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Are transformers truly foundational for
robotics?

Check for updates

James A. R. Marshall1,2 & Andrew B. Barron3

Generative Pre-Trained Transformers (GPTs) are hyped to revolutionize robotics. Here we question
their utility. GPTs for autonomous robotics demand enormous and costly compute, excessive training
times and (often) offboardwireless control.We contrast GPT state of the art with how tiny insect brains
have achieved robust autonomy with none of these constraints. We highlight lessons that can be
learned from biology to enhance the utility of GPTs in robotics.

Recent years have seen major advances in generative Artificial Intelligence
due to thedevelopmentanddeploymentof anewarchitecture; theGenerative
Pre-Trained Transformer (GPT), or transformer for short1. Through adding
an attentional mechanism to deep neural networks and deploying on
internet-scale training sets, transformers have led to rapid advancements in
Large Language Models (LLMs) for natural language processing and gen-
eration. Following these early applications, transformers have, alongside
other architectures suchasdiffusionmodels2 beenapplied to thedevelopment
of Visual LanguageModels for text to image and video (e.g.3) as well as other
multimodal applications (e.g.4). These successes have inspired the investi-
gationof transformer architectures for the robotics domain.The challenges of
unstructured multimodal inputs sensed in complicated environments, cou-
pled with high degrees of freedom in robot control, have historically con-
strained the development of robots that are simultaneously generally capable,
and robust, in their behaviour. The promise of transformers for robotics
appears to be that large-scale training can, through specialisation on further
smaller-scale training sets, provide general and adaptable solutions to a wide
variety of robotics tasks5. Because they can be applied across so many
application domains transformer-based approaches have been labelled
Foundation Models5, indicating their supposed fundamental status but also
their incomplete nature. Applications of foundationmodels to robotics have
recently taken off in the minds of developers and researchers.

Transformers have their genesis in large language modelling (LLM).
LLMs have also proved to be generalizable and transformative to many
applications, but they are not without limitations. As we reviewbelow, there
are increasingly recognised issues with LLMs in the areas of training dataset
size, compute resources for training, the financial and ecological costs of
both, as well as robustness of behavioural output. In this article we question
whether transformer architectures are likely to be truly foundational for
robotics. We ask whether transformers provide the only or best route
towards Artificial General Autonomy, proposing that, unlike ‘intelligence’6,
the level of autonomy of a robotics system is well-defined, measurable, and
economically meaningful.

Drawing on earlier critiques of GPTs and related approaches, we argue
that transformers provide a facsimile of autonomy rather than true
autonomy.We then review alternative approaches that have beenproposed.
The contrast betweenGPT solutions to autonomous robotics and biological
solutions to autonomous behavioural control achieved by animal brains is
stark.Weexplore this contrast to proposewhat ismissing fromcurrentGPT
approaches, and what could be added in to enhance robust and scalable
robot autonomy.

Progress in applying transformer architectures to
autonomy
Transformers have seen rapid application to robot autonomy. As well as
high profile commercial announcements and demonstrations, end-to-end
solutions to robot autonomy have been developed in the peer-reviewed
literature by both academic and industrial groups, to tasks particularly
focussing on robot navigation and dexterity (for a review, see7).

While the early promise of transformers for robot autonomy seems to
be being realised, for a general and scalable solution it is essential to
recognise that this technology still comes with significant limitations that
will constrain future performance and adoption.While these are active areas
of research, and some of these may become less acute as the traditional
efficiencies associated with the development and deployment of a novel
technology are realised, we argue that there are fundamental structural
issues with current transformer architectures, and that these should moti-
vate a longer term search for alternative and complementary approaches,
which we review later in this article.

