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Abstract: Background: Trends in global ageing underscore the rising burden of age-related

cognitive decline and concomitant cardiometabolic diseases, including type 2 diabetes

mellitus (T2DM). Carnosine, a naturally occurring dipeptide with anti-inflammatory, an-

tioxidant and anti-glycating properties, has shown promise in animal models and limited

human studies for improving cognitive function, insulin resistance and T2DM, but its

therapeutic effects on cognition remain unclear. The aim of this study is to assess the

effects of carnosine on cognitive function in individuals with prediabetes or well-controlled

T2DM. Methods: This is a secondary analysis of a double-blind randomised controlled trial

(RCT), whereby 49 adults with prediabetes or early-stage well-controlled T2DM were ran-

domised to receive 2 g of carnosine or identical placebo daily for 14 weeks. At baseline and

follow-up, cognitive function was assessed as a secondary outcome using the Digit-Symbol

Substitution Test, Stroop test, Trail Making Tests A & B, and the Cambridge Automated

Neuropsychological Test Battery (CANTAB). Results: In total, 42 adults (23 males and

19 females) completed the trial. There were no differences in participant anthropometry

or cognitive functioning between carnosine and placebo groups at baseline (all p > 0.1).

After the 14-week supplementation period, there were no differences between carnosine
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and placebo groups in change and follow-up values for any cognitive measures including

Stroop, Digit Symbol Substitution Sest, Trail Making A/B or CANTAB (all p > 0.05). Adjust-

ments for baseline cognitive scores, diabetic status, level of education, age or interaction

effects with participants’ sex did not change the results. Conclusions: Carnosine supple-

mentation did not improve cognitive measures in individuals with prediabetes or T2DM

in this study. While larger trials may provide further insights, alternative factors—such

as the relatively young and healthy profile of our cohort—may have contributed to the

lack of observed effect. Future research should examine individuals with existing cognitive

impairment or those at higher risk of cognitive decline to better define the therapeutic

potential of carnosine in this context.

Keywords: carnosine supplementation; cognition and diabetes; cognitive function; predi-

abetes and cognition; type 2 diabetes; neurocognitive outcomes; randomised controlled

trial (RCT); neuropsychological assessment; metabolic health and cognition; diabetes

and neurodegeneration; antioxidants and cognitive function; insulin resistance and cog-

nition; CANTAB cognitive testing; executive function and diabetes; inflammation and

cognitive decline

1. Introduction

Type 2 diabetes (T2DM) is a major contributor to global mortality and morbidity and

has steadily increased in prevalence over the past decade, from 366 million individuals in

2011 to 536.6 million individuals living with T2DM globally in 2021 [1,2]. These estimates

are projected to rise to 783.3 million (11.2% of the global population) by 2045 [2]. Obesity

and overweight are key risk factors for T2DM [3], caused by an imbalance between energy

consumption and energy expenditure. This imbalance is often driven by a combination

of sedentary lifestyles and excessive consumption of highly processed, energy-dense and

nutrient-deficient diets, which are often more palatable and less expensive than healthier

diets [4]. As of 2022, there were 2.5 billion adults with overweight or obesity, representing

a staggering 43% of the global population and an increase from 25% in 1990 [5].

Both obesity and T2DM contribute to neurodegenerative diseases, including Alzheimer’s

dementia [6] and Parkinson’s disease [7]. Insulin resistance, the central pathophysiological

mechanism of T2DM and a common feature in obesity [8] has been identified as an impor-

tant risk factor for cognitive impairment [9,10]. Ageing compounds the risk of cognitive

impairment, with older individuals with T2DM more likely to have cognitive impairment

compared with younger populations. However, interconnected mechanisms underpinning

these cognitive changes can promote the development of early cognitive decline even in

younger individuals with obesity and T2DM [11–13]. In the clinical setting, T2DM and

cognitive impairment are treated independently [14], an approach that may be insufficient

to address the syndromic nature of either condition. Therefore, investigating new treat-

ments that can act synergistically to improve both neurocognitive function and glucose

metabolism in T2DM and at-risk populations is warranted.

Carnosine, a dipeptide consisting of beta-alanine and L-histidine, has well-documented

anti-glycating, anti-inflammatory and antioxidant abilities [15], processes which impact

both glycaemia and cognitive function [16]. Carnosine is naturally abundant in skele-

tal muscle tissue and brain tissue in vivo [15] and can be derived through diet, mainly

via the consumption of beef, chicken and turkey, as well as prawn, mackerel and tuna

meat [17]. Carnosine is also available in supplements [18], where it has been shown to

improve exercise performance by boosting the buffering capacity of skeletal muscle and
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delaying fatigue during intense physical activity [19]. In the context of cognition, the

anti-inflammatory properties of carnosine are of particular relevance since inflammation

is correlated with increased oxidative stress, and both are associated with low cognitive

performance [20]. Indeed, antioxidant and anti-inflammatory agents which reduce oxida-

tive stress and neuroinflammation, including endogenous histidine-containing dipeptides

(HCDs) [15], vitamin K2 [21], polyphenols from olive trees [22], isoamericanin A [23], and

ellagitannin [24], have been shown to reduce cognitive decline in preclinical models [20].

However, studies examining the effects of carnosine on cognition and metabolism to

date have been largely based on animal and experimental models, with limited human

data [25]. In our recent meta-analysis, we identified 10 RCTs examining the impact of HCDs

on cognitive function, eight of which supplemented carnosine combined with anserine,

with none using carnosine alone. Although we reported improved memory in elderly

populations and improved delayed recall following supplementation among individuals

with and without mild cognitive impairment assessed using the Wechsler Memory Test

(WMS-2), these effects could not be attributed solely to carnosine. The same systematic

review identified other key gaps in the evidence, namely the reliance on relatively brief

global tests of cognition following carnosine supplementation [16,26]. Additionally, no

studies have examined whether carnosine supplementation may affect cognitive measures

in prediabetes or T2DM, despite the reported neurocognitive benefits of carnosine and the

higher prevalence of cognitive impairment—often uncurable, in T2DM [27].

To address this critical evidence gap, the aim of the present study was to examine the

effects of carnosine supplementation on cognitive function using RCT data with compre-

hensive neuropsychological and cognitive assessments in individuals with prediabetes or

early-stage well-controlled T2DM.

2. Results

A total of 49 participants were randomised, with 24 assigned to the carnosine inter-

vention (1 g orally twice daily) and 25 to the placebo group. Baseline characteristics did not

differ between groups (Tables 1 and S1). The modified intention-to-treat (mITT) analysis

included all participants with a follow-up assessment. A total of seven participants were

excluded from the analysis: five due to the absence of follow-up data and two due to

incorrectly collected cognitive data. Consequently, 42 participants (21 per group) were

included in the final mITT analysis (Figure 1). Data were collected between 2016 and 2020.

Table 1. Sample characteristics at baseline.

Variable
Placebo (21) Carnosine (21)

Mean ± SD Mean ± SD

Demographics

Age 50.17 ± 10.64 51.7 ± 10.19
Sex (males), n (%) 15 (75%) 14 (67%)

Prediabetes/diabetes
proportions, n (%)

15 (71%)/6 (29%) 10 (47.6%)/11 (52.4%)

Metformin: yes/no, n (%) 9 (43%)/12 (57%) 8 (38%)/13 (62%)

Digit symbol test Performance Range

Score: (Number of correct
responses)

70.5 ± 9.987 64.89 ± 17.62 1–93
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Table 1. Cont.

