect the fault during the transient start-up 

using time-frequency analysis or other advanced signal 

processing methods [9]-[10]. Although successful, such 

methods rely on the identification of changing trajectories of 

fault harmonics over time and cannot always be applied at 

steady-state. However, there is a vast number of motors in 

industry that do not undergo frequent start-ups. In these cases, 

such methods are prone to obscured diagnostic outcomes. Α 
solution for rotor fault detection over the steady state regime of 
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operation was offered by the frequency extraction method at 

steady state but requires an estimation of the speed and high 

sampling rate of the monitored current signals [11]-[12]. 

In this paper, we present a reliable solution for the detection 

of non-adjacent broken bars during the full-load condition at 

steady state. The proposed method uses current monitoring and 

relies on a two-stage signal processing approach enabling 

frequency isolation. The method has been tested successfully 

on data from finite element simulations of two induction motors 

of different sizes and manufacturing characteristics. Finally, 

this new method has been experimentally validated in the lab, 

and the experimental results are accurate and complementary to 

the simulations. 

II. BACKGROUND THEORY 

A. Rotor Faults in Induction Motors 

Rotor fault detection in induction motors has attracted 

significant research interest with regards to transient detection 

and extraction of frequency information as intelligent 

techniques with AI algorithms and neural networks. Regardless 

of the technique, the characteristic frequencies to detect the 

fault signature are given by [13]: 𝑓𝑏𝑟𝑏 = [𝑘𝑝 (1 − 𝑠) ± 𝑠 ]𝑓𝑠   ,        (1) 

 

where 𝑘 = 6𝜈 ± 1  …., 𝜈 ∈ ℕ  …, 𝑓𝑠  the fundamental supply 

frequency, 𝑝 the number of pole pairs, and 𝑠 the motor slip. The 

traditional MCSA-based sideband identification in the vicinity 

of the fundamental harmonic focuses on the tracking and 

analysis of the known (1 ± 2𝑠 )𝑓𝑠  components due to the 

developed fault-related speed ripple effect generating such 

components [1], [2], [8]. 

The problem of non-adjacent rotor bar breakages forms a 

special challenge for detection when these occur at the distance 

of a half-pole pitch and a full-pole pitch. Which is more 

challenging depends on several factors such as the machine 

size, geometry, voltage driving the machine, loading 

conditions, value of slip, manufacture, low-load oscillations, 

etc., some of which may be beyond the control of the motor 

end-user or the diagnostician. By way of examples, some 

combinations of stator slots/rotor bars number introduce more 

intense speed ripple than others and although the motor is 

healthy, speed ripple sidebands which are not fault-related may 

appear in the spectrum; these mislead the diagnostic decision as 

they appear in the same or similar areas like the components 

given by (1). Similar is the behaviour of the fault for machines 

with cooling air-ducts [4], [10]. Other reasons that can lead to 

erroneous diagnostics are air-voids in the rotor cage (porosity), 

low values of slip shifting sidebands close to a main harmonic, 

magnetic anisotropy, and minor delamination or several 

defective manufacturing features of unknown origin. All these 

cases and the corresponding physical mechanisms that govern 

the unpredictable nature of the fault evolution in each case form 

the framework underlying the rationale of the works described 

in Section II-B. 

B. Digital Signal Processing for Rotor Fault Detection 

Several algorithms have been deployed for digital signal 

processing (DSP) in tandem with condition monitoring and 

fault detection techniques. Although these approaches come 

with several novelties and are, to some extent, germane in terms 

of fault detection during the start-up of the machine by 

identification of patterns, they are subject to diagnostic 

inaccuracy. This is because they track the variability of 

sideband trajectories, which risk being misinterpreted, 

compromising the diagnostic process. Nonetheless, several 

research studies in this field have provided compelling fault 

detection methods with significant contributions, even for some 

of the challenging cases mentioned in Section II-A. 