Training data size and cost requirements are likely to grow
At the heart of the transformer approach to any problem is a scaling
requirement. Given the lack of inductive biases these learning systems are
highly flexible, however the corollary of this is that their training data
requirements are vast. Theusual approach for deployment of a transformer-
based foundation model is to train on an internet-scale corpus so that the
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model acquiresmulti-modal correspondences anddomain knowledge, then
further specialise on a smaller training data set for a specific set of tasks. The
costs of this are very substantial. Even excluding environmental impacts,
state-of-the-art LLMs cost on the order of $10 s to $100 s of millions per
training episode8, although rapid reductions in training and inference costs
are being made9. For robotics applications, further training for particular
tasks such as navigation and manipulation is usually required. The avail-
ability and cost of acquiring good training datasets is recognised as a major
problem. Proposed solutions include the curation of open datasets covering
multiple tasks and robot types10, although currently these can be biased to a
relatively small number of tasks. There is also the extensive use of physics-
based simulators to generate trainingdata (e.g.11).Weargue that, similarly to
LLMs, exponentially increasing quantities of data are likely to be required to
sustain advances in performance12. Even for text and multimodal datasets
where the internet provides a very large corpus of training data ‘for free’, the
availability of training data risks becoming a limiting factor13. For robotics
datasets the costs of collecting useful training data, either physically or
through simulation, will be much more acute; replacing physical data col-
lection with collection via simulation simply trades one kind of resource—
experimental time—with another—computational time, albeit with the
latter being more scalable. Furthermore, since improvement in transfor-
mers’ performance is predicated on increases in scale of training data and
weights this problem will only get worse—for example, in multimodal AI
‘zero-shot’ generalization has been shown to have exponential training data
requirements14.

Compute and infrastructure costs and requirements will persist
Once the costs of training a transformer-based architecture are paid, the
inference costs at deployment can still be substantial. For example, Meta’s
Llama 3.1 has cloud-scale deployments (405bn double-precision para-
meters). There are reduced size and precision versions suitable for deploy-
ment on local GPUs (e.g. 8bn half-precision integer parameters), which can
take ~20–100GBofmemory for inference. This demands a substantial GPU
for even the simplest models being run on a robot15, although, as noted
above, inference costs have been reduced through the use of unsupervised
reinforcement learning during training9. While binarisation, quantisation,
and other approaches have been used to help design edgeAI accelerators for
deep and convolutional neural networks (e.g.16), the scale of the problem for
transformers ismany orders ofmagnitude larger. For example, for one of the
longest researched applications of deepnets, object detection, one state of the
art algorithm has on the order of 10m-80m network weights15, compared to
the 8bn-405bn weights mentioned above for a state-of-the-art LLM. This
represents a four orders of magnitude difference in scale, even before the
additional requirements of training a transformer for robotics tasks are taken
into account. Hence there is very active research into methods to avoid the
cloud compute bottleneck, includingutilisationofnovel technologies such as
6G17.Moore’s law and the advent of novel parallel compute architectures has
traditionally saved AI, and computer software more generally. For foun-
dation models, however, we argue that although available compute can be
scaled exponentially, the exponential requirements for model size and
throughputwill be in opposition.A real-terms reduction in requirements for
compute as performance improvements are soughtwill only occurwhen the
exponent for the former is greater than the exponent for the latter. However
growing evidence suggests we are moving to a post-Moore’s Law world
where further innovation in materials is required to make progress [e.g18].
Even if compute could still scale faster than data requirements scale, given
the potential for ongoing algorithmic improvements9, below we argue that
there are verymanyorders ofmagnitudedifference between the training that
is achievable for a transformer, and the ‘training’ that has genuinely solved
autonomy over evolutionary time.

Hallucinations for transformers in robotics may become acute
As a consequence of their statistical training and inference, LLMs are prone
to confabulation and hallucination, defined as producing outputs that are
inconsistent with user input and/or world knowledge and common

sense19,20. While such outputs can still be damaging even for a disembodied
AI, for example in the social and political arenas21 when a transformer
architecture is embodied the risks are magnified, much as acting on hallu-
cinatory perceptions and impulses in human mental illness can lead to
recognized harms to self and others. As with humans, hallucinations may
manifest in ways likely to cause harm to the robot or to others, and
adversarial attacks on guardrails for transformers in robotics have already
been demonstrated22. While mitigation of hallucinations is an ongoing area
of research20, as others also argue23 we contend that the fundamentally
correlational nature of transformers will render hallucinations inescapable.
Failures of reasoning are also inherent in symbolic reasoning byGPTs24 and
chain of reasoningmodels25. This is likely to require that humans remain in
the control loopas teleoperators to ensure robots are remotely supervised, or
that robots are isolated fromhumans, or both. Any of these outcomeswill of
course limit the promised benefits of robotics. As other researchers have
argued, these structural issues with statistical approaches to AI are unlikely
to find remedy without significant architectural change26.