Variable
Placebo (21) Carnosine (21)

Mean ± SD Mean ± SD

Stroop tests

Off Time 66.81 ± 7.9 70.14 ± 13.62 1–125.84
Off Time + On Time 142.62 ± 15.48 153.52 ± 28.9 1–274.9

On Time 75.81 ± 8.74 83.38 ± 16.19 1–148.7
On Time–Off Time 9 ± 6.19 13.25 ± 7.73 1–29.8

Successful times
×attempts (Off)

380.31 ± 74.61 389.67 ± 97.76 NA

Successful times ×
attempts (On)

440 ± 112.74 470.05 ± 98.02 NA

Trail making Tests

Trail making Test A (s) 17.05 ± 5.13 16.75 ± 4.90 1–300
Trail making Test B (s) 58.38 ± 31.07 63.18 ± 39.56 1–300

TMT ratio (B/A) 3.59 ± 1.6 3.76 ± 1.90 NA

Cambridge Neuropsychological Test Automated Battery

Delayed Match to Sample (DMS)
DMS Percent correct (all

delays)
87.00 (13.00) 87.00 (13.00) 0–100

DMS Probability of error
given correct

0.12 (0.12) 0.12 (0.13) −1 to 1

DMS Probability of error
given error

0 (0) 0 (0) −1 to 1

DMS Total correct
(simultaneous)

18.00 (2.00) 18.00 (2.00) 0–20

Paired Associates Learning (PAL)
PAL First-attempt memory

score
12.20 (3.00) 12.70 (4.05) 0–20

PAL Mean errors to success 2.05 (1.43) 1.50 (1.54) 0–4
PAL Number of patterns

reached
8.00 (0) 8.00 (0) 2–8

PAL Total attempts 8.00 (1.50) 7.50 (3.00) 0–4
PAL Total errors 12.00 (11.00) 13.00 (9.00) 0–80

PAL Total errors (adjusted) 15.00 (13.00) 14.50 (16.75) 0–70
Pattern Recognition Memory (PRM)

Pattern Recognition
Memory Median correct

latency–Delayed
1978.25 (458.13) 1778.75 (390.25) 100–∞

Pattern Recognition
Memory median correct

latency–Immediate
1618.25 (281.75) 1612.00 (440) 100–∞

PRM Percent Correct
Delayed

100 (8.33) 91.67 (8.34) 0–100

PRM Percent Correct
Immediate

95.84 (8.33) 100 (8.33) 0–100

Reaction time index (RTI)
RTI Five-choice error score

(all)
0 (0) 0 (1.00) 0–30

RTI Simple error score (all) 2.00 (3.00) 1.00 (2.00) 0–30
RTI Simple movement time 203.00 (107.50) 193.50 (42.50) 100–5100

RTI Simple reaction time 39.24 (25.45) 38.20 (23.76) 100–5100
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Table 1. Cont.

Variable
Placebo (21) Carnosine (21)

Mean ± SD Mean ± SD

Rapid visual processing (RVP)
RVP A Prime 0.89 (0.06) 0.91 (0.06) 0–1

RVP Response latency 192.66 (81.68) 149.65 (96.14) 100–1900
RVP Total false alarms 5.00 (8.00) 1.00 (3.00) 0–546

RVP Total hits 31.00 (10.25) 36.00 (13.00) 0–54
RVP Total misses 23.00 (10.25) 18.00 (13.00) 0–54

Spatial working memory (SWM)
SWM Between errors 10 (21.25) 12.00 (11.00) 0–90

SWM Strategy 8.00 (6.00) 8.00 (4.00) 2–14

Results are presented as mean ± standard deviation or median (interquartile range) unless otherwise specified.

 

ff

Figure 1. CONSORT flow diagram.
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Among these 42 participants, the mean age was 52.0 ± 10.2 years (range 28–66 years),

and 19 were female. There were 25 (60%) individuals with prediabetes, while the remaining

17 (40%) had T2DM and were taking metformin. All participants were cognitively healthy,

as those with any history of neurological conditions would have been excluded from the

trial. The participants reported good tolerance to carnosine, with none reporting any

side effects.

Cognitive Performance Outcomes

For the Digit Symbol Substitution Test (DSST) (Table 2 and Supplementary Section S2),

change values were not statistically different between groups (p = 0.46; Table 2). Multi-

variable regression analyses (Table 3) adjusting for baseline DSST scores, diabetic status,

education and age also showed no significant effects (all p ≥ 0.20; Table 3), and there

were no interactions by sex (p = 0.96). Subgroup analyses also did not show significant

differences between carnosine and placebo groups (all p > 0.30) (Tables S2.1, S2.2, S2.3

and S2.4).

Stroop Test results (Tables 2, 3 and S3 and Supplementary Section S2) showed no

significant differences in change values for “Off Time” (p = 0.75), “Off Time + On Time”

(p = 0.99), or interference state “On time–Off time” (p ≥ 0.68) between groups. Multivariable

regression models adjusted for baseline Stroop scores, diabetic status, education level and

age did not alter results (all p > 0.80) (Tables 3, S3.1 and S3.2), and there were no interaction

effects by sex (p > 0.80). Subgroup analyses (Table S3.3) comparing participants with

prediabetes to those with T2DM (Tables S3.3.1, S3.3.2, S3.3.3 and S3.3.4) also showed no

significant results (all p ≥ 0.40).

For the Trail Making Test (TMT-A & B) (Table 2 and Supplementary Section S2), there

were no significant differences in change values for TMT-A (p = 0.76), TMT-B (p = 0.42), or

TMT-B:A ratio (p = 0.66) between carnosine and placebo groups. These results remained

unchanged after adjustment for baseline scores, diabetic status, education and age (all

p ≥ 0.20) and in the interaction analyses (p > 0.20, as well as in subgroup analyses (all

p > 0.40) (Tables S4.1, S4.2, S4.3 and S4.4).

In the CANTAB assessments (Tables 2, 3 and S5.1), no significant differences were

found across any test domains. For the Delayed Match to Sample (DMS) test, key variables

such as percentage correct, median latency and probability of error showed no group

differences in change values (p ≥ 0.46), including in adjusted analyses (Table 3) and

interaction effects with sex (p > 0.31). Similarly, in the Paired Associates Learning test

(Table 3), there were no significant differences in measures such as first-attempt memory

score, total errors, mean errors to success or total attempts, including after adjustment

for covariates (p ≥ 0.18). There were no interactions by sex (p > 0.36), and multivariable

subgroup analyses comparing prediabetes and T2DM groups also yielded no significant

findings (all p > 0.18; Tables S5.2.1, S5.2.2, S5.2.3 and S5.2.4) were observed.

Changes in Pattern Recognition Memory (PRM), including percent correct latency or

median correct latency, did not significantly differ between groups in either immediate

or delayed measures (Table 2). This result remained consistent across univariable, mul-

tivariable, interaction and subgroup analyses (p ≥ 0.40; Tables 2, 3, S5.2.1, S5.2.2, S5.2.3

and S5.2.4). Likewise, for the Reaction Time Index (RTI) and the Rapid Visual Processing

(RVP) domains (Tables 2 and 3), the latter including key variables such as median response

latency and probability of false alarms, there were no significant changes detected between

groups in univariable, adjusted or subgroup analyses (all p > 0.46) or in interaction analyses

by sex (p > 0.53).
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Table 2. Cognitive test scores between carnosine supplementation and placebo.

Test Variable
Placebo Carnosine p * p(adj)

Baseline Follow-Up ∆ Baseline Follow-Up ∆

Digit Symbol Test

Score 71.37 ± 10.58 75.67 ± 10.71 3.67 ± 9.48 65.47 ± 17.85 76.00 ± 13.95 10.53 ± 12.90 0.08 0.46
Trail Making test

Trail Making Test A (s) 17.05 ± 5.13 17.36 ± 5.00 0.31 ± 6.2 16.75 ± 4.90 15.67 ± 4.85 −1.09 ± 5.72 0.46 0.76
Trail Making Test B (seconds) 58.38 ± 31.07 61.71 ± 36.82 2.26 ± 26.0 63.18 ± 39.56 46.84 ± 10.95 −16.34 ± 42.35 0.1 0.42

B:A (s) 3.59 ± 1.6 3.66 ± 2.1 −0.01 ± 1.55 3.76 ± 1.90 3.13 ± 0.80 −0.63 ± 1.86 0.26 0.66
Stroop

Off Time (s) 66.81 ± 7.90 64.22 ± 10.44 −2.45 ± 12.87 70.14 ± 13.62 72.24 ± 10.01 0.56 ± 7.84 0.05 0.75
On Time(s) 75.81 ± 8.74 81.99 ± 19.41 6.18 ± 17.81 83.38 ± 16.19 90.05 ± 22.06 6.66 ± 20.28 0.29 0.67

Off Time + On Time(s) 142.62 ± 15.48 166.19 ± 97.22 23.57 ± 97.17 153.52 ± 28.90 184.49 ± 79.96 30.97 ± 83.10 0.62 0.84
On time—Off time(s) 9.00 ± 6.19 13.79 ± 14.17 4.4 ± 14.34 13.25 ± 7.73 11.73 ± 4.52 −1.12 ± 7.53 0.28 0.68

Successful times x attempts
(Off)

380.31 ± 74.61 361.14 ± 107.19 −12.33 ± 116.04 389.67 ± 97.76 399.54 ± 70.46 −3.81 ± 74.89 0.29 0.64

Successful times x attempts
(On)

439.99 ± 112.74 458.21 ± 100.92 12.97 ± 117.89 470.05 ± 98.02 505.21 ± 128.93 28.65 ± 88.31 0.57 0.85

CANTAB

DMS Percent Correct (All
Delays)

84.7 ± 9.00 87 ± 10.76 2.60 ± 14.32 84.10 ± 13.70 85 ± 8.86 0.90 ± 17.81 0.74 0.70

DMS percent correct
(Simultaneous)

88.25 ± 6.74 89.52 ± 8.05 1.75 ± 10.29 86.91 ± 11.67 87.38 ± 7.35 0.48 ± 15.08 0.70 0.85

DMS median correct latency 3569.20 ± 914.96
3459.86 ±

1235.52
−97.75 ±
1109.50

3427.29 ± 1747
3248.98 ±

1548.87
−178.31 ±

1467.79
0.84 0.88

DMS Probability of error
given error

0.02 ± 0.90 0.09 ± 0.16 0.06 ± 0.20 0.07 ± 0.19 0.10 ± 0.15 0.03 ± 0.27 0.68 0.85

PALFAMS (Paired Associates
Learning First

attempt memory score)
12.20 ± 3.00 14.32 ± 3.92 2.11 ± 3.25 12.70 ± 4.05 12.40 ± 4.02 −0.37 ± 4.81 0.07 0.54
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Table 2. Cont.

Test Variable
Placebo Carnosine p * p(adj)

Baseline Follow-Up ∆ Baseline Follow-Up ∆

PALMETS (Paired Associates
Learning Mean Errors to

Success)
2.05 ± 1.43 1.24 ± 1.00 −1.00 ± 1.49 1.50 ± 1.54 2.35 ± 1.35 0.84 ± 1.34 <0.001 0.05

PALTA (Paired Associates
Learning Total Attempts)

8.32 ± 1.77 6.86 ± 1.77 −1.53 ± 1.47 7.65 ± 1.90 7.65 ± 1.66 −0.05 ± 2.09 0.02 0.46

PALTA 4 (Paired Associates
Learning Total Attempts 4

Patterns)
1.58 ± 0.61 1.24 ± 0.70 −0.32 ± 0.89 1.25 ± 0.72 1.45 ± 0.83 0.21 ± 0.71 0.05 0.59

PALTEA (Paired Associates
Learning Total errors

(adjusted))
15.40 ± 10.66 12.37 ± 14.40 −3.00 ± 9.21 17.95 ± 14.40 13.95 ± 12.60 −4.26 ± 12.94 0.73 0.86

PRMPCD (Pattern
Recognition Memory Percent

Correct Delayed)
94.91 ± 7.08 93.33 ± 7.66 −0.49 ± 9.07 87.084 ± 11.93 84.53 ± 13.77 −3.33 ± 17.19 0.53 0.84

PRMMDCLD (Pattern
Recognition Memory Median

correct latency)–Delayed
2065.92 ± 626.63 1814.38 ± 391.45

−255.94 ±
633.16

1900.22 ± 457.70 1968.23 ± 679.11 68.00 ± 766.33 0.17 0.65

PRMMDCLI (Pattern
Recognition Memory median
correct latency)–Immediate

1633.93 ± 386.86 1540.95 ± 280.27 −94.50 ± 312.68 1617.26 ± 326.25 1570.38 ± 328.71 −46.88 ± 211.89 0.57 0.87

PRMPCI (Pattern Recognition
Memory Percent Correct

Immediate)
93.34 ± 9.97 96.49 ± 6.40 3.51 ± 11.22 95.24 ± 6.26 94.05 ± 11.83 −1.19 ± 9.96 0.17 0.6

RTIFMMT (Reaction Time
Index–mean five choice

movement time)
292.09 ± 82.54 267.26 ± 63.07 −24.83 ± 81.86 255.14 ± 86.82 271.17 ± 103.42 16.03 ± 48.68 0.06 0.55

RTIFMDMT (RTI Median
Five-Choice Movement Time)

290.38 ± 80.76 268.81 ± 64.88 −21.57 ± 82.07 253.57 ± 86.25 268.95 ± 102.64 15.38 ± 50.00 0.09 0.46

RTIFMDRT (RTI Median
Five-Choice Reaction Time)

401.07 ± 46.76 407.50 ± 50.94 6.43 ± 34.95 402.67 ± 41.52 399.24 ± 46.23 −3.43 ± 32.34 0.35 0.64
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Table 2. Cont.

Test Variable
Placebo Carnosine p * p(adj)

Baseline Follow-Up ∆ Baseline Follow-Up ∆

RTIFMTSD (Reaction Time
Index -five choice movement

time (SD))
40.31 ± 17.22 38.19 ± 20.97 −2.12 ± 24.70 37.49 ± 14.09 36.86 ± 12.49 −0.63 ± 13.06 0.81 0.87

RTISES (Reaction time
Index–Simple error Score)

1.91 ± 2.39 0.33 ± 0.56 −0.24 ± 3.21 2.48 ± 5.45 0.43 ± 1.12 0.29 ± 4.3491 0.66 0.84

RTIMSMT (Reaction Time
Index–Mean simple

movement time)
232.70 ± 75.09 237.12 ± 58.91 4.42 ± 56.76 207.12 ± 79.63 220.89 ± 75.64 13.77 ± 64.70 0.62 0.86

RTIMSRT (Reaction Time
Index–Mean simple reaction

time)
353.96 ± 38.80 373.28 ± 41.00 19.32 ± 31.79 350.28 ± 42.60 357.92 ± 40.72 7.64 ± 34.67 0.26 0.75

RTISMDRT (RTI Simple
Median Reaction Time)

345.07 ± 36.25 360.90 ± 37.40 15.83 ± 26.95 342.10 ± 41.28 347.67 ± 36.55 5.57 ± 31.62 0.26 0.7

RTISMDMT (RTI Simple
Median Movement Time)

228.67 ± 72.67 234.45 ± 57.43 5.79 ± 55.44 205.64 ± 78.83 216.71 ± 72.15 11.07 ± 61.23 0.77 0.84

RVPA (Rapid Visual
Processing A prime)

0.88 ± 0.06 0.90 ± 0.39 0.02 ± 0.052 0.91 ± 0.04 0.92 ± 0.06 0.009 ± 0.044 0.35 0.62

RVPMDL (Rapid Visual
Processing–median response

latency)
493.88 ± 116.66 465.53 ± 88.86 −28.35 ± 69.75 481.91 ± 60.09 472.68 ± 61.38 −11.53 ± 62.04 0.43 0.73

RVPPFA (RVP Probability of
False Alarm)

0.04 ± 0.117 0.012 ± 0.008 −0.03 ± 0.12 0.007 ± 0.011 0.01 ± 0.037 0.007 ± 0.028 0.19 0.62

SWMBE (Spatial Working
Memory–between errors)

11.80 ± 9.80 12.35 ± 10.16 0.55 ± 9.59 12.33 ± 7.84 9.43 ± 8.16 −2.90 ± 8.32 0.22 0.67

SWMS (Spatial Working
memory–Strategy 6–8 boxes)

6.70 ± 3.25 6.85 ± 3.31 0.15 ± 2.18 7.48 ± 2.68 6.76 ± 3.40 −0.71 ± 3.21 0.32 0.67

(∆): follow-up—baseline values. All data are represented as mean ± standard deviation. * p-value for differences between groups estimated by independent samples t-test for change (∆).
p(adj): Adjusted p-value for false discovery rate using the Benjamini–Hochberg correction method.
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Table 3. Multivariate regression analysis for the differences in change of cognitive test variables between carnosine and placebo supplementation adjusted

for covariates.

Cognitive Tests

Models
Change (∆)

β 95% CI SE R2 p * P2 (Pooled) p(adj)

Digit Symbol Test Variables

Score

Model 1 3.99 −2.51, 10.49 3.2 0.38 0.22 0.19 0.34
Model 2 3.93 −2.82, 10.69 3.32 0.38 0.24 0.21 0.34
Model 3 3.71 −2.97, 10.40 3.28 0.42 0.27 0.25 0.34
Model 4 4.03 −2.84, 10.89 3.36 0.42 0.24 0.25 0.34
Model 5 −0.22 −8.2, −7.77 3.92 0.40 0.96 0.90 0.96

Trail Making Test variables

Trail Making Test A (s)

Model 1 −2.20 −4.98, 0.58 1.37 0.36 0.12 0.10 0.26
Model 2 −1.83 −4.73, 1.06 1.43 0.38 0.21 0.17 0.30
Model 3 −1.83 −4.78, 1.11 1.45 0.38 0.22 0.18 0.30
Model 4 −2.11 −4.95, 0.73 1.40 0.45 0.14 0.12 0.26
Model 5 −2.81 −5.75, 0.14 1.45 0.47 0.06 0.05 0.22

Trail Making Test B (s)

Model 1 −17.56 −33.58, −1.54 7.90 0.55 0.03 0.03 0.22
Model 2 −14.53 −30.71, 1.66 7.97 0.58 0.08 0.07 0.22
Model 3 −14.81 −31.31, 1.69 8.12 0.58 0.08 0.07 0.22
Model 4 −15.68 −32.35, 0.99 8.19 0.59 0.06 0.06 0.22
Model 5 −15.37 −33.10, 2.35 8.71 0.57 0.09 0.09 0.22

B:A (s)

Model 1 −0.59 −1.52, 0.33 0.46 0.37 0.20 0.21 0.30
Model 2 −0.47 −1.42, 0.48 0.47 0.39 0.32 0.36 0.37
Model 3 −0.48 −1.45, 0.49 0.48 0.39 0.32 0.36 0.37
Model 4 −0.46 −1.45, 0.53 0.49 0.39 0.35 0.38 0.37
Model 5 −0.26 −1.30, 0.79 0.51 0.38 0.62 0.69 0.62
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Table 3. Cont.

Cognitive Tests

Models
Change (∆)

β 95% CI SE R2 p * P2 (Pooled) p(adj)

Stroop test variables

Off Time

Model 1 4.82 −2.27, 11.92 3.45 0.30 0.17 0.09 0.84
Model 2 4.56 −2.85, 11.98 3.6 0.30 0.22 0.08 0.84
Model 3 4.31 −3.29, 11.90 3.68 0.31 0.25 0.08 0.84
Model 4 3.83 −4.11, 11.77 3.84 0.32 0.33 0.15 0.84
Model 5 0.25 −8.57, 9.07 4.26 0.29 0.95 0.93 0.95

On Time

Model 1 1.77 −12.29, 15.83 6.87 0.03 0.8 0.8 0.89
Model 2 2.95 −11.27, 17.17 6.94 0.07 0.67 0.67 0.84
Model 3 2.91 −11.01, 16.83 6.78 0.15 0.67 0.67 0.84
Model 4 0.82 −12.65, 14.29 6.55 0.25 0.90 0.90 0.93
Model 5 −4.74 −19.65, 10.18 7.26 0.27 0.52 0.51 0.84

Off Time + On Time

Model 1 11.06 −55.00, 77.12 32.3 0.03 0.38 0.73 0.84
Model 2 18.58 −47.12, 84.29 32.08 0.10 0.57 0.56 0.84
Model 3 19.25 −43.94, 82.44 30.8 0.20 0.54 0.53 0.84
Model 4 8.13 −53.51, 69.76 29.99 0.30 0.79 0.79 0.89
Model 5 −13.58 −81.90, 54.74 33.24 0.30 0.69 0.68 0.84

On Time–Off Time

Model 1 −2.82 −11.40, 5.76 4.17 0.21 0.51 0.53 0.84
Model 2 −2.97 −11.81, 5.86 4.29 0.21 0.49 0.54 0.84
Model 3 −2.83 −11.94, 6.29 4.42 0.21 0.53 0.54 0.84
Model 4 −4.55 −13.85, 4.75 4.50 0.28 0.32 0.33 0.84
Model 5 −2.47 −12.35, 7.42 4.78 0.25 0.61 0.52 0.84

Successful times x attempts (Off)

Model 1 22.61 −43.72, 88.95 32.27 0.25 0.49 0.27 0.84
Model 2 20.19 −48.72, 89.11 33.46 0.26 0.55 0.25 0.84
Model 3 16.03 −54.28, 86.34 34.07 0.28 0.64 0.25 0.84
Model 4 16.49 −57.67, 90.66 35.85 0.28 0.65 0.35 0.84
Model 5 19.37 −60.32, 99.05 38.52 0.28 0.62 0.63 0.84
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Table 3. Cont.

Cognitive Tests

Models
Change (∆)

β 95% CI SE R2 p * P2 (Pooled) p(adj)

Successful times x attempts (On)

Model 1 27.76 −47.70, 103.23 36.71 0.16 0.46 0.4 0.84
Model 2 21.87 −55.82, 99.56 37.72 0.18 0.57 0.4 0.84
Model 3 14.23 −60.01, 88.46 35.97 0.29 0.7 0.42 0.84
Model 4 −4.22 −75.03, 66.59 34.23 0.42 0.9 0.66 0.93
Model 5 −19.89 −96.05, 56.27 36.82 0.43 0.59 0.69 0.84

CANTAB tests

DMS Percent Correct (All Delays)

Model 1 −2.37 −8.55, 3.80 3.05 0.65 0.44 0.58 0.75
Model 2 −4.59 −10.76, 1.58 3.05 0.69 0.14 0.31 0.51
Model 3 −4.96 −10.772, 0.856 2.87 0.74 0.09 0.22 0.50
Model 4 −5.01 −10.724, 0.698 2.81 0.75 0.08 0.16 0.50
Model 5 −6.86 −12.60, −1.11 2.83 0.77 0.02 0.03 0.31

DMS percent correct
(Simultaneous)

Model 1 −2.75 −7.63, 2.13 2.41 0.66 0.26 0.34 0.58
Model 2 −4.39 −9.36, 0.59 2.46 0.69 0.11 0.21 0.50
Model 3 −4.63 −9.40, 0.15 2.36 0.73 0.08 0.15 0.50
Model 4 −4.67 −9.29, −0.052 2.28 0.75 0.06 0.10 0.50
Model 5 −0.97 −6.57, 4.66 2.77 0.57 0.73 0.67 0.92

DMS Percent Correct (0 Second
Delay)

Model 1 4.933 −5.30, 15.17 5.05 0.66 0.34 0.30 0.68
Model 2 2.868 −7.82, 13.56 5.28 0.67 0.59 0.48 0.83
Model 3 2.134 −8.21, 12.48 5.10 0.70 0.68 0.57 0.90
Model 4 2.097 −8.25, 12.44 5.10 0.71 0.68 0.62 0.90
Model 5 4.09 6.4, 14.57 5.16 0.72 0.43 0.40 0.74

DMS Percent Correct (4 Second
Delay)

Model 1 −6.04 −16.41, 4.34 5.13 0.51 0.25 0.39 0.58
Model 2 −8.81 −19.65, 2.04 5.35 0.54 0.11 0.27 0.50
Model 3 −9.14 −20.09, 1.80 5.40 0.55 0.1 0.24 0.50
Model 4 −9.03 −20.13, 2.07 5.47 0.55 0.11 0.25 0.50
Model 5 −13.03 −24.37,−2.24 5.45 0.58 0.02 0.03 0.31
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Table 3. Cont.

Cognitive Tests

Models
Change (∆)

β 95% CI SE R2 p * P2 (Pooled) p(adj)

DMS Percent Correct (12 Second
Delay)

Model 1 −5.98 −16.53, 4.57 5.21 0.60 0.26 0.27 0.58
Model 2 −6.94 −17.89, 4.01 5.40 0.61 0.21 0.23 0.54
Model 3 −7.74 −18.51, 3.04 5.31 0.63 0.15 0.16 0.51
Model 4 −8.28 −18.61, 2.06 5.09 0.67 0.11 0.09 0.50
Model 5 −9.92 −20.19, 0.35 5.06 0.68 0.06 0.05 0.50

DMS median correct latency

Model 1 −140.46 −886.88, 605.95 368.71 0.21 0.71 0.72 0.92
Model 2 −120.18 −908.07, 667.70 388.85 0.21 0.76 0.77 0.92
Model 3 −115.96 −916.68, 684.76 394.81 0.21 0.77 0.78 0.92
Model 4 −126.76 −904.05, 650.54 382.88 0.28 0.74 0.67 0.92
Model 5 −50.32 −844.91, 744.26 391.4 0.27 0.9 0.87 0.97

DMS Probability of error given
error

Model 1 0.02 −0.09, 0.13 0.05 0.62 0.70 0.79 0.91
Model 2 0 −0.12, 0.12 0.06 0.62 0.99 0.60 0.99
Model 3 −0.01 −0.13, 0.12 0.06 0.63 0.9 0.56 0.97
Model 4 0 −0.13, 0.12 0.06 0.65 0.94 0.58 0.97
Model 5 −0.04 −0.15, 0.08 0.06 0.65 0.50 0.52 0.79

PALFAMS (Paired Associates
Learning First)

Model 1 −2.19 −4.60, 0.23 1.19 0.3 0.07 0.06 0.50
Model 2 −2.93 −5.49, −0.37 1.26 0.34 0.03 0.03 0.36
Model 3 −2.95 −5.55, −0.34 1.28 0.34 0.03 0.03 0.36
Model 4 −2.83 −5.46, −0.21 1.29 0.36 0.04 0.04 0.41
Model 5 −3.22 −5.84,−0.61 1.28 0.36 0.02 0.006 0.31

PALMETS (Paired Associates
Learning Mean Errors to Success)

Model 1 1.491 0.81, 2.17 0.34 0.65 0.001 0.001 0.15
Model 2 1.72 1.01, 2.43 0.35 0.68 0.001 0.001 0.41
Model 3 1.76 1.06, 2.47 0.35 0.7 0.001 0.001 0.31
Model 4 1.70 1.00, 2.39 0.34 0.72 0.001 0.001 0.31
Model 5 1.42 0.63, 2.22 0.39 0.65 0.001 0.001 0.50
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Table 3. Cont.

Cognitive Tests

Models
Change (∆)

β 95% CI SE R2 p * P2 (Pooled) p(adj)

PALTA (Paired Associates
Learning Total Attempts)

Model 1 1.10 0.08, 2.13 0.50 0.41 0.04 0.03 0.73
Model 2 1.47 0.42, 2.52 0.52 0.47 0.01 0.01 0.73
Model 3 1.44 0.39, 2.48 0.51 0.49 0.01 0.01 0.74
Model 4 1.30 0.31, 2.29 0.49 0.57 0.01 0.02 0.54
Model 5 1.40 0.38, 2.41 0.50 0.57 0.008 0.01 0.97

PALTA 4 (Paired Associates
Learning Total Attempts 4

patterns)

Model 1 0.46 −0.04, 0.96 0.25 0.24 0.07 0.06 0.90
Model 2 0.25 −0.35, 0.85 0.29 0.29 0.40 0.19 0.90
Model 3 0.25 −0.35, 0.85 0.30 0.30 0.40 0.19 0.91
Model 4 0.24 −0.37, 0.85 0.30 0.31 0.42 0.21 0.58
Model 5 0.36 −0.19, 0.91 0.27 0.30 0.20 0.09 0.36

PALTEA (Paired Associates
Learning Total errors (adjusted))

Model 1 −0.33 −7.32, 6.66 3.45 0.14 0.92 0.89 0.31
Model 2 1.517 −5.94, 8.97 3.67 0.19 0.68 0.88 0.31
Model 3 1.53 −6.044, 9.10 3.72 0.19 0.68 0.87 0.31
Model 4 1.459 −6.252, 9.17 3.79 0.19 0.70 0.86 0.31
Model 5 4.42 −3.28, 12.12 3.78 0.22 0.25 0.23 0.67

PRMPCD (Pattern Recognition
Memory Percent Correct

Delayed)

Model 1 −9.21 −17.38, −1.05 4.02 0.37 0.03 0.05 0.54
Model 2 −10.9 −19.47, −2.32 4.22 0.4 0.01 0.04 0.54
Model 3 −10.72 −19.36, −2.08 4.24 0.41 0.02 0.05 0.54
Model 4 −10.73 −19.52, −1.93 4.31 0.41 0.02 0.05 0.50
Model 5 −11.27 −20.23,−2.31 4.39 0.42 0.02 0.04 0.82

PRMMDCLD (Pattern
Recognition Memory Median

correct latency)–Delayed

Model 1 188.12 −194.09, 570.33 188.07 0.42 0.32 0.26 0.92
Model 2 263.75 −144.49, 671.99 200.66 0.44 0.20 0.15 0.92
Model 3 261.01 −143.24, 665.25 198.46 0.47 0.20 0.17 0.94
Model 4 257.24 −156.45, 670.93 202.84 0.47 0.21 0.20 0.92
Model 5 358.25 −39.9, −756.41 195.22 0.49 0.08 0.09 0.62
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Table 3. Cont.

Cognitive Tests

Models
Change (∆)

β 95% CI SE R2 p * P2 (Pooled) p(adj)

PRMMDCLI (Pattern
Recognition Memory median
correct latency)–Immediate

Model 1 40.2 −102.57, 182.97 70.46 0.32 0.57 0.43 0.58
Model 2 20.18 −131.65, 172.02 74.87 0.33 0.79 0.53 0.58
Model 3 22.45 −131.53, 176.43 75.85 0.33 0.77 0.51 0.58
Model 4 15.91 −139.09, 170.92 76.27 0.35 0.84 0.61 0.53
Model 5 24.53 −129.81, 178.87 75.95 0.35 0.75 0.64 0.51

PRMPCI (Pattern Recognition
Memory Percent

Correct)–Immediate

Model 1 −3.26 −9.28, 2.75 2.97 0.29 0.28 0.31 0.50
Model 2 −3.62 −10.01, 2.76 3.15 0.29 0.26 0.32 0.50
Model 3 −3.68 −10.17, 2.81 3.20 0.29 0.26 0.31 0.51
Model 4 −3.77 −10.36, 2.81 3.24 0.29 0.25 0.29 0.56
Model 5 −4.45 −10.98, 2.09 3.21 0.31 0.18 0.18 0.54

RTIFMMT (Reaction Time
Index–mean five choice

movement time)

Model 1 29.6 −10.70, 69.89 19.92 0.22 0.15 0.14 0.53
Model 2 33.62 −8.32, 75.56 20.72 0.23 0.11 0.100 0.51
Model 3 35.96 −4.07, 75.98 19.75 0.32 0.08 0.07 0.54
Model 4 31.13 −8.99, 71.24 19.78 0.36 0.12 0.12 0.62
Model 5 25.16 −15.72, 66.04 20.16 0.34 0.22 0.21 0.97

RTIFMDMT (RTI Median
Five-Choice Movement Time)

Model 1 25.81 −15.07, 66.69 20.21 0.20 0.21 0.20 0.97
Model 2 29.31 −13.24, 71.87 21.02 0.21 0.17 0.16 0.93
Model 3 31.55 −9.22, 72.32 20.12 0.30 0.13 0.12 0.92
Model 4 26.72 −14.20, 67.64 20.18 0.33 0.19 0.19 0.93
Model 5 21.88 −19.71, 93.3 20.51 0.32 0.29 0.29 0.80

RTIFMTSD (Reaction Time Index
-five choice movement time (SD))

Model 1 −0.45 −10.95, 10.06 5.19 0.3 0.93 0.93 0.83
Model 2 0.50 −10.44, 11.43 5.40 0.31 0.93 0.93 0.80
Model 3 1.29 −9.04, 11.63 5.10 0.40 0.80 0.80 0.81
Model 4 1.43 −9.06, 11.92 5.17 0.40 0.78 0.78 0.92
Model 5 1.27 −9.55, 12.1 5.34 0.40 0.81 0.81 0.97
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Table 3. Cont.

Cognitive Tests

Models
Change (∆)

β 95% CI SE R2 p * P2 (Pooled) p(adj)

RTISES (Reaction time
Index–Simple error Score)

Model 1 0.29 −0.64, 1.22 0.46 0.09 0.53 0.52 0.92
Model 2 0.26 −0.71, 1.23 0.48 0.09 0.59 0.58 0.92
Model 3 0.30 −0.67, 1.27 0.48 0.12 0.54 0.53 0.97
Model 4 0.29 −0.70, 1.28 0.49 0.12 0.55 0.55 0.79
Model 5 −0.35 −2.88, 2.18 1.25 0.14 0.78 0.78 0.53

RTIMSMT (Reaction Time
Index–Mean simple movement

time)

Model 1 −1.54 −34.35, 31.28 16.22 0.30 0.92 0.92 0.53
Model 2 4.38 −29.24, 38.01 16.61 0.33 0.79 0.79 0.51
Model 3 5.39 −27.92, 38.69 16.44 0.36 0.74 0.74 0.53
Model 4 2.12 −31.15, 35.39 16.4 0.40 0.90 0.90 0.85
Model 5 −10.97 −44.42, 22.49 16.5 0.40 0.50 0.51 0.53

RTIMSRT (Reaction Time
Index–Mean simple reaction

time)

Model 1 −12.89 −32.14, 6.36 9.52 0.19 0.18 0.18 0.51
Model 2 −13.81 −33.88, 6.26 9.91 0.19 0.17 0.16 0.51
Model 3 −14.44 −34.56, 5.67 9.93 0.22 0.15 0.15 0.51
Model 4 −13.66 −33.88, 6.55 9.97 0.24 0.18 0.17 0.50
Model 5 −19.53 −39.99, 0.93 10.09 0.27 0.61 0.05 0.92

RTISMDRT (RTI Simple Median
Reaction Time)

Model 1 −11.25 −27.94, 5.44 8.25 0.22 0.18 0.17 0.98
Model 2 −12.52 −29.87, 4.83 8.57 0.23 0.15 0.14 0.97
Model 3 −13.23 −30.47, 4.01 8.51 0.26 0.13 0.12 0.97
Model 4 −12.34 −29.49, 4.82 8.46 0.29 0.15 0.14 0.74
Model 5 −15.31 −32.87, 2.25 8.66 0.31 0.09 0.08 0.94

RTISMDMT (RTI Simple Median
Movement Time)

Model 1 −4.54 −35.65, 26.57 15.38 0.31 0.77 0.77 0.94
Model 2 0.62 −31.41, 32.65 15.82 0.34 0.97 0.97 0.94
Model 3 1.55 −30.21, 33.32 15.68 0.37 0.92 0.92 0.94
Model 4 −1.15 −33.04, 30.75 15.73 0.39 0.94 0.94 0.87
Model 5 −12.68 −44.72, 19.37 15.8 0.40 0.43 0.42 0.75
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Table 3. Cont.

Cognitive Tests

Models
Change (∆)

β 95% CI SE R2 p * P2 (Pooled) p(adj)

RVPA (Rapid Visual Processing A
prime)

Model 1 0 −0.03, 0.03 0.01 0.20 0.84 0.75 0.77
Model 2 0 −0.03, 0.03 0.02 0.20 0.84 0.69 0.73
Model 3 0 −0.04, 0.03 0.02 0.20 0.85 0.7 0.73
Model 4 0 −0.04, 0.03 0.02 0.21 0.85 0.69 0.74
Model 5 0.01 −0.02, 0.04 0.02 0.22 0.63 0.89 0.92

RVPMDL (Rapid Visual
Processing–median response

latency)

Model 1 12.81 −22.02, 47.65 17.19 0.35 0.46 0.30 0.97
Model 2 12.92 −24.16, 50.01 18.29 0.35 0.48 0.28 0.97
Model 3 15.91 −20.31, 52.13 17.84 0.41 0.38 0.20 0.98
Model 4 15.58 −0.59, −0.15 17.95 0.42 0.39 0.25 0.68
Model 5 15.03 −22.29, 52.36 18.36 0.42 0.42 0.33 0.75

RVPPFA (RVP Probability of
False Alarm)

Model 1 0.002 −0.02, 0.02 0.01 0.90 0.79 0.78 0.80
Model 2 0.001 −0.02, 0.02 0.01 0.90 0.95 0.92 0.80
Model 3 0.001 −0.02, 0.02 0.01 0.90 0.95 0.92 0.77
Model 4 0 −0.02, 0.02 0.01 0.91 0.97 0.90 0.80
Model 5 −0.001 −0.03, 0.01 0.01 0.91 0.34 0.35 0.54

SWMS (Spatial Working
memory–Strategy 6–8 boxes)

Model 1 −0.64 −2.33, 1.06 0.84 0.12 0.45 0.43 0.58
Model 2 −0.54 −2.31, 1.24 0.88 0.13 0.54 0.51 0.53
Model 3 −0.56 −2.36, 1.24 0.89 0.13 0.53 0.50 0.51
Model 4 −0.61 −2.34, 1.11 0.85 0.22 0.48 0.39 0.62
Model 5 0.57 −1.19, 2.33 0.87 0.22 0.52 0.55 0.67

SWMBE (Spatial Working
Memory–between errors)

Model 1 −3.2 −8.28, 1.88 2.51 0.25 0.21 0.20 0.75
Model 2 −3.2 −8.56, 2.17 2.65 0.25 0.24 0.22 0.73
Model 3 −3.56 −8.62, 1.50 2.50 0.35 0.16 0.14 0.74
Model 4 −3.68 −8.67, 1.32 2.46 0.39 0.14 0.11 0.84
Model 5 −2.73 −7.9, 2.44 2.55 0.37 0.29 0.26 0.50
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Table 3. Cont.

Cognitive Tests

Models
Change (∆)

β 95% CI SE R2 p * P2 (Pooled) p(adj)

SWMBE4 (SWM Between Errors
4 Boxes)

Model 1 −0.34 −1.01, 0.34 0.33 0.33 0.32 0.37 0.51
Model 2 −0.27 −0.96, −0.34 0.35 0.34 0.45 0.51 0.50
Model 3 −0.30 −0.99, 0.40 0.34 0.37 0.40 0.45 0.50
Model 4 −0.29 −1.00, 0.42 0.35 0.38 0.41 0.47 0.79
Model 5 −0.19 −0.91, 0.53 0.36 0.37 0.60 0.63 0.82

SWMBE6 (Spatial Working
Memory–between errors 6 boxes)

Model 1 −1.68 −3.40, 0.05 0.85 0.47 0.06 0.04 0.75
Model 2 −1.38 −3.17, 0.40 0.88 0.49 0.12 0.08 0.70
Model 3 −1.46 −3.21, 0.28 0.86 0.53 0.10 0.06 0.68
Model 4 −1.49 −3.24, 0.26 0.86 0.54 0.09 0.06 0.70
Model 5 −0.60 −2.46, 1.25 0.91 0.50 0.51 0.46 0.75

SWMBE8 (Spatial Working
Memory–between errors 8 boxes)

Model 1 −1.1 −5.03, 2.83 1.94 0.27 0.57 0.56 0.51
Model 2 −1.57 −5.69, 2.55 2.03 0.28 0.45 0.45 0.50
Model 3 −1.81 −5.77, 2.15 1.95 0.36 0.36 0.35 0.50
Model 4 −1.90 −5.81, 2.01 1.92 0.39 0.33 0.29 0.31
Model 5 −1.83 −5.82, 2.17 1.97 0.39 0.36 0.33 0.58

Model 1: Adjusted for baseline value. Model 2: Adjusted for baseline value, diabetic status. Model 3: Adjusted for baseline value, diabetic status and level of education. Model 4:
Adjusted for baseline value, diabetic status, level of education and age. Model 5: Interaction term (Group × Sex) and adjusted for baseline value, diabetic status, level of education and
age. * p-values are estimated by Analysis of Covariance (ANCOVA). P2(Pooled): Pooled p-values estimated by ANCOVA after 5 imputations using predictive mean matching to replace
missing data. p(adj): Adjusted p-value for false discovery rate using the Benjamini–Hochberg correction method. (β) Unstandardized beta-coefficient. (CI) confidence interval. (SE)
standard error, and. (R2) R-square value.
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Lastly, in the Spatial Working Memory (SWM) domain, measures such as between

errors and strategy scores showed no significant differences between carnosine and placebo

groups (Tables 2 and 3). Results were unchanged in multivariable regression models

(p ≥ 0.31), subgroup analyses (all p ≥ 0.83) (Tables S5.2.2 and S5.2.4) and interaction analysis

by sex (p > 0.50).

Carnosine was well tolerated, with no adverse effects linked to the supplementation.

The sole reported concern was minor pain and bruise at the blood draw site experienced

by one participant.

3. Discussion

To our knowledge, this is the first double-blind RCT investigating the effects of

carnosine supplementation on cognitive function in individuals with prediabetes or T2DM.

Our findings showed that short-term carnosine supplementation had no significant effect

on cognitive function despite the use of comprehensive neuropsychological assessments,

including the CANTAB series of computerised cognitive tests. These findings remained

unchanged after controlling for key factors known to influence cognition, including diabetic

status, age, sex and level of education, suggesting that carnosine supplementation may not

provide cognitive benefits in this population.

No differences were observed between the carnosine and placebo groups across cog-

nitive tests assessing executive function, attention, cognitive flexibility and processing

speed. In particular, the Paired Associates Learning measures of the CANTAB series, which

are highly sensitive to mild cognitive impairment (MCI) and early Alzheimer’s pathol-

ogy [28–30], were unchanged by carnosine supplementation, including after adjustment for

covariates. One possible explanation for the lack of observed effects is that participants in

this study had no known pre-existing cognitive impairment, potentially limiting the ability

to detect measurable cognitive benefits. However, three previous studies in participants

who were similarly healthy or had MCI have reported conflicting findings, showing that

orally ingested carnosine improved cognitive performance after 12 weeks [31–33]. These

trials involved older participants (mean age over 60 years) who were also more homo-

geneous (all recruited from the Tokyo metropolitan area), in contrast to the present RCT,

which included a younger and more ethnically diverse cohort, including Caucasian, South

American, Middle Eastern, South Asian and Southeast Asian participants. Additionally,

although the average dose of carnosine used was lower than in the current study (ranging

from 250 mg to 1 g daily compared with 2 g daily), two studies administered a combination

of carnosine and anserine, making it difficult to isolate the specific effects of carnosine.

Importantly, previous RCTs investigating the effects of carnosine on cognition [31–36],

including those noted above, have been constrained by limited numbers and types of

neuropsychological testing, typically using assessments such as the Mini Mental State

Examination (MMSE), Alzheimer’s Disease Assessment Scale (ADAS), Clinical Dementia

Rating (CDR), WMS (Wechsler Memory Scale), Short Test of Mental Status (STMS) or AVLT

(Auditory Verbal Learning Test). While these tools are efficient in screening for specific

cognitive deficits, none except the MMSE can derive a global assessment of cognitive

functioning, and most lack the granularity to detect subtle changes in cognitive functioning.

This contrasts with the domain-specific approach used in the current study, which is the first

RCT to employ a comprehensive battery of objective cognitive assessments—including the

gold-standard CANTAB, Stroop, DSST, and Trail Making Tests—to evaluate the cognitive

effects of carnosine in prediabetes or T2DM. This specific test combination was chosen for

its ability to assess diverse memory domains and complex cognitive functions, providing

a more detailed analysis of cognitive performance. The use of computerised tests such

as the CANTAB also minimises ceiling effects, enabling greater sensitivity in detecting
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subtle cognitive changes. Moreover, the more detailed statistical analysis used in this study

suggests that many of the effects of carnosine on cognition reported previously may be

confounded by variables known to affect cognition and/or potentially erroneous data due

to multiple tests.

Despite the absence of an effect in this study, a potential effect of carnosine on neurocog-

nitive function remains plausible from a mechanistic perspective. Recent findings from

the NEAT trail [37] indicated cognitive benefits in younger healthy adults (23–35 years),

suggesting age-dependent effects. The NEAT trial [37] included a larger and healthy co-

hort, whereas the participants from our trial had metabolic conditions, such as impaired

glucose metabolism, that could influence cognitive outcomes, particularly in those with

prediabetes and T2DM. Increased levels of fasting plasma glucose, 2 h postprandial glu-

cose, HbA1c and fasting plasma insulin are important determinants in the development of

cognitive impairment [38], especially in carriers of the APOE4 gene [39]. A meta-analysis

of 122 studies reported a significant increase in the risk of developing cognitive disorders

and all-cause dementia, Alzheimer’s disease and vascular dementia in those with T2DM

and prediabetes [38]. Carnosine has the ability to improve glucose metabolism in those

with prediabetes and T2DM, as shown by our group previously [40,41]. Further, carnosine,

along with anserine, has the ability to cross the blood–brain barrier (BBB) and induce

the expression of neurotrophic genes in human neuronal cells and in glial cells, which

produce brain-derived neurotrophic factor (BDNF) and neuronal growth factor (NGF) in

the brain [42]. However, there is limited evidence of carnosine’s penetrance of the BBB

into neural tissues in vivo in humans. Carnosine is rapidly hydrolysed by the enzyme

carnosinase to its constituents in the gut, limiting its ability to saturate distal tissue sites,

and this may explain in part the lack of significant differences in this study. Future research

aiming to elucidate the true pharmacodynamics of carnosine in human neural tissues

should utilise phosphate MR-spectroscopy to image changes in metabolite concentrations

and fractional volumes of brain grey and white matter post-supplementation [43,44].

The primary limitation of this study is its small sample size, as it is a secondary analysis

of an RCT originally designed to examine the effects of carnosine on glycaemic parameters

rather than on cognitive performance. This study was, therefore, likely underpowered to

detect the smaller effect sizes typically seen in cognitive research. A post hoc power analysis

suggests that future trials would require much larger sample sizes, with approximately

350 participants per group, to achieve 90% power to detect the small effect sizes commonly

seen in cognitive outcome studies. Additionally, our study population did not include

participants with cognitive dysfunction, limiting the generalisability of our results to

these populations. Participants had relatively well-controlled diabetes (HbA1c < 8%) and

typically shorter durations since diagnosis of T2DM (2 months to 6 years). Evidence

suggests that cognitive impairment in prediabetes and T2DM is minor in those with

shorter duration of diabetes compared with those with long-standing chronic diabetes

(>13 years) [45], suggesting that supplementation-induced changes may be more detectable

in populations with longer disease durations and concomitant cognitive impairment. The

dosage (2 g) and duration (14 weeks) of carnosine supplementation used in this trial may

also have been insufficient to affect cognitive measures to an extent detectable within the

constraints of the sample size and statistical power. Given that longer durations (at least

24 months) have been recommended for interventional studies of cognitive function in

Alzheimer’s disease and MCI [46], future studies should consider extended follow-up

periods to assess cumulative cognitive effects. Finally, the average age of participants was

54 years, and it is possible that carnosine is more effective in older populations with early

indications of cognitive decline. This is supported by a previous meta-analysis [47] by
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our group, which found that carnosine supplementation improved delayed recall in older

groups (>65 years) but not in younger cohorts.

Notwithstanding these limitations, this is the first RCT examining carnosine supple-

mentation for cognitive function in prediabetes and T2DM. We utilised comprehensive

neuropsychological testing in a well-characterised cohort, albeit with a likely smaller sam-

ple size than required to detect significant differences. While the cognitive benefits of

carnosine could not be demonstrated in the present study, potential effects cannot be ruled

out, and our data generate important insights to advance this area of study. Future trials

should aim to recruit larger sample sizes with diverse baseline risk profiles, age groups

and ethnicities. Key factors such as physical activity levels, pre-existing cognitive im-

pairment, T2DM durations and diagnosis of T2DM using American Diabetes Association

(ADA) guidelines, which incorporate HbA1c [48], should be carefully considered to ensure

a more representative study population. Trials should also incorporate domain-specific

neuropsychological testing to improve internal and external validity and clarify the effects

of carnosine, if any, on cognitive performance in high-risk populations.

4. Materials and Methods

4.1. Study Design and Participants

This is a secondary analysis of a double-blind placebo-controlled RCT investigating the

effects of 14 weeks of carnosine supplementation on glycaemic control in individuals with

prediabetes or T2DM, the primary results of which are published elsewhere [41]. Detailed

methodology is provided in our published protocol [49]. Briefly, we included participants

aged 18–70 years with prediabetes or T2DM diagnosed using oral glucose tolerance test

(OGTT) (as per World Health Organization [WHO] guidelines [50,51]) and who were

diet controlled and not taking any medications except metformin, which participants

continued taking during the trial. Participants did not undergo cognitive testing prior

to recruitment and were assumed to be cognitively healthy based on the history they

provided. Those with haemoglobin A1c (HbA1c) higher than 8% at the time of screening

were excluded. Furthermore, participants with a body mass index (BMI) > 40 kg/m2;

fluctuating body weight (>5 kg weight change in the prior 12 months); smoking, or alcohol

consumption [52] (standard drinks > 10 per week or >4/day); concomitant central nervous

system, cardiovascular, respiratory, haematological or gastrointestinal diseases; and women

who were pregnant or lactating were also excluded. Participants were instructed not to

alter their diet or physical activity during the trial.

4.2. Recruitment

Primary advertising for the trial was conducted via newspapers, radio and posters.

Volunteers were screened via a telephone-based questionnaire and, if eligible, were invited

to the Clinical Trials Centre of the Monash Health Translational Research Precinct for an

in-person screening visit. At the screening visit, prospective participants underwent a

75 g OGTT to confirm prediabetes/T2DM status using WHO (2006) criteria [50] and blood

tests to exclude other underlying conditions. All participants were assessed against the

inclusion and exclusion criteria noted above prior to formal inclusion and randomisation.

Participants were free to withdraw at any time they desired and were encouraged to speak

to the study physician. They were informed that all personal data would be deidentified,

with only clinical data retained.

4.3. Ethics

All participants provided written informed consent before attending the baseline

screening investigations. The trial was registered on clinicaltrials.gov (NCT02917928,



Pharmaceuticals 2025, 18, 630 22 of 27

28/09/16) and conducted as per the published protocol [49] in line with the Standardised

Protocol Interventions: Recommendations for Interventional Trials [53], with reporting

conforming to the CONSORT guidelines [54]. The Monash Health Human Research Ethics

Committee provided ethics approval for the trial (Ref: 16061A), and all trial processes

complied with the Declaration of Helsinki [55].

4.4. Intervention and Randomisation

Computer-generated randomisation codes were provided by the study statistician

using block sizes of four by sex, which were then forwarded to the clinical trials pharmacist.

Participants were randomised to 2 g of oral carnosine (1 g twice daily, CarnoPure™ Flamma

S.p.A, Chignolo d’Isola (BG), Italy), including on the clinical testing days, or an equivalent

placebo group receiving 2 g of oral methylcellulose (1 g twice daily; Pharmaceutical Pack-

aging Pty Ltd., Melbourne, Australia). Both groups were instructed to take the assigned

intervention for 14 weeks. The sample size, intervention dosages and duration utilised were

decided based on a pilot study and previous meta-analysis conducted by our group [40,56].

To ensure double-blinding of participants and researchers, both carnosine and placebo

were provided in identical capsules within indistinguishable 60-capsule containers. All

participants and trial personnel, including study physicians, nurses and research assistants,

remained blinded to the intervention allocation assigned by the trial pharmacists until

after trial closure and primary analyses were complete. The carnosine and the placebo

powder were assessed for quality and crystallinity by an independent chemical laboratory

and deemed to be free of impurities. Carnosine supplementation at these dosages has

been used safely in previous studies with no reported side effects or toxicity. During

informed consent, participants were advised that should any side effects arise, such as

light-headedness, nausea or transient sensations of feeling hot, they should immediately

inform the study physician. Treatment compliance was self-reported by participants to the

study physicians. Compliance was assessed using the return of containers and counting of

remaining capsules at the last follow-up visit.

4.5. Outcome Measures

The primary outcome of the RCT was a change in 2 h glucose levels after 14 weeks of

carnosine supplementation, with results reported elsewhere showing beneficial effects [28].

This study examined secondary cognitive outcomes assessed in English through four tests

in written and digital formats, detailed in Supplementary S1 and includes the following:

(1) The Digit Symbol Substitution Test, performed in a paper format using a pre-printed

questionnaire. The instruction set displayed at the top of the questionnaire had a row

of numbers from ‘1 to 9’ with corresponding non-language symbols to assess cognitive

flexibility, attention and executive function; (2) The Stroop test was administered via the En-

cephalapp (www.encephalapp.com) application [57] and is intended to measure cognitive

flexibility and processing speed; (3) The Trail Making Tests (A&B) were administered using

the “Trail Making Test UK/XIF5/1014/0071” application (Norgine Pharmaceuticals Ltd.,

Harefield, UK) available during the trial, and assess executive functioning; and (4) The

Cambridge Neuropsychological Automated Battery (CANTAB) tests were conducted on

a digital tablet (iPad iOS v.10) to collect several metrics of cognitive function through

different tasks.

For the CANTAB, we tested six domains as follows: (i) delayed match to sample to

test the cognitive domains of attention and short-term visual recognition memory [58];

(ii) paired associates learning to test visual episodic memory [58] via a multi-stage process

of remembering patterns and locations of patterns; (iii) pattern recognition memory to

assess visual recognition memory [58], where participants select a previously seen pattern
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after being shown a series of visually complex patterns in a continuous sequence (iv);

reaction time index to examine the domains of processing and psychomotor speed [58];

(v) rapid visual processing to test sustained attention, administered as a random sequence

of numbers ticking in a white box in the centre of the screen, and participants press a

button when the target sequence appears; and (vi) spatial working memory which assesses

working memory and strategy [58] by measuring the ability to process and store spatial

memory and apply it in answering the test questions.

All participants were tested at baseline (prior to randomisation) and after 14 weeks of

supplementation (follow-up). Participants were contacted at week 4 and week 10 via phone

to enquire about treatment side effects and compliance. Testing was conducted in the same

location but not at the same time of day, and participants received a brief explanation of

the method for each test before commencing their attempt. Participants were not fasting

during testing and were seated in a relaxed, bright and controlled setting to limit external

stimuli (noise, distractions), with only the participant and researcher present in the room.

4.6. Statistical Analysis

For this analysis, data were analysed using JASP (v0.18.3, University of Amsterdam)

and SPSS (v29, IBM Corp, Armonk, NY, USA). Initially, a complete-case analysis was consid-

ered, but Little’s MCAR (missing completely at random) test indicated that some data were

missing at random (MAR), with no variable exceeding 10% missing data. Consequently,

a modified intention-to-treat (mITT) approach was applied, including all randomised

participants who completed at least one follow-up cognitive assessment after initiating

treatment. Participants lost to follow-up before contributing cognitive follow-up data were

excluded, while those who withdrew post-randomisation but had follow-up data were

retained. Additionally, participants with incorrectly collected cognitive data were excluded.

Baseline characteristics (Table 1) were compared using independent-sample t-tests. A

power analysis confirmed 80% power to detect effect sizes between 0.91 and 1.17, whereas

no cognitive variable exceeded an effect size of 0.61. Missing data were imputed using

predictive mean matching with five imputations. Sensitivity analysis compared mITT and

imputed datasets by assessing pooled estimates from multiple imputations using Rubin’s

rules to evaluate whether imputation significantly altered results.

Cognitive variables were assessed for normality using histograms and the Shapiro–

Wilk test. Descriptive statistics were reported as means with standard deviations (SDs) or

medians with interquartile ranges (IQRs) for non-normal data. Change (delta) values were

calculated by subtracting follow-up from baseline values, with between-group differences

analysed via independent samples t-tests. Effect sizes were estimated using Cohen’s δ.

A general linear model (GLM) was fitted to both original and imputed datasets,

yielding pooled mean estimates for each variable while controlling for baseline values,

intervention group (placebo; carnosine), diabetes status (prediabetes; T2DM), education

level (primary; secondary; tertiary and above) and age. Exploratory analyses included an

interaction term between sex and intervention group and subgroup analyses for participants

with prediabetes or T2DM.

Following univariable analysis, delta values were included in multivariable linear

regression models. The first model adjusted for baseline cognitive values, while subse-

quent models incorporated adjustments for diabetes status (Model 2), education (Model 3),

age (Model 4), and sex-by-intervention interaction (Model 5). For the CANTAB test,

key outcome variables were selected based on CANTAB guidelines [34], presented in

Tables 2 and 3, with additional variables in the Supplementary Materials. To correct for mul-

tiple comparisons, p-values were adjusted using the Benjamini–Hochberg procedure [59,60].
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Adjusted p-values were used to determine statistical significance at a two-tailed threshold

of p < 0.05.

5. Conclusions

In this double-blind, placebo-controlled RCT, carnosine supplementation did not

improve cognitive function in individuals with prediabetes or well-controlled T2DM com-

pared with placebo. While this study was unable to detect potentially subtle cognitive

effects, it highlights key considerations for future research, namely the need for larger,

longer-duration trials with comprehensive neuropsychological testing. Such data will

help establish more definitively whether carnosine can mitigate the cognitive impairment

commonly seen in metabolic disorders such as T2DM.
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