Initial approaches using time-frequency analysis handled 

the identification of trajectories by representation with the 

Wigner-Ville distribution and the Short-time Fourier transform 

[14]-[15]. These ushered the well-known V-shaped pattern over 

the transient start-up, which was the fault indication. This 

trajectory pattern and its behaviour were then put under 

investigation with other representations such as the wavelet 

analysis (discrete & continuous, DWT & CWT) [16]-[17], the 

Hilbert Transform [18], and the multiple signal classification 

(MUSIC) algorithm [19]. Following this, diagnostic approaches 

have been investigated using modifications of these methods or 

their expansion combined with other approaches. Some 

examples of such novelties were presented in [20] for 

diagnostics of industrial equipment online using a combination 

of the STFT and FFT analysis with an embedded system for 

real-time monitoring, in [21] for eccentricity and rotor faults 

using Gabor analysis, in [22] for rotor faults and stator faults by 

the Hilbert-Huang transform, and in [11]-[12] for rotor faults 

by frequency extraction. Additionally, uncertainties pertaining 

to frequency fluctuations and their effect in diagnostic 

competence of traditional methods have been discussed in [23]. 

In the latter publication, the authors present an efficient 

approach for the reliable detection of broken rotor bar faults in 

induction motors by the utilisation of a suppression technique 

for the sufficient handling of the fundamental frequency 

component uncertainties caused by frequency fluctuations 

during the fault detection process. 

III. METHODOLOGY 

A. Frequency isolation algorithm 

The main function of the proposed method is the accurate 

estimation of the fundamental frequency and any higher-order 

harmonics of a measured signal. 𝑦(𝑡). Any such component is 

a periodical signal, 𝑣(𝑡), given by: 

  𝑣(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡 + 𝜙)   ,         (2) 

 

where 𝐴 the amplitude of the signal, 𝜔 the angular frequency, 

and 𝜑  the phase angle. Essentially, the signal component 

expressed by (2) represents the solution of a second-order 

differential equation of the form: 

  
𝑑2𝑑𝑡2 𝑣(𝑡) + 𝜔2𝑣(𝑡) = 0  .                       (3) 
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Using phasors, this solution of (3) in polar form is written 

as: 

    𝑉 = 𝐴 ∠𝜙   .        (4) 

 

The expression given by (4) is a specific odd harmonic that 

is desired to be isolated, i.e., 𝜔 = 𝑛𝜔𝑚with 𝑛 = 2𝑙 + 1, 𝑙 ∈ ℕ 

and 𝜔𝑚 is the electrical frequency. Considering the state–space 

formation of (4) and that 𝑣(𝑡) is expressed in the α–β frame, it 

can be written as [24], [26]: 

  𝑣𝑛(𝑡) = [1      0] [𝑥𝑎,𝑛(𝑡)𝑥𝛽,𝑛(𝑡)] ,       (5) 

 

where the subscript 𝑛 is used to denote the specific harmonic 

component. After expressing the signal in the α-β frame as in 

the last equation, then the discrete-time solution of (5) is 

obtained in the form of a state–space equation [24], [26]: [𝑥𝑎,𝑛[𝑘 + 1]𝑥𝛽,𝑛[𝑘 + 1]] = [cos(𝑛𝜔𝑚𝑇𝑠) − sin(𝑛𝜔𝑚𝑇𝑠)sin(𝑛𝜔𝑚𝑇𝑠) cos(𝑛𝜔𝑚𝑇𝑠) ] [𝑥𝑎,𝑛[𝑘]𝑥𝛽,𝑛[𝑘]] ,       (6) 

 

with 𝑇𝑠 being the sampling rate, while the measured signal 𝑦(𝑡) 

can be written as: 𝑦(𝑡) = ∑ 𝑣𝑛(𝑡)𝑛 = ∑ 𝑥𝛼,𝑛(𝑡)𝑛 =           = 𝑥𝛼,1(𝑡) + 𝑥𝛼,3(𝑡) + 𝑥𝛼,5(𝑡) + ⋯     .           (7) 

 

The algorithm performs an estimation, [�̂�𝑎,𝑛[𝑘] �̂�𝛽,𝑛[𝑘]]𝑇 , 

of the actual components, which must be reliably applied even 

in the presence of abrupt changes in the signal –i.e., during the 

transient start-up of the machine or during fractions of the 

steady-state regime when at fault condition. To accomplish this 

harmonic isolation, the method presented in [24] & [25] is 

implemented, which uses the discussed estimation algorithm as 

a closed-loop scheme for the detection of abrupt transients in 

power grids. The equations implementing the estimator for each 

component are given by: [�̂�𝑎,𝑛[𝑘 + 1]�̂�𝛽,𝑛[𝑘 + 1]] = [cos(𝑛𝜔𝑚𝑇𝑠) − sin(𝑛𝜔𝑚𝑇𝑠)sin(𝑛𝜔𝑚𝑇𝑠) cos(𝑛𝜔𝑚𝑇𝑠) ] [�̂�𝑎,𝑛[𝑘]�̂�𝛽,𝑛[𝑘]] − 

   − [𝜀𝑛𝑇𝑠(�̂�[𝑘] − 𝑦[𝑘])0 ] .     (8) 

 

Then, the estimated signal is given from: 

 

  �̂� = �̂�𝑎,1 + �̂�𝑎,3 + �̂�𝑎,5 + ⋯     ,      (9) 

 �̂�𝑎,𝑛 , �̂�𝛽,𝑛 being the estimates of the phasor of the 𝑛𝑡ℎ harmonic 

expressed in the α-β frame, �̂� is the estimated signal, 𝜔𝑚  the 

electrical frequency, 𝑇𝑠  the sampling rate, and the factors 𝜀𝑛 

tuneable adaptation gains with 𝑛 = 2𝑙 + 1, 𝑙 ∈ ℕ. 

B. Finite Element simulation models 

The proposed method is initially implemented with 

simulations by Finite Element Analysis (FEA) of three different 

induction motors. The models of each motor and their magnetic 

flux density distribution are shown in Fig. 1, labelled Motor 1, 

Motor #2 and Motor #3. Motor #1 and Motor #2 are both 4 kW, 

4 poles, 400 V induction motors at 50 Hz, with 36 stator slots 

and a Δ-connected random-wound distributed stator winding 

and have 28 rotor bars and 32 rotor bars, respectively. Motor #3 

represents a large industrial motor with 1.1 MW output power, 

6 poles, 6.6 kV large industrial induction motor at 50 Hz, with 

54 stator slots, 70 rotor bars, and a Y-connected concentrated 

stator winding. Motor #1 and Motor #2 incorporate an 

aluminium cage, while Motor #3 has a fabricated copper bar 

cage. The detailed characteristics of these three induction motor 

simulation models are listed in Table I. Five different FEA 

models are used for each motor to simulate all required healthy 

and faulty cases. Using the healthy condition of each induction 

machine as the basic reference, then four models that refer to 

the rotor suffering from different bar breakage scenarios are 

used for each motor, which includes the 1 broken bar, 2 adjacent 

broken bars, and 2 non-adjacent broken bars being the bar 

breakage at an angle of half pole pitch and full pole pitch, 

respectively. By evaluating the diagnosis results using 

harmonic isolation, the reliability of the proposed technique 

will be demonstrated on the utilised FEA models. The transient 

2-D FEA electromagnetic simulations account for the machine 

in rotary load-driven motion with a timestep of 0.1 msec, which 

defines a sampling frequency of 10 kHz for the datasets 

acquired with simulations. Corresponding to the experimental 

measurements described after this section, the motors are run at 

the full-load condition and Table II summarises all the cases per 

motor as well as the value of slip for each model. 

 
TABLE I 

CHARACTERISTICS OF SIMULATED MOTORS 

Characteristics 
Value 

Motor #1 Motor #2 Motor #3 

Supply frequency 50 Hz 50 Hz 50 Hz 

Stator winding Δ Δ Y 

Output power 4 kW 4 kW 1.1 MW 

Rated voltage 400 V 400 V 6.6 kV 

Rated current 10 A 10 A 170 A 

Pole pairs 2 2 3 

Rated speed 1450 rpm 1450 rpm 990 rpm 

Stator slots 36 36 54 

Rotor bars 28 32 70 

 

 

a) 
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 b) 

Fig. 1. a) Finite Element Simulation Models: Motor #1 (left), 

Motor #2 (middle) and Motor #3 (right); b) Magnetic Flux 

Density Distribution: Motor #1 with 1 broken bar (left), Motor 

#3 with 1 broken bar (right). 

 
TABLE II 

SUMMARY OF MODELS AND VALUES  OF SLIP 

Cases Healthy 

1 

broken 

bars 

2 

broken 

bars 

adjacent 

2 

broken 

bars 

half-pole 

2 

broken 

bars 

full-pole 

M
o

to
r#

1
 

Label Healthy 
1 

BrB 

2 

BrB 

1&4 

BrB 

1&6 

BrB 

Slip 0.0195 0.0204 0.0216 0.0213 0.0213 

M
o

to
r#

2
 

Label Healthy 
1 

BrB 

2 

BrB 

1&4 

BrB 

1&6 

BrB 

Slip 0.0174 0.018 0.0189 0.0187 0.0208 

M
o

to
r#

3
 

Label Healthy 
1 

BrB 

2 

BrB 

1&6 

BrB 

1&11 

BrB 

Slip 0.0091 0.0094 0.0095 0.0096 0.0094 

C. Experimental measurements 

The motor used for experiments is a 1.1 kW, 4-pole, 230 V 

induction motor at 50 Hz, with 36 stator slots, 28 rotor bars, and 

a Δ-connected distributed winding. Several identical rotors 

were drilled at different cage locations to emulate the bar 

breakage scenarios. The cases correspond to four of the five 

FEA models, thus being the healthy motor and the three cases 

of rotor breakages (adjacent bars, non-adjacent bars at half-pole 

pitch, and non-adjacent bars at full-pole pitch angle). Beyond 

these, two additional cases (non-adjacent bars at positions 1&3 

and 1&5) are examined to further verify the accuracy and 

reliability of the results. The characteristics of the experimental 

motor are given in Table III, while Fig. 2 illustrates the rotors 

drilled at the broken bar locations. The test rig utilised for the 

acquisition of the experimental data has been utilised before in 

works to the same direction of rotor fault detection in 

publications such as [11], [19] and [27]-[29], for acquisition of 

data pertaining to measurements of stator currents and stray flux 

signals. The experimental measurements were acquired with 

the machine operating at the full-load condition, corresponding 

with consistency to the simulation models and conditions. The 

experimental data were acquired with a sampling frequency of 

5 kHz. Table IV provides all the motor cases used for the 

experimental validation and their slip. 

 
TABLE III 

CHARACTERISTICS OF EXPERIMENTAL MOTOR 

Characteristics Value 

Supply frequency fs 50 Hz 

Stator winding connection Δ 

Output power 1.1 kW 

Rated voltage 230 V 

Rated current 4.5 A 

Number of pole pairs 2 

Rated speed 1450 rpm 

Number of stator slots 36 

Number of rotor bars 28 

 

 

          a)             b)          c) 

Fig. 2. Rotors of the experimental motor: a) healthy, b) two 

adjacent broken bars, c) two broken bars at half pole pitch 

distance. 

 
TABLE IV 

SUMMARY OF EXPERIMENTAL MOTORS AND VALUES OF SLIP 

Cases Label Slip 

Healthy Healthy 0.0173 

2 broken bars 

(adjacent) 
2 BrB 0.0186 

2 broken bars 

(non-adjacent) 
1&3 BrB 0.0133 

2 broken bars 

(half-pole pitch) 
1&4 BrB 0.0126 

2 broken bars 

(non-adjacent) 
1&5 BrB 0.0106 

2 broken bars 

(full-pole pitch) 
1&6 BrB 0.0127 

IV. RESULTS FROM SIMULATIONS 

A. Motor #1 

The initial step of the proposed method consists of the 

comparison between the actual and estimated signal by the 

observer, as depicted in Fig. 3 for the case of a single bar 

breakage, where the approximation shows that the estimation 

algorithm has a very good convergence as the steady state 

signals are almost identical. The next stage is harmonic 

isolation, where the harmonics of the signal are represented 

versus time (Fig. 4a) and examined over the frequency domain 

(Fig. 4b). The latter two steps reveal the changes in the 

magnitude of each harmonic, enabling the tracking of fault 

signatures through the examination of the frequency content. 
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Fig. 3. Representation of the stator current over time: real signal 

from simulations (blue) and estimated signal using the proposed 

method (red). 

 

From Fig. 4a (top), the fundamental harmonic carries a mild 

distortion, which is present in the case of the two adjacent 

broken bars (2 BrB) and the case of non-adjacent breakage at a 

full pole pitch. The 5th and 7th harmonic in Fig. 4a (mid and 

bottom, respectively) have more intense distortions in their 

magnitude. Nonetheless, except for a slight phase shift, there is 

no significant difference between the healthy and faulty cases. 

The frequency content of each isolated signal is shown in Fig. 

4b. The sideband at ±2𝑠𝑓  is present in the spectrum of the 

fundamental harmonic as given by (2) due to the fault 

intensifying a speed-ripple effect, which is caused by the 

distortion in the spatial distribution of the airgap magnetic flux 

density. This sideband initiates a chain of other fault-related 

sidebands given by (1). The amplitudes of the two sidebands at ±2𝑠𝑓 in the fundamental harmonic for every simulated case of 

Motor #1 are summarised in Table V. The right sideband of the 

fundamental at +2𝑠𝑓  appears at -31.6 dB for the single bar 

breakage, and at -29.5 dB for two adjacent breakages (2 BrB). 

For the cases of non-adjacent broken bars, the amplitude of this 

component is at -40.4 dB for the half pole pitch case (1&4 BrB) 

and at -36.1 dB for the full pole pitch case (1&6 BrB). 

For the 5th harmonic shown in Fig 4b (mid), the discussed 

sideband gives rise to the −4𝑠𝑓 and −6𝑠𝑓 components, which 

are given in Table VI for all cases of Motor #1. An important 

observation through Fig. 4b (mid) and Table VI for the 5th 

harmonic is that, although the sidebands at ±2𝑠𝑓 are weak, the 

components at −4𝑠𝑓 and −6𝑠𝑓 are much higher in amplitude. 

The 5th harmonic components show better diagnostic potential, 

with the amplitudes of the fault sidebands rising to a level that 

ranges from -4.8 dB to -9.6 dB. Regarding the 7th harmonic in 

Fig. 4b (bottom), the ±2𝑠𝑓 sidebands generate the −6𝑠𝑓 and −8𝑠𝑓 components. Through Fig. 4b (bottom) and Table VII, a 

similar conclusion with the 5th harmonic can be drawn for the 

7th regarding the lower and upper sidebands, for which the 

amplitudes rise to a level ranging from -9.8 dB to -4.7 dB. 

 

 
a) 

 
b) 

Fig. 4. Diagnostic outcome from Motor #1 by the fundamental 

harmonic (top), 5th (mid), and 7th harmonic (bottom) of the 

stator current: a) Frequency isolation b) harmonic content of 

isolated signals and identification of fault-related frequencies. 
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TABLE V 

AMPLITUDE [dB] OF THE FAULT-RELATED SIDEBANDS IN THE 

SPECTRUM OF THE ISOLATED FUNDAMENTAL HARMONIC 

Motor #1 – Fundamental Harmonic 

Sideband +𝟐𝒔𝒇𝒔 – 𝟐𝒔𝒇𝒔 

Healthy – – 

1 BrB -31.6 -36.3 

2 BrB -29.5 -30.1 

1&4 BrB -40.4 -40.4 

1&6 BrB -36.1 -36.9 

 
TABLE VI 

AMPLITUDE [DB] OF FAULT-RELATED SIDEBANDS IN THE 

SPECTRUM OF THE ISOLATED 5TH HARMONIC 

Motor #1 – 5th Harmonic 

Sideband +𝟐𝒔𝒇𝒔 – 𝟐𝒔𝒇𝒔 – 𝟒𝒔𝒇𝒔 – 𝟔𝒔𝒇𝒔 

Healthy – – – – 

1 BrB -36.5 -46.7 -4.8 -15.8 

2 BrB -31.3 -11.9 -3.2 -9.5 

1&4 BrB -40 -24.7 -3.2 -13.9 

1&6 BrB -33.4 -27.5 -9.6 -9.5 

 
TABLE VII 

AMPLITUDE [dB] OF FAULT-RELATED SIDEBANDS IN THE 

SPECTRUM OF THE ISOLATED 7TH HARMONIC 

Motor #1 – 7th Harmonic 

Sideband +𝟐𝒔𝒇𝒔 – 𝟐𝒔𝒇𝒔 – 𝟔𝒔𝒇𝒔 – 𝟖𝒔𝒇𝒔 

Healthy – – – – 

1 BrB -44.1 -40.3 -14.5 -9.8 

2 BrB -33.1 -22.4 -8.1 -4.7 

1&4 BrB -42.4 -34.1 -12.8 -6.1 

1&6 BrB -52.4 -47.2 -9.1 -6.1 

 

B. Motor #2 

The signal distortion of Motor #2 at the fundamental 

harmonic (top), 5th harmonic (middle) and 7th harmonic 

(bottom), as shown in Fig. 5a, is similar to that of Motor #1 but 

with less phase shift. Overall, there is still no notable difference 

between the healthy and faulty states. Fig. 5b illustrates the 

fundamental (top), 5th (middle) and 7th (bottom) harmonic 

content of the isolated stator line current signals for each case 

of Motor#2. Tables VIII, IX, and X list the fault-related 

sidebands at the fundamental, 5th and 7th harmonic, respectively. 

The magnitudes of the two sidebands at ±2𝑠𝑓𝑠 The 

fundamental harmonics for every simulated instance of Motor 

#3 are outlined in Table VIII, which corresponds to Fig. 5a 

(top). The amplitude of the right sideband of the fundamental at +2𝑠𝑓𝑠 is -36.59 dB for the single bar breakage (1 BrB) and -

31.92 dB for two adjacent breakages (2 BrB). In non-adjacent 

broken bars, the amplitude is -38.12 dB for the half-pole pitch 

scenario (1&4 BrB) and -28.15 dB for the full-pole pitch 

scenario (1&6 BrB). After observing and comparing Fig. 5b 

(middle) and Fig. 5b (top), without significant changes in the 

sidebands at ±2𝑠𝑓𝑠 , the component amplitudes at −4𝑠𝑓𝑠  and −6𝑠𝑓𝑠  of the 5th harmonic increased significantly. In the 

relevant components of the 7th harmonic, the same conclusion 

can be drawn from the observation and comparison of Fig. 5b. 

 

 
a) 

 
b) 

Fig. 5. Diagnostic outcome from Motor #2 by the fundamental 

harmonic (top), 5th (mid), and 7th harmonic (bottom) of the 

stator current: a) Frequency isolation b) harmonic content of 

isolated signals and identification of fault-related frequencies. 
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TABLE VIII 

AMPLITUDE [dB] OF THE FAULT-RELATED SIDEBANDS IN THE 

SPECTRUM OF THE ISOLATED FUNDAMENTAL HARMONIC 

Motor #2 – Fundamental Harmonic 

Sideband +𝟐𝒔𝒇𝒔 – 𝟐𝒔𝒇𝒔 

Healthy – – 

1 BrB -36.6 -36.8 

2 BrB -31.9 -32.3 

1&4 BrB -38.1 -39.2 

1&6 BrB -28.2 -28.6 

 
TABLE IX 

AMPLITUDE [dB] OF FAULT-RELATED SIDEBANDS IN THE 

SPECTRUM OF THE ISOLATED 5TH HARMONIC 

Motor #2 – 5th Harmonic 

Sideband +𝟐𝒔𝒇𝒔 – 𝟐𝒔𝒇𝒔 – 𝟒𝒔𝒇𝒔 – 𝟔𝒔𝒇𝒔 

Healthy – – – – 

1 BrB -35.9 -27.9 -12 -20.7 

2 BrB -38.4 -22.9 -7.4 -17.9 

1&4 BrB -39.8 -27.4 -8.3 -15.1 

1&6 BrB -30.7 -14.2 -8.3 -18.8 

 
TABLE X 

AMPLITUDE [dB] OF FAULT-RELATED SIDEBANDS IN THE 

SPECTRUM OF THE ISOLATED 7TH HARMONIC 

Motor #2 – 7th Harmonic 

Sideband +𝟐𝒔𝒇𝒔 – 𝟐𝒔𝒇𝒔 – 𝟔𝒔𝒇𝒔 – 𝟖𝒔𝒇𝒔 

Healthy – – – – 

1 BrB -47.9 -42.2 -20.6 -15.3 

2 BrB -39.2 -31.1 -22.2 -16.3 

1&4 BrB -55.9 -38 -16.3 -31.9 

1&6 BrB -37.8 -27.4 -11.2 -20.9 

 

C. Motor #3 

The results for Motor #3 are presented in Fig. 6. The 

harmonics of the stator current in Motor #3 have much more 

intense oscillations over time. These are strongly evident in the 

cases of two consecutive breakages (2 BrB), and the two cases 

of non-adjacency (1&6 BrB and 1&11 BrB). The harmonic 

content of each isolated signal is shown for every case of Motor 

#3 in Fig. 6b. The main speed-ripple effect components relating 

with the fault at ±2𝑠𝑓, are shown for the fundamental harmonic 

in Table XI. The sidebands of the 5th and 7th harmonic are 

presented in Table XII and Table XIII, respectively. From Fig. 

6b (top), the fundamental does not show any diagnostic 

potential, as the single bar fault is not adequately captured. 

However, a very significant observation from Fig. 6b and 

through Tables XI – XIII, is the capture of the lower and upper 

sidebands in the content of the isolated signals from the 5th and 

the 7th harmonic. In these two figures, the proposed approach 

shows the same diagnostic ability for the two adjacent broken 

bars, and the two scenarios of non-adjacent breakages. The 

single bar fault is not captured from the last two columns of 

Table XII and Table XIII. This is expected for Motor #3 since 

the fault severity is very low for one bar being broken out of 70 

bars in total. However, this fault is reliably captured in the 5th 

and 7th harmonics using the −2𝑠𝑓𝑠 sideband for identification. 
 

 
a) 

 
b) 

Fig. 6. Diagnostic outcome from Motor #3 by the fundamental 

harmonic (top), 5th (mid), and 7th harmonic (bottom) of the 

stator current: a) Frequency isolation b) harmonic content of 

isolated signals and identification of fault-related frequencies. 
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TABLE XI 

AMPLITUDE [dB] OF THE FAULT-RELATED SIDEBANDS IN THE 

SPECTRUM OF THE ISOLATED FUNDAMENTAL HARMONIC 

Motor #3 – Fundamental Harmonic 

Sideband +𝟐𝒔𝒇𝒔 – 𝟐𝒔𝒇𝒔 

Healthy – – 

1 BrB -52.2 -47.4 

2 BrB -34.5 -36 

1&4 BrB -47.6 -50 

1&6 BrB -37.1 -38.3 

 
TABLE XII 

AMPLITUDE [dB] OF FAULT-RELATED SIDEBANDS IN THE 

SPECTRUM OF THE ISOLATED 5TH HARMONIC 

Motor #3 – 5th Harmonic 

Sideband +𝟐𝒔𝒇𝒔 – 𝟐𝒔𝒇𝒔 – 𝟒𝒔𝒇𝒔 – 𝟔𝒔𝒇𝒔 

Healthy – – – – 

1 BrB -49 -10.28 -27.5 -40.2 

2 BrB -41.1 -11.6 -0.54 -10.2 

1&6 BrB -48.1 -27.3 -0.51 -11.7 

1&11 BrB -30.8 -11.6 -0.56 -16.3 

 
TABLE XIII 

AMPLITUDE [dB] OF FAULT-RELATED SIDEBANDS IN THE 

SPECTRUM OF THE ISOLATED 7TH HARMONIC 

Motor #3 – 7th Harmonic 

Sideband +𝟐𝒔𝒇𝒔 – 𝟐𝒔𝒇𝒔 – 𝟔𝒔𝒇𝒔 – 𝟖𝒔𝒇𝒔 

Healthy – – – – 

1 BrB -42.3 -7.7 -40.9 -49.8 

2 BrB -29.2 -7.3 0.42 -12.7 

1&6 BrB -46.3 -11.7 0.63 -8.8 

1&11 BrB -31.4 -7.7 0.68 -12.1 

V. RESULTS FROM EXPERIMENTS 

The result of the method on the 1.1 kW experimental motor 

is shown in Fig. 7. Similarly with Motor #1, the different broken 

bar conditions in this machine are manifested in the 5th and 7th 

harmonics, while no significant distortions are present in the 

fundamental. The fault sidebands are summarised for the 

fundamental in Table XIV, for the 5th in Table XV, and for the 

7th in Table XVI. The sidebands of the fundamental at ±2𝑠𝑓𝑠 

are relatively weak, whilst the +2𝑠𝑓𝑠 component is not present 

at all in the 7th harmonic. However, the −2𝑠𝑓𝑆  component 

shows adequate diagnostic ability both in the 5th and the 7th. 