Transformers give a facsimile of intelligent autonomy
Given the aboveconcerns,whyare transformers seeing increasingadoption for
robotics? We attribute this to two factors: first, as with LLMs and VLMs,
strikingearlyadvanceshavebeenmade in traditionallyverydifficult areas, such
ashumanoidcontrol,manipulation,and,of course,natural language interfaces.
Second, however, we believe a tendency of human observers to anthro-
pomorphise often leads some of them to ascribe abilities, and the potential for
understanding, that the architecture does not, and cannot, technically support.

While there are many types of transformer the central motif is a
repeating unit composed of a self-attention block followed by a multilayer
perceptron block27 (Fig. 1, right). The control flow is feedforward, while the
attention mechanism learns which earlier elements of the input to attend to
in predicting the next appropriate action. Aswith LLMs, both the power and
generalizability of transformers for robotics comes from their extensive
training so that, once trained, they canperform the operation ofmatching an
input to a predicted output. In robotics transformers succeed in resolving
and executing an action from an input, but this is achieved by interpolation
and extrapolation of the training set, with unreliable off-training-set
performance28. There is no reasoning and no reason why a transformer
selects one response over another, other than the selected option carrying the
highest predictive weight following training29. The same can be said of the
language abilities of LLMs,whichhavebeendescribed as stochastic parrots30.

Training and reference to learned experience is an important part of
biological autonomous decision making too, but for humans and other
animals decisionmaking is also supported by reasoning frommodels of how
the world works, how other involved agents should operate, and why the
selected action is situation appropriate31. Transformers lack these
models24,32. An autonomous robot’s capacity will be limited by the scope of
the training dataset. Since transformers’ responses are unreasoned products
of the training data, any transformer-based application cannot justify a
decision other than by statistical association to the training data. This poses
serious challenges for any form of human / robot interaction. If we were to
ask awell-intentioned human coworkerwhy theymade an error theywould
do their best to explain the reasoning behind their actions33. If we ask a
transformer based robot why it made an error there would be no reasoned
answer per se; the answer to the query will have at best a correlation but no
causal relationship to the error made, and be subject to hallucination as
described above. Reasoning frommodels of how the world works can allow
forms of introspection andmetacognition that can interrogate why awrong
choice has been made, or query wrong decisions before any action is taken.
We contend that feedforward transformer-based applications are structu-
rally incapable of reliable metacognition29,31.

Alternatives and complements to transformers for
autonomy
If transformers are not the full answer, what is? Here we review the main
alternative proposals, with an emphasis on our preferred approach: drawing

https://doi.org/10.1038/s44182-025-00025-4 Perspective

npj Robotics |             (2025) 3:9 2

www.nature.com/npjrobot


deep inspiration from how the biological brain solves the autonomy
problem.

Natural intelligence
The gulf between transformer approaches to robotics and how biological
brains produce autonomous behaviour is stark (Fig. 1). Most often com-
parisons are drawn between LLMs, GPTs and human reasoning29,31,34, but
the comparison with animal brains and animal reasoning is even more
pronounced. For example, the honey bee brain is tiny (just over one cubic
millimetre) and contains fewer than one million neurons35. The number of
synapses in the bee brain is not known, but if we can infer from the Dro-
sophila connectome36 there will be fewer than half a billion synapses in the
bee brain. (Fig. 1, left). Demonstrably, this is all a bee needs to reliably
navigate over long (several kilometre) distances, autonomously harvest
pollen andnectar fromthe environment, communicate and coordinate their
efforts with their hive mates, and perform all themany jobs needed to build
and maintain their colony, including raising the next generation. They can
solve complex foraging economics problems, majoring on the resources
their colony needs and harvesting them from cryptic and ephemeral flowers
patchily distributed in the environment37. Bees are able to fly with no
practice, and just twentyminutes of structured flight time around the hive is
enough for them to be able to navigate proficiently in their environment38.
The contrast with the prolonged training needed by transformers could not
be greater. The power consumption of a bee brain as it performs entirely on-
board autonomous decision making is infinitesimal compared to any GPT.
In contrast to transformers, animal brains have beenmassively ‘pre-trained’
on a planetary scale, to use minimal information and generate a very wide
variety of behaviours (Fig. 2). It is trivial to observe that the scale of this
evolutionary pre-training, spanning very many trillions of instantiations of

tens of millions of different species, across hundreds of millions of years,
cannot be matched by computational approaches; even if it could, arguably
we do not have a sufficiently robust and evolvable representation to match
the genetic language that encodes for body and brain morphology and
behaviour in nature39. But the greater point is this: we don’t need to match
the process by which bee intelligence evolved if we want to match the
performance of that evolved intelligence. That can be done by studying just
the end point of the evolutionary process – the embodied brain.

How, then, does the humble bee outperform transformers in compute,
energetic cost, and training time? In a word—structure. The generalisability
of transformers, and arguably their elegance, is because before pre-training
they are not structurally differentiated according to function. The insect
brain, by contrast is a case study in structure-function specialization. The
insect brain is subdivided into modules (Fig. 1, left). Each module is spe-
cialised for processing different domains of the autonomous decision-
making challenge. Each specialization in each module exploits the regula-
rities and properties of the information it is processing to reduce compute
and increase overall system efficiency. For example, specialized modules in
the bee, ant and fly brain process the pattern of polarized light in the sky
generated around the sun40,41. This is a valuable and robust navigational cue.
Its structure is preserved by a topographic processor – the protocerebral
bridge in the central complex—whichoperates as a ring attractor to establish
orientation of the animal relative to external cues40,42,43. This connects to yet
anothermodulewhich is topographically structuredas the azimuth, and can
support the relative localization of the insect to external objects40,41. The
regularities of the external world are reflected in how they are represented in
the insect brain, which conveys a form of intuitive physics (albeit very
different from the type of physics engines used in AI). Olfactory and visual
sensory lobes are each specialised to the input properties of their sensory
domain. The sensory lobes sharpen, enhance and ultimately compress
sensory signals for projection to multimodal sensory integration regions44.
The largest of these, the mushroom body, has a structure similar to a three-
layer neural network with an expanded middle layer45–47. This seems espe-
cially adept at multimodal classification.

Insects lack the declarative reasoning of humans, but their reasoning is
built around a form of elementary world model. Insects possess a unitary and
coherent representationof external spacewithinwhich theyhave afirst-person
perspective on objects around them48. The valence of objects is influenced by
the insect’s learned experience with them, as well as innate valence and sub-
jective physiological state44. Differences in valence and location of objects
arbitrate the insect’s selection49–51. This formof reasoningmight be elementary,
but it is still more comprehensible and explicit than the reasonless transfor-
mers. It is increasingly recognized thatAI stands to benefit tremendously from
importing concepts and algorithms from insect neuroscience52,53.

Objective AI and world models
Other researchers have proposed that indeed the autonomy abilities of ani-
mals (including those ‘simpler’ than humans) should provide inspiration for
AI researchers54. However, this inspiration is much looser than the Natural
Intelligence approach above. While the ‘objective AI’ approach does indeed
propose modular AI architectures that correspond with an understanding of
the human brain developed in neuroscience, cognitive science, and psychol-
ogy, theproposal is actually quitedifferent; rather thandirectly seek to reverse-
engineer neural circuits in specialist brain modules, instead the idea is to
design trainable modules that interface with each other in order to generate
more adaptive behaviour thana largely undifferentiated largeneural net could
be expected to.Thus, for example, rather thandirectly seek tounderstandhow
feