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Abstract

Aggregation–diffusion equations are foundational tools for modelling biological

aggregations. Their principal use is to link the collective movement mechanisms of

organisms to their emergent space use patterns in a concrete mathematical way. How-

ever, most existing studies do not account for the effect of the underlying environment

on organism movement. In reality, the environment is often a key determinant of

emergent space use patterns, albeit in combination with collective aspects of motion.

This work studies aggregation–diffusion equations in a heterogeneous environment in

one spatial dimension. Under certain assumptions, it is possible to find exact analytic

expressions for the steady-state solutions when diffusion is quadratic. Minimising the

associated energy functional across these solutions provides a rapid way of determining

the likely emergent space use pattern, which can be verified via numerical simula-

tions. This energy-minimisation procedure is applied to a simple test case, where the

environment consists of a single clump of attractive resources. Here, self-attraction

and resource-attraction combine to shape the emergent aggregation. Two counter-

intuitive findings emerge from these analytic results: (a) a non-monotonic dependence

of clump width on the aggregation width, (b) a positive correlation between self-

attraction strength and aggregation width when the resource attraction is strong. These

are verified through numerical simulations. Overall, the study shows rigorously how

environment and collective behaviour combine to shape organism space use, some-

times in counter-intuitive ways.
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1 Introduction

Aggregation phenomena are widespread in the natural world, from swarming (Roussi

2020), flocking (Papadopoulou et al. 2022), and herding (Stears et al. 2020) of animals

to cellular aggregations in embryonic patterns (Widelitz et al. 2003) and slime mould

slugs (Bonner 2009). This has led to a proliferation of research into the possible

mechanisms that could cause these aggregations to form (Painter et al. 2024). A popular

mathematical tool for analysing this problem is the aggregation–diffusion equation

(Carrillo et al. 2019). This is a partial differential equation (PDE) model that assumes

organisms have two aspects to their movement. One is an attraction to other nearby

organisms of the same kind, often called self-attraction (where ‘self’ refers here to

the population rather than the individual), which is encoded in a non-local advection

term. The other is a diffusive aspect to their movement, which is a simple catch-all for

all the aspects of movement that are not explicitly related to aggregation, for example

foraging or exploring.

Although models of diffusion and non-local advection have been instrumental in

understanding the mechanisms of biological aggregation and related phenomena, they

are typically analysed in a homogeneous environment (Painter et al. 2024; Wang and

Salmaniw 2023). This implicitly assumes that the environment in which the organisms

live has negligible effect on the aggregation. However, it is well-known that, in many

biological situations, there are environmental drivers factors that work alongside self-

attraction to drive the emergent spatial patterns of organisms (Bastille-Rousseau et al.

2018; Hueschen et al. 2023; Morales et al. 2021; Strandburg-Peshkin et al. 2017).

For example, in the embryonic development of hair and feather follicles, cells form

aggregates that are driven at least in part by movement up the gradient of a chemical

attractant from a point source. They may also have self-aggregation properties to

their movement. Currently, it is often not clear which is the principal driver of this

movement, or whether both aspects work in combination (Chen et al. 2015; Ho et al.

2019). In animal ecology, space use patterns are governed in part by proximity to

resources that are fundamental for survival (e.g. food, water, shelter) (Aarts et al.

2008; Boyce et al. 2016; Van Moorter et al. 2016). Yet many species are highly social

and show attraction towards conspecifics, as well as being attracted to familiar areas

(a phenomenon called ‘home ranging’, that can be viewed as a form of aggregation

(Briscoe et al. 2002; Börger et al. 2008)). Therefore, like the cellular case, the space

use patterns of animals emerge from a combination of self-attraction and attraction

to environmental resources (Horne et al. 2008; Potts and Börger 2023). Although

there are some studies incorporating both self-attraction and environmental effects

in the context of PDEs for specific biological situations, for example locust foraging

(Georgiou et al. 2021) and white-tailed deer space use (Ellison et al. 2024), it would be

valuable to build a general theory of how self attraction and heterogeneous landscapes

combine to shape the overall space use of organisms.

As a first step towards this end, we study the aggregation–diffusion equation

in a static heterogeneous environment in one spatial dimension. It is possible to

gain analytic insight into the steady state solutions under certain conditions, made

for mathematical tractability. Specifically, we first assume diffusion is quadratic

and that the environment can be decomposed as a Fourier series (and is piecewise
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twice-differentiable). Then we either assume that the non-local advection term has a

particular functional form that allows for exact analysis (namely the Laplace kernel)

or approximate the system via a Taylor expansion closed at the second moment. These

two models are detailed in Sect. 2. With these conditions in place, the steady state

solutions to the system are fully classified in Sect. 3.

Next, to understand which of these steady state solutions are likely to be observed in

reality (i.e. in numerical experiments), we examine the energy functional associated to

the system and minimise it across the possible steady states. In Sect. 4 we perform this

minimisation procedure for a particular functional form of the environment, related to

a single clump of attractive resources. In the case of cells, this could be thought of as

a chemical gradient arising from a point source. For animals, this models an area of

high forage in amongst low-forage surroundings. This energy minimisation procedure

turns out to be very rapid, as it only involves searching through a single variable across

a finite range of values. This enables us to ascertain quickly how the functional form of

the minimum energy steady state solution varies with the model parameters, without

the need for time-consuming numerical PDEs.

In Sect. 5, we explore numerically the extent to which the lessons from our analytic

study extend to situations that are not amenable to mathematical analysis. Specif-

ically, we focus on different functional forms for the non-local kernel and linear

diffusion alongside quadratic. Linear diffusion, whilst not so mathematically amenable

as quadratic diffusion (at least in our case), is perhaps more natural biologically. So it

is interesting to see whether our analytic results carry over to different situations that

may be slightly closer to the underlying biological reality. Finally, Sect. 6 gives some

preliminary numerical exploration of cases adjacent to those studied here, pointing

towards possible future extensions of the present work.

2 Themodel

Let u(x, t) denote the population density across space, x , of a group of organisms at

time t . The total population is assumed to be of fixed size, so that any patterns that form

are governed purely by the organisms’ movement (rather than changes in the overall

population size). The organisms each have a diffusive aspect to their movement, as well

as non-local attraction to other organisms, and a tendency to move up the gradient of

a fixed environment, given by A(x). (Note that, if we are interpreting the environment

as resources, the assumption is that any resource decay happens much slower than

the timescale over which the population density reaches a steady state.) In one spatial

dimension, this leads to the following model

∂u

∂t
=

D

k

∂2

∂x2
(uk) −

∂

∂x

[

u

(

γ
∂

∂x
(K ∗ u) +

∂ A

∂x

)]

, (1)

where D, γ > 0 are positive real constants, k > 0 is a constant integer, K (x) is a

symmetric probability density function (so integrates to 1 over the domain of definition)
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with finite variance, and

K ∗ u(x) =
∫ ∞

−∞
K (z)u(x + z)dz (2)

is a convolution. Equation (1) is an aggregation–diffusion equation (Carrillo et al.

2019), with an additional term denoting flow up the gradient of the environment,

A(x). Notice that, although the organisms’ movement with respect to the environment

is described in an ostensibly local way in Eq. (1), A(x) could represent a nonlocal

averaging of an underlying environment (Fagan et al. 2017). For example, if the envi-

ronment were described by a function A(x) and the organism’s nonlocal perception

of the environment were given by K(x) then one could set A(x) = K ∗ A(x).

For most of this manuscript, in particular for deriving all the analytic results, we will

be focusing on the quadratic diffusion case, k = 2, which rearranges to the following

form

∂u

∂t
=

∂

∂x

[

u

(

D
∂u

∂x
− γ

∂

∂x
(K ∗ u) −

∂ A

∂x

)]

. (3)

The non-local term, K ∗u, in Eq. (3) makes analytic studies tricky in general. However,

there are two things we can do to ease matters. First, it turns out that the Laplace kernel

has some nice properties that allow for exact analysis (namely being the solution to

a particular differential operator: see Proposition 1 later). We denote the Laplace

kernel by Km(x) = me−m|x |/2 to separate it from the general kernel, K . The standard

deviation of the Laplace distribution is σ =
√

2/m, which can be viewed as measuring

the extent of the non-local sensing of the organism (Fagan et al. 2017).

Second, for any K that is symmetric and has finite variance, we can make the

following second order approximation

K ∗ u ≈ u +
σ 2

2

∂2u

∂x2
, (4)

where σ is the standard deviation of K (note that symmetry of K means it has zero

mean). This approximation is derived by taking a Taylor expansion of u(x, t), and

assumes that the moments of the distribution K (x) decay sufficiently fast. See Falcó

et al. (2023), Section 2.1 for a more detailed derivation.

For our purposes, this approximation enables us to replace Eq. (3) with the following

local fourth-order equation

∂u

∂t
=

∂

∂x

[

u

(

D
∂u

∂x
− γ

∂u

∂x
−

γ σ 2

2

∂3u

∂x3
−

∂ A

∂x

)]

, (5)

which can be viewed as a Cahn–Hilliard equation (Kim et al. 2016) with added envi-

ronmental heterogeneity. Subsequent analysis will focus on functional forms for A(x)

that are periodic on the interval [−L, L] (i.e. A(x) = A(x + 2L) for all x ∈ R) so
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they can be decomposed as the following Fourier series

A(x) = a0 +
∞
∑

n=1

[

an cos
(nπx

L

)

+ bn sin
(nπx

L

)]

. (6)

To ease analysis, we will use the following non-dimensionalisation

x̃ =
x

L
, σ̃ =

σ

L
, γ̃ =

γ

D
, Ã(x̃) =

L A(x)

D
, t̃ =

t D

L3
,

ũ = Lu, ãn =
Lan

D
, b̃n =

Lbn

D
, m̃ = mL. (7)

Immediately dropping the tildes for notational convenience leads to the following

dimensionless versions of Eq. (3), written here with K = Km

∂u

∂t
=

∂

∂x

(

u
∂

∂x

[

u − γ (Km ∗ u) − A
]

)

, (8)

and the following dimensionless version of Eq. (5)

∂u

∂t
=

∂

∂x

(

u
∂

∂x

[

(1 − γ )u −
γ σ 2

2

∂2u

∂x2
− A

])

, (9)

where

A(x) = a0 +
∞
∑

n=1

[an cos (nπx) + bn sin (nπx)] . (10)

Equations (8) and (9) will be the main study equations for Sects. 3 and 4. Note that

these equations both preserve total mass across the real line. This mass is defined as

p =
∫ ∞

−∞
u(x, t)dx . (11)

3 Steady states and energyminimisers

Here, we classify all the steady state solution to Eqs. (8) and (9). The results are

summarised in two propositions.

Proposition 1 Suppose u∗(x) is a steady state solution to Eq. (8), with A(x) as given

in Eq. (10). Suppose γ �= 1 and the support of u∗(x) is bounded. On any connected

component of the support of u∗(x), the following holds

u∗(x) = u P (x) + u I (x), (12)
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where

u P (x) = α0 +
∞
∑

n=1

n2π2 + m2

n2π2 + m2(1 − γ )
[an cos (nπx) + bn sin (nπx)] , (13)

u I (x) =

⎧

⎨

⎩

P sin
(

x
√

m2(γ − 1)

)

+ Q cos
(

x
√

m2(γ − 1)

)

, if γ > 1,

P exp
(

x
√

m2(1 − γ )

)

+ Q exp
(

−x
√

m2(1 − γ )

)

, if γ < 1,
(14)

and P, Q, α0 ∈ R are arbitrary constants.

Proof Steady states of Eq. (8), denoted by u∗(x), satisfy

C = u∗
d

dx

[

u∗ − γ (Km ∗ u∗) − A
]

, (15)

for some constant C . As the support of u∗(x) is bounded, the flux is zero sufficiently

far from the origin, so C = 0. Hence

0 = u∗
d

dx

[

u∗ − γ (Km ∗ u∗) − A
]

. (16)

Then, on any connected component of the support of u∗(x) (i.e. where u∗(x) �= 0),

we have

c + A = u∗ − γ (Km ∗ u∗), (17)

for some constant c. Now we apply a particular property of the Laplace kernel, namely

that it satisfies

d2 Km

dx2
− m2 Km + m2δ(x) = 0, (18)

where δ(x) is the Dirac delta function. Applying the operator m2 − d2

dx2 to Eq. (17)

gives

m2c + m2 A(x) −
d2 A

dx2
= m2(1 − γ )u∗ −

d2u∗
dx2

, (19)

which is an inhomogeneous second order ODE with constant coefficients. A direct

calculation shows that Eq. (19) is solved by Eqs. (12)–(14) by setting α0 = (c +
a0)/(1 − γ ). ⊓⊔

Proposition 2 Suppose u∗(x) is a steady state solution to Eq. (9), with A(x) as given

in Eq. (10). Suppose γ �= 1 and the support of u∗(x) is bounded. On any connected

component of the support of u∗(x), the following holds

u∗(x) = u P (x) + u I (x), (20)
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where

u P (x) = α0 +
∞
∑

n=1

2

2(1 − γ ) + γ σ 2n2π2
[αn cos (nπx) + βn sin (nπx)] , (21)

u I (x) =

⎧

⎨

⎩

P sin
(

x
√

2(γ−1)

γ σ 2

)

+ Q cos
(

x
√

2(γ−1)

γ σ 2

)

, if γ > 1,

P exp
(

x
√

2(1−γ )

γ σ 2

)

+ Q exp
(

−x
√

2(1−γ )

γ σ 2

)

, if γ < 1,
(22)

and P, Q, α0 ∈ R are arbitrary constants.

Proof Any steady state, u(x, t) = u∗(x), of Eq. (9) satisfies

C = u∗
d

dx

[

(1 − γ )u∗ −
γ σ 2

2

d2u∗
dx2

− A

]

, (23)

for some constant C . Since the support of u∗(x) is bounded, the flux is zero sufficiently

far from the origin, so C = 0. Therefore, as in the proof of Proposition 1, on any

connected component of the support of u∗, we have

c + A = (1 − γ )u∗ −
γ σ 2

2

d2u∗
dx2

, (24)

for some constant c. A direct calculation shows that Eq. (24) is solved by Eqs. (20)–(22)

by setting α0 = (c − a0)/(γ − 1). ⊓⊔

Remark 1 It is also possible to find a solution to the above propositions in the singular

case γ = 1 (Appendix C).

Remark 2 Equations (14) and (22) arise from the aggregation term, whereas Eqs. (13)

and (21) come from the environmental heterogeneity. So they can be viewed as the

contributions of self-aggregation and organism-environment interaction, respectively,

to the steady state solution.

Whilst the two above propositions fully-categorise all possible steady state solu-

tions, u∗(x), the story is not finished. First, there are three unknowns that the results

introduce: α0, P , Q. Furthermore, the expressions in Eqs. (12)–(14) and (20)–(22)

are only valid on connected components of the support of u∗(x). This leaves open

the question as to which of the various possible steady states the PDE system might

actually tend towards, given an initial condition.

To gain insight into this, we look for solutions that minimise the associated energy

functional (Giunta et al. 2022b). For Eq. (8), this functional is

E1[u] =
∫ ∞

−∞
u

[

(1 − γ )u − 2A − γ Km ∗ u
]

dx . (25)

This is a slight modification of analogous energy functional constructed in the homo-

geneous case, e.g. (Carrillo et al. (2019), Equation 5). A direct calculation shows
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that

dE1

dt
= −

∫ ∞

−∞
2u

(

∂

∂x

[

u − A − γ Km ∗ u
]

)2

dx, (26)

as long as u(x) vanishes for all x arbitrarily far from the origin. This means that E1[u]
is non-increasing in time as long as u remains non-negative, and is zero when Eq. (8)

is at steady state.

The energy for Eq. (9) is

E2[u] =
∫ ∞

−∞
u

[

(1 − γ )u − 2A −
γ σ 2

2

∂2u

∂x2

]

dx . (27)

Similarly, a direct calculation shows that

dE2

dt
= −

∫ ∞

−∞
2u

(

∂

∂x

[

(1 − γ )u − A −
γ σ 2

2

∂2u

∂x2

])2

dx, (28)

as long as u(x) vanishes for all x arbitrarily far from the origin. Therefore, as before,

E2[u] is non-increasing in time as long as u remains non-negative, and is zero when

Eq. (9) is at steady state.

4 Landscapes with a single clump of attractive resources

As mentioned in the Introduction, we focus our attention on a particular case of

biological interest: where the landscape A(x) consists of a single clump of attractive

material. The aim is to disentangle the landscape and self-attractive effects on the size

and shape of the resulting aggregation. The functional form for A(x) we use to model

this situation is as follows

A(x) =
{

an[1 + cos(nπx)], if |x | < 1
n

,

0, otherwise.
(29)

Our analysis will focus on the fourth-order model of Eq. (9). Calculations for the

Laplace model of Eq. (8) are rather similar, so we report these in Appendix A.

We will also focus on the case γ > 1, as (i) this is above the Turing threshold

for spontaneous pattern formation in Eq. (9) with no resources (i.e. A(x) = 0), and

(ii) this is where the aggregation size is an interesting combination of the sinusoidal

terms given by the aggregative tendencies (Eq. 22) and the resources (Eq. 21), so we

see non-trivial results.

In numerical experiments, if we start with aggregated initial conditions, we remain

in an aggregation, albeit one of a different size. This is shown in Fig. 1. In this figure,

the simulations use an initial condition that is equal to the steady-state minimum-

energy solution of Eq. (9) in the case of no resources (i.e. A(x) = 0) and also γ = 2,

σ = 0.1, and total population size p = 1. This function has the following form [first
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Fig. 1 Aggregation in a single-clumped landscape: numerics. Panel a shows A(x) = a1[1 + cos(πx)], a

single clump of attractive resources centred on x = 0. With this functional form of A(x) in place, Panels

(b–d) show initial (‘Start’) and final (‘End’) numerical solutions for Eq. (5), for example values of a1. The

initial condition is the minimum energy solution in the case where A(x) = 0 (a homogeneous landscape),

so we can see how the introduction of landscape heterogeneity affects the shape of the aggregation

shown in Falcó et al. (2023), Section 2.3.1, but also reported in Appendix B with a

slightly different proof]

u(x, 0) = u∗(x)|A(x)=0 =
{

p
2r0

[

1 + cos
(

xπ
r0

)]

, if −r0 < x < r0,

0, otherwise,
(30)

where

r0 = π

√

γ σ 2

2(γ − 1)
, (31)

and p is as defined in Eq. (11).

123
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Fig. 2 Aggregation in a single-clump landscape: minimum energy solutions. Panels a–c show the minimum

energy solution of the form given by Eqs. (32)–(34) (solid curves), for n = 1, alongside the numerical steady-

state solution (dashed curves) for different values of a1 given in the plots. Panels d–f show the energy as

a function of r for the values of a1 given in Panels (a–c) respectively. The respective minimum energy

r -values are r = 0.289, r = 0.248, and r = 0.175

From the initial condition given by Eq. (30), Fig. 1 shows numerical steady-state

solutions of Eq. (9), calculated by numerically solving this PDE through time using

the algorithm from Falcó et al. (2023), keeping γ = 2 and σ = 0.2 fixed but using

different values of a1. Each steady state was estimated by running the algorithm until

|u(x, t) − u(x, t + 	t)| < 10−8 for all x , where 	t = 10−7.

Each numerical steady-state solution appears to be supported on a single interval

[−r , r ], symmetric about zero. We therefore restrict our search for minimum energy

solutions, from the possible solutions found in Sect. 3, to this type of symmetric,

single-aggregation solution. In the fourth-order model of Eq. (9), such solutions have

the following form (derived from Eqs. (20)–(22) and (29)),

u∗(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

α0 + αn[1 + cos(πnx)] + Q cos
(

xπ
r0

)

, for x ∈
[

− 1
n
, 1

n

]

∩ [−r , r ],

α0 + Q cos
(

xπ
r0

)

, for 1
n

< |x | ≤ r if r > 1
n

,

0, otherwise,

(32)
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where 0 < r ≤ 1. Applying the integral condition from Eq. (11) gives

α0 =

⎧

⎨

⎩

p
2r

− αn − αn

πnr
sin(πnr) − Qr0

πr
sin

(

rπ
r0

)

, if r < 1/n,

p
2r

− αn

nr
− Qr0

πr
sin

(

rπ
r0

)

, otherwise,
(33)

so that the two remaining free parameters are r and Q. We restrict our search further

by only looking for continuous solutions.

This gives the additional constraint

Q =
{

−α0+αn+αn cos(πnr)
cos(rπ/r0)

, if r < 1/n,

− α0
cos(rπ/r0)

, otherwise.
(34)

Plugging the expression for u = u∗ from Eq. (32) into Eq. (27) shows, after a direct

calculation, that the energy functional we wish to minimise has the form

E2[u∗] =

⎧

⎪

⎨

⎪

⎩

∫ r

−r
u∗[(1 − γ )(α0 + αn) − 2an − an cos(nπx)]dx, if r < 1/n,

∫ 1/n

−1/n
u∗[(1 − γ )(α0 + αn) − 2an − an cos(nπx)]dx

+2
∫ r

1/n
u∗(1 − γ )α0dx, otherwise.

(35)

Minimising Eq. (35) requires a numerical search through the single remaining param-

eter, r . This can be done in a fraction of a second on an ordinary laptop (e.g. one with

an Intel i7 2.8GHz processor), contrasting with numerical solutions to the underlying

PDE, which typically take many minutes or even hours. Furthermore, once r is found

numerically, the minimum energy solution can be written down in an analytic form,

namely that of Eq. (32).

Figure 2 shows a few examples of such analytic solutions, together with their numer-

ical counterparts, solved using the finite-volume algorithm of Bailo et al. (2023) and

Falcó et al. (2023). Note that for certain values of r ∈ (0, r0), the solution given by

Eqs. (32)–(34) is not positive, so not allowable (see the positivity results of Bailo et al.

(2020, 2023)). Therefore the horizontal axes in Fig. 2d–f do not go all the way from

0 to r0.

This energy minimisation procedure enables rapid calculating of trends in the size of

the aggregation as a function of the underlying parameters, without needing to perform

time-consuming numerical PDEs. Figure 3 shows how the width of the minimum-

energy aggregation of u, given by 2r , depends upon both the width of the landscape’s

peak, given by 2/n, as well as the parameters an , p, γ , and σ .

Interestingly, there is a non-monotonic dependence of the aggregation width of

u on width of the underlying landscape’s peak (Fig. 3e). This arises from analysing

minimum energy solutions, but is also verified through numerical simulations. In

Fig. 4b, we see that the narrowest aggregation (and also highest peak) occurs for the

intermediate value n = 6. If resources are more clumped than this, i.e. if n > 6, then

rather than this causing the aggregations to be thinner, as might be expected, they are

actually slightly wider.
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Fig. 3 Dependence of aggregation size on model parameters. Aggregation sizes refer to minimum energy

steady-state solutions to Eq. (9) with A(x) as given in Eq. (29), and calculated using the energy-minimisation

procedure from Sect. 4. Unless otherwise stated, n = 1, an = 1, γ = 2, and σ = 0.1
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Fig. 4 Numerical verification of analytic insights. Panel a shows a zoomed-in version of the case σ = 0.1

from Fig. 3e. Panel b shows numerical steady state-solutions to Eq. (9) corresponding to the parameters

from Panel a (namely, γ = 2, an = 1, σ = 0.1). Panel c shows the case a1 = 1000 from Fig. 3f and Panel

d gives the corresponding numerical steady-state solutions

Another counter-intuitive result occurs when we have a strong attraction to

resources, e.g. an = 100 or an = 1000. Here, increasing γ leads to a widening

of the aggregation, contrary to what usually happens with no resources or a smaller

resource attraction (Fig. 3f). Again, this result plays out in the numerics (Fig. 4d).

Although not shown here, a similar phenomenon also occurs for n = 2, 4, 8, 12, 16

(so narrower resource clumps), each case leading to r being an increasing function of

γ for an = 100 or an = 1000.

A further interesting feature of Fig. 3f is the a saturation in the effect of γ on

aggregation size as γ is increased (also observed in Fig. 3b). To see why this happens,

take the limit as γ → ∞ of the steady state (Eq. 23), and notice that the result is

independent of the landscape, A(x). Figure 3c also shows a saturation in aggregation

size, this time as the population size is increased. In this case, the large population
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causes self-attraction to dominate over landscape attraction, again rendering the effect

of the landscape negligible.

5 Numerical investigation I: relaxing the core assumptions

All the analytic results in Sects. 3 and 4 rely on two features chosen purely for math-

ematical convenience: quadratic diffusion (m = 2 in Eq. 1) and either a fourth-order

approximation to the non-local term or a Laplace kernel. These choices enable us to

derive linear ODEs for the steady state that can be solved exactly. However, in many

biological applications, linear diffusion is more natural than quadratic diffusion. For

example, linear diffusion appears as the continuum limit of many random walk models

used for organism movement (Hillen and Painter 2013; Patlak 1953; Potts and Lewis

2016; Potts and Schlägel 2020; Turchin 1989). Likewise, the Laplace kernel may not

always be the most favourable choice from a biological modelling perspective (Painter

et al. 2024). Therefore it is worth investigating whether the analytic insights provided

so far might carry over to other situations, including linear diffusion and different

non-local kernels.

The linear diffusion model is given by k = 1 in Eq. (1). After applying the non-

dimensionalisation from Eq. (7) and dropping the tildes, this becomes

∂u

∂t
=

∂2u

∂x2
−

∂

∂x

[

u

(

γ
∂

∂x
(K ∗ u) +

∂ A

∂x

)]

. (36)

To understand why numerical analysis is required in this case, we can follow the same

argument as we did for quadratic diffusion to examine the steady state solutions of

Eq. (36). Any steady state, u∗(x), satisfies the following

0 =
d

dx

[

u∗
d

dx
(ln(u∗) − γ K ∗ u∗ − A)

]

. (37)

Then, using a similar argument to that given from Eqs. (15)–(17), we arrive at the

following expression, valid on any connected component of the support of u∗(x)

c + A = ln(u∗) − γ K ∗ u∗. (38)

The ln(u∗) term makes this non-linear, removing the possibility of exact mathematical

analysis. Indeed, even if we use a fourth order expansion (or a Laplace kernel) to deal

with the non-local term, K ∗ u∗, exact solutions are not generally possible.

However, we can use the results from the quadratic diffusion case to guide numer-

ical analysis of the linear diffusion model. In particular, it is interesting to examine

whether the non-monotonic dependence of aggregation width, 2r , on resource-clump

width, 2/n, holds in the case of linear diffusion. Numerical steady-state solutions were

examined for both the linear diffusion case (Eq. 37) and quadratic diffusion (Eq. 8) for

two different kernels cases: where K = Km , the Laplace distribution, and where Km
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Fig. 5 Numerical investigation. Panel a shows numerical steady state solutions of Eq. (8) with a Laplace

kernel (Eq. 18), for various n and m = 10. Panel b shows numerical steady state solutions of Eq. (8) with

Km replaced with a top hat kernel (Eq. 39), for various n and δ = 0.1. Panel c shows numerical steady state

solutions of Eq. (36) with a top hat kernel with δ = 0.1. Panels d–f show the aggregation half-size as a

function of the resource hump width, corresponding to the numerics shown in Panels (a–c) respectively. In

Panels d–e, the aggregation sizes are calculated from the support of the numerical steady state. For Panel

f, with linear diffusion, we have u∗(x) > 0 across the whole interval [−1, 1], so the aggregation sizes are

calculated at height u∗(x) = 0.1. In all panels, γ = 2, an = 1, p = 1, and A(x) is as in Eq. (29)

is replaced by K = Kδ , the top-hat distribution given by

Kδ(x) =
{

1
2δ

, if |x | < δ

0, otherwise.
(39)

The top-hat distribution is chosen due to its popularity in biological modelling (Painter

et al. 2024; Wang and Salmaniw 2023).

Results are shown in Fig. 5 for three of the four cases. The linear diffusion case

with a Laplace kernel is omitted, since we did not see any evidence of the non-

monotonic dependence of the resource clump width on the aggregation width in this

case. However, we do see this phenomenon in the other three cases. When there is

quadratic diffusion and a Laplace kernel (Fig. 5a), the n = 2 and n = 16 cases have

very similar widths towards the bottom of the aggregation, with n = 6 markedly

thinner. However, contrary to the steady states of the fourth-order local PDE shown

in Fig. 4b, the height of the n = 16 case is higher than the n = 6 case. Indeed, we see

a notable thinning of the n = 16 aggregation about about u∗(x) = 2.7. A possible

interpretation of this is that towards the bottom of the aggregation, the non-local self-
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attraction is dominating to push the aggregation towards the width it would be were

there no resources, i.e. Eq. (30). Yet in the very centre the aggregation, the thin resource

clump dominates, and we see a change in shape.

This phenomenon is also present in Fig. 5b, and is even more pronounced in Fig. 5c,

where the highest value of n shown is n = 32. In this case, whilst the aggregation is

thicker than the n = 1 or n = 8 cases at the bottom, it is quite a bit thinner towards

the top, and also much higher. Although we do not have analytic expressions for the

plots in Fig. 5, they do look reminiscent of the functional form in Eq. (32): a weighted

sum of two cosine functions with different widths (truncated when they reach their

first minima before and after 0).

It is also valuable to ask whether there are situations, beyond the fourth-order

quadratic-diffusion model (Eq. 8), where we see an increase in aggregation width as

the self-attraction increases, like in Fig. 4c–d, for a1 = 100 and a1 = 1000. However,

when exploring analogous parameter values to those cases, this counter-intuitive result

neither appeared for linear diffusion nor for Laplace or top-hat kernels. This therefore

seems to be a particular feature of the fourth-order approximation.

Numerical solutions of the linear diffusion case (Eq. 36) were computed using a

forward difference algorithm by discretising space into a lattice with spacing 	x =
0.01 and time into intervals of length 	t = 10−5. Numerical solutions of the quadratic

diffusion PDEs used the algorithm of Bailo et al. (2023) with 	x = 0.01 and 	t =
5×10−6. To estimate the steady state, each simulation was run until |u(x, t)−u(x, t +
	t)| < 10−8 for all x . Code for performing numerics is available on GitHub at https://

github.com/jonathan-potts/AggDiffHet.

6 Numerical investigation II: different initial conditions and
landscapes

Whilst the main purpose of this work is to introduce an analytic technique for ascer-

taining minimum-energy steady state solutions to Eqs. (8) and (9), with particular

focus on situations where there is a single aggregative steady state, it is valuable to

explore numerical solutions away from this example, to showcase some of the other

possible patterns that might form. An extensive exploration would be beyond the scope

of this paper, but this section gives a few examples to point the way to future numeri-

cal studies. The purpose of this section is (i) to highlight the possibility of other local

energy minima than those explored analytically in Sect. 4, which may be obtainable

through different initial conditions, and (ii) to show how multiple resource clumps

might interact with existing aggregations to stretch or break them.

To address (i), Fig. 6 displays numerical solutions to Eq. (9) with a single clump

of resources at the centre but with various different initial conditions. Specifically, the

initial condition for Fig. 6a is a Gaussian distribution offset from the origin with mean

0.5 and standard deviation 0.05. Figure 6b has initial condition

u(x, 0) =
{

1 − cos (4πx) , if |x | < 0.5,

0, otherwise.
(40)

123

https://github.com/jonathan-potts/AggDiffHet
https://github.com/jonathan-potts/AggDiffHet


Aggregation–diffusion in heterogeneous environments Page 17 of 25    59 

Fig. 6 The effect of initial conditions. Panels a–d show numerical solutions to Eq. (9) with A(x) in the

form of Eq. (29). Each solution has γ = 5 and σ = 0.1. The form of A(x) for each numerical solution in

Panels (a–d) is shown in Panels (e-h) respectively. Panels e-g have n = 1 and a1 = 10, whilst Panel h has

n = 4 and a4 = 10, giving a narrower resource distribution

Figure 6c,d each have initial condition

u(x, 0) =
{

1 + cos (6πx) , if |x | < 0.5,

0, otherwise.
(41)

The resource landscapes are given by Eq. (29), with n = 1 and a1 = 10 for Fig. 6a-

c and n = 4 and a4 = 10 for Fig. 6d. These resource landscapes are displayed in

Fig. 6e-h, respectively.

Figure 6a shows how a resource clump can cause an aggregation to move from its

initial location towards the resource. Figure 6b, c demonstrate the ability of a resource

clump to unify multi-peaked initial conditions if it is sufficiently wide to capture all

the peaks. However, as Fig. 6d shows, if the resource clump is too narrow, it may fail

to suck in all the aggregations on the landscape. This demonstrates the importance of

initial conditions in determining the final state of the system. Indeed, in Fig. 6d, the

numerical algorithm has found a different local minimum energy to those discussed

in Sect. 4, in which an assumption was made about the final distribution being single-

peaked.

To address (ii), Fig. 7 shows solutions of Eq. (9) with two clumps of attractive

resources but an initial condition consisting of a single aggregation. The formula for

the resource distribution is

A(x) =
{

a4[1 − cos (4πx)], if |x | < 0.5,

0, otherwise,
(42)
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Fig. 7 Two-clumped resource layers. Panels a–c show numerical solutions to Eq. (9) with A(x) in the form

of Eq. (42), given in Panel (d). The amount of the resources, given by a4, affects the overall solution. Where

a4 is lower, as in Panel (a), the two clumps have the effect of stretching an aggregation that is initially

centred between the two clumps. For higher a4, Panels b and c show that the resources can split apart the

aggregations, with the extent of the splitting being more pronounced as a4 is increased. For Panels a–c,

γ = 2 and σ = 0.1

displayed in Fig. 7d. The initial condition for the numerical simulations is given by

Eq. (30) (the minimum energy solution in the absence of resources). Figure 7 shows

that small attraction to the two resource clumps (a4 = 0.5) causes the aggregation

to stretch slightly (Fig. 7a). For higher values of a4, the resource attraction causes

the aggregation to split in two (Fig. 7b), with the extent of the splitting appearing to

increase for larger values of a4 (Fig. 7c).

7 Discussion

This study analysed a PDE model of biological aggregation in a heterogeneous envi-

ronment. This model consists of diffusion, non-local self-attraction (at the population

level), and flow up the environmental gradient. These aspects of organism movement

combine to shape emergent space use patterns, which are characterised as minimum

energy solutions to the model. In the case where diffusion is quadratic and the non-local

self-attraction is either through a Laplace kernel or a fourth-order approximation, ana-

lytic expressions are derived for the steady states of the model. When the environment

consists of a single clump of attractive resources, finding the minimum energy steady

state solution is quick and simple, compared to solving the PDE numerically. This

enables some counter-intuitive results to be uncovered about how the environment

interplays with self attraction: (a) a non-monotonic dependence of resource clump

width on the organisms’ aggregation width, and (b) a tendency for increased self-

attraction to cause the emergent aggregation to increase in width, in situations where

the resource attraction is very strong.

When making simplifications for the sake of analytic tractability, there is always

a danger that the observed phenomena are just a feature of the simplified model and

do not carry over to other, perhaps more realistic, modelling scenarios. Therefore

our analysis is bolstered with numerical solutions of slightly-modified forms of our

study PDE, focusing on the non-monotonic dependence mentioned in (a) above. This

non-monotonic phenomenon seems to hold both when we examined a top-hat kernel
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rather than a fourth order approximation, and when we switched from quadratic to

linear diffusion. Consequently, it seems that this phenomenon it is likely to be a

genuine feature of biological aggregations and not just a quirk of a particular model

formulation. Conversely, we could not find a situation where Case (b) held in situations

away from the fourth-order approximation and quadratic diffusion, so this may just

be an artefact of the particular model chosen.

It is worth making some conjectures about how the non-monotonic dependence

from Case (a) might come about physically. It seems from the numerics that, as the

clump width decreases, there is a transition from a simple up-and-down aggregation

shape, to one where there is a clear wide part at the bottom and narrow part at the

top (compare black solid and red dot-dash curves in Fig. 5c). In other words, when

the resource clump is relatively narrow (red dot-dash curves), some of the organisms

follow the shape of the resource clump, but others cling on to the left and right of the

central part of the aggregation in a manner governed by the width of the self-attraction

kernel. However, when the resource clump is wider, this separation between a resource-

induced narrow aggregation and a wider self-aggregation is no longer apparent, with

these two features of aggregation seeming to ‘work together’ to form the overall

aggregative shape. These patterning differences may help demarcate situations where

there is evidence of both external features (e.g. chemical signals in the case of cell

biology) and self-attraction combining to cause aggregative phenomena (Börger et al.

2008; Ellison et al. 2024; Ho et al. 2019).

The results presented here contribute to the general question of how to disentangle

heterogeneity-induced patterns from Turing-like instability-induced patterns. Early

works in this direction include numerical investigation of a two-species reaction–

diffusion system living amongst an immobile third species with heterogeneous initial

conditions (Voroney et al. 1996) and a two-species system where the interaction mech-

anism is spatially dependent (Cantrell and Cosner 1998). This latter study involves

heterogeneity in the reaction terms, an idea that has been further explored in various

more recent studies of reaction–diffusion equations (e.g. Krause et al. 2018; Kozák

et al. 2019), with others also including heterogeneity in the diffusion term (Van Gorder

2021). The approach of the present work is slightly different as the equations do not

involve reaction terms but instead have an advection term with spatial heterogeneity,

alongside a nonlocal self-advection. There are various studies of pattern formation

with heterogeneous advection alongside diffusion (Cantrell et al. 2008, 2010), but the

inclusion of nonlocal self-advection with spatial heterogeneity in studies of pattern

formation in PDEs appears to be less well understood.

This study provides the groundwork for understanding multi-species systems

of diffusion and non-local advection in heterogeneous environments. Whilst the

aggregation–diffusion equation is implicitly a single-species model, multi-species ver-

sions have gained much attention in recent years due to their applications in cell biology

(Burger et al. 2018), ecology (Potts and Lewis 2019), and human behaviour (Barbaro

et al. 2021). When the environment is homogeneous, regularity properties are becom-

ing well-understood (Jüngel et al. 2022; Giunta et al. 2022a, 2023; Carrillo et al. 2024),

and there are several studies revealing rich patterning and bifurcation structures (Jew-

ell et al. 2023; Giunta et al. 2024; Painter et al. 2024). However, as in the single species

situation, these mathematical models are motivated by biological systems that usually
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exist in heterogeneous environments, and these environments may qualitatively alter

the emergent patterns. For example, the chase-and-run dynamics of predators and prey

can be ‘pinned’ by environmental heterogeneity, such as near the edge of a forest that

prey use to hide from predators (Bonnot et al. 2013). Likewise, territorial animals

may share space more in areas with abundant resources, leading to disparities in over-

lap driven by environmental heterogeneity (Sells and Mitchell 2020). Therefore it is

important to move beyond the assumption of an homogeneous environment in both

single- and multi-species models of non-local advection, to increase the biological

relevance of these models and widen their scope of application.

Appendix A Alterations required for using a Laplace kernel

Here, we detail how to modify the results of Sect. 4 for analysing the Laplace kernel

model from Eq. (8), rather than the fourth-order model from Eq. (9). The steady state

solutions given in Eqs. (32)–(34) are almost identical in the Laplace kernel model,

except we need to replace r0 with r1, defined as

r1 =

√

π2

m2(γ − 1)
. (A1)

Then

u∗(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

α0 + αn[1 + cos(πnx)] + Q cos
(

xπ
r1

)

, for x ∈
[

− 1
n
, 1

n

]

∩ [−r , r ],

α0 + Q cos
(

xπ
r1

)

, for 1
n

< |x | ≤ r if r > 1
n

,

0, otherwise,

(A2)

and

α0 =

⎧

⎨

⎩

p
2r

− αn − αn

πnr
sin(πnr) − Qr1

πr
sin

(

rπ
r1

)

, if r < 1/n,

p
2r

− αn

nr
− Qr1

πr
sin

(

rπ
r1

)

, otherwise,
(A3)

and

Q =
{

−α0+αn+αn cos(πnr)
cos(rπ/r1)

, if r < 1/n,

− α0
cos(rπ/r1)

, otherwise.
(A4)

For the energy functional, analogous to Eq. (35), we calculate

Km ∗ cos(nπx) =
m

2

∫ ∞

−∞
e−m|y| cos(nπ(x + y))dy

=
m2

m2 + π2n2
cos(nπx). (A5)
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Similarly,

Km ∗ sin(nπx) =
m2

m2 + π2n2
sin(nπx), (A6)

Km ∗ cos

(

xπ

r1

)

=
1

γ
cos(nπx), (A7)

Km ∗ sin

(

xπ

r1

)

=
1

γ
sin(nπx). (A8)

Plugging Eqs. (A5)–(A8) into Eq. (A2), then in turn plugging the result into Eq. (25)

(the energy functional), a direct calculation leads (perhaps surprisingly) to exactly the

same functional form as Eq. (35), but with u∗(x) as given in Eq. (A2).

Appendix B Energyminimiser in an homogeneous landscape

Here, we prove Eq. (30). This has been derived in Falcó et al. (2023), Section 2.3.1, but

we include our proof here as it is slightly different and uses notation consistent with the

Main Text. We assume that the support of u∗(x) is a disjoint union of intervals. Then,

without loss of any further generality, we can assume further that the support is (−r , r).

We are interested in the case γ > 1, as this is the situation where the homogeneous

steady state can be unstable to non-constant perturbations (the eigenvalue in this case

is λ = κ2[(γ − 1) − κ2(γ σ 2/2)]p/2 for wavenumber κ).

From Eqs. (20)–(22), the general form of the steady state solution, given these

constraints, is

u∗(x) =
{

α0 + Q cos
(

xπ
r0

)

, if −r < x < r ,

0, otherwise,
(B9)

for constants α0 and Q. Applying the integral condition from Eq. (11), we find that

α0 =
p

2r
−

Qr0

πr
sin

(

rπ

r0

)

. (B10)

Proposition 3 The case r = r0 and Q = α0, given by

u∗(x) =
{

p
2r0

[

1 + cos
(

xπ
r0

)]

, if −r0 < x < r0,

0, otherwise,
(B11)

minimises the energy locally amongst continuous, positive, steady-state solutions.

Proof First, a direct calculation shows that the energy when r = r0 is

E[u∗]r=r0 =
(1 − γ )p2

2r0
. (B12)
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Let ǫ > 0 be arbitrarily small. We only need to examine the case r = r0 − ǫ, as there

is no solution that is both continuous and positive when r = r0 + ǫ. We can then

calculate directly (but with some effort) to find

E[u∗]r=r0−ǫ = (γ − 1)

[

Qr0 p

πr
sin

(

ǫπ

r0

)

−
p2

2r

]

. (B13)

Expanding this to first order in ǫ gives

E[u∗]r=r0−ǫ = (γ − 1)

[

−
p2

2r0
+

(

Qp

r0
−

p2

2r2
0

)

ǫ

]

+ O(ǫ2). (B14)

For u∗(x) to be continuous, we require u∗(r) = 0 so that

Q = p

[

2r0

π
sin

(

ǫπ

r0

)

− 2r cos

(

rπ

r0

)]−1

. (B15)

Expanding the term inside the square brackets to second order in ǫ, we find

2r0

π
sin

(

ǫπ

r0

)

− 2r cos

(

rπ

r0

)

≈ 2r0 −
π2ǫ2

r0
< 2r0. (B16)

Hence Q > p/2r0 so

Qp

r0
−

p2

2r2
0

> 0, (B17)

and therefore, by Eq. (B14), we have

E[u∗]r=r0−ǫ >
(1 − γ )p2

2r0
= E[u∗]r=r0 , (B18)

for arbitrarily small ǫ. ⊓⊔

Appendix C Propositions 1 and 2 for  = 1

To find an expression analogous to Eqs. (12–14) with γ = 1, note that Eq. (19)

becomes

d2u∗
dx2

=
d2 A

dx2
− m2c − m2 A(x), (C19)

which can be integrated twice to give

u∗(x) = A(x) − m2cx2 − m2 B(x), (C20)
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where

B(x) = P + Qx +
a0

2
x2 −

∞
∑

n=1

1

n2π2
[an cos (nπx) + bn sin (nπx)] , (C21)

and P, Q ∈ R are arbitrary constants.

Similarly, for an expression analogous to Eqs. (20–22) with γ = 1, note that Eq.

(24) becomes

d2u∗
dx2

= −
2

σ 2
(c + A), (C22)

which can be integrated twice to give

u∗(x) = −
2

σ 2
(cx2 + B(x)). (C23)
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