From Fig. 7b and through Tables XV–XVI, the lower sidebands 

in each harmonic are also dominantly present. The −6𝑠𝑓𝑠 

sideband of the 5th harmonic is rising in amplitudes ranging 

from -27.9 dB to -11.7 dB, while the −8𝑠𝑓𝑠 of the 7th ranges 

from -16.9 dB to -12.9 dB. The most intense amplitude changes 

are in the two adjacent broken bars, since the localisation of the 

breakage at consecutive bars creates a larger asymmetry. The 

results of the harmonic isolation in the experimental motor 

accurately match the results from the FEA simulations for the 

several models of Motor #1, Motor #2 and Motor #3. 
 

 
a) 

 
b) 

Fig. 7. Diagnostic outcome from experiments by fundamental 

harmonic (top), 5th (mid), and 7th harmonic (bottom) of the 

stator current: a) Frequency isolation b) harmonic content of 

isolated signals and identification of fault-related frequencies. 
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TABLE XIV 

AMPLITUDE [dB] OF THE FAULT-RELATED SIDEBANDS IN THE 

SPECTRUM OF THE ISOLATED FUNDAMENTAL HARMONIC 

Experiment – Fundamental Harmonic 

Sideband +𝟐𝒔𝒇𝒔 – 𝟐𝒔𝒇𝒔 

Healthy – – 

2 BrB -42.3 -33.9 

1&3 BrB -49 -44.7 

1&4 BrB -49 -44.7 

1&5 BrB -66.7 -62.3 

1&6 BrB -45.3 -41.4 

 
TABLE XV 

AMPLITUDE [dB] OF FAULT-RELATED SIDEBANDS IN THE 

SPECTRUM OF THE ISOLATED 5TH HARMONIC 

Experiment – 5th Harmonic 

Sideband +𝟐𝒔𝒇𝒔 – 𝟐𝒔𝒇𝒔 – 𝟒𝒔𝒇𝒔 – 𝟔𝒔𝒇𝒔 

Healthy – – – – 

2 BrB -21.2 -27.9 0 -16 

1&3 BrB -35.6 -24.3 -6.1 -27.9 

1&4 BrB -35.6 -24.3 -6.1 -27.9 

1&5 BrB -28.5 -22.8 -2.5 -11.7 

1&6 BrB -29.5 -22.5 -7.5 -19.3 

 
TABLE XVI 

AMPLITUDE [dB] OF FAULT-RELATED SIDEBANDS IN THE 

SPECTRUM OF THE ISOLATED 7TH HARMONIC 

Experiment – 7th Harmonic 

Sideband +𝟐𝒔𝒇𝒔 – 𝟐𝒔𝒇𝒔 – 𝟔𝒔𝒇𝒔 – 𝟖𝒔𝒇𝒔 

Healthy – – – – 

2 BrB – -30.3 -27.9 -16.2 

1&3 BrB – -38.8 -9.4 -16.9 

1&4 BrB – -38.8 -9.4 -16.9 

1&5 BrB – -38.1 -10.9 -12.9 

1&6 BrB – -29.9 -7.8 -14.6 

VI. CONCLUSION & FUTURE WORK 

This work presented a novel methodology for harmonic 

isolation using signal estimation in induction motors to reliably 

track and identify rotor fault-related signatures. The method 

demonstrated reliable diagnostic ability for the identification of 

several different broken rotor bar scenarios using the 5th and 7th 

harmonics. The reliability of the proposed approach was 

demonstrated on three different induction motors using FEA 

simulations. Two of these machines were low voltage machines 

of laboratory scale with an output power of 4 kW where the 

stator encapsulates a distributed winding and the rotor an 

aluminium fabricated cage. In contrast, the third motor was an 

industrial 1 MW induction motor with a concentrated stator 

winding and rotor manufactured with copper bars. Further, the 

proposed methodology was also validated with experimental 

measurements on several scenarios of bar breakage locations 

using a 1.1 kW induction motor. The proposed method has 

several benefits, as it is based on a rigorous and efficient 

estimation algorithm for signal identification in the first stage, 

which isolates the harmonics of interest to extract the diagnostic 

information. As such, there is no dependency on the motor slip 

compared to several existing diagnostic techniques that rely on 

measurement or estimation of the motor speed. Additionally, 

this method deploys a diagnostic strategy that is based on the 

stator main harmonics rather than sidebands, which may or may 

not appear depending on several factors, some being the motor 

slip, the spectral leakage, loading abnormalities, and geometry-

related factors.  

Future work includes the optimisation and fine-tuning of the 

tuneable adaptive gains in the stage of the estimation algorithm 

as well as the application of the proposed approach at low 

loading conditions is an essential future work objective, as such 

conditions can prove more challenging in terms of fault 

detection due to increased vibrations at low load. Further, the 

method’s applicability and reliability will be investigated with 
mechanical measurements, such as the machine torque, and 

with non-intrusive measurements of electromagnetic quantities, 

such as stray magnetic flux monitoring. 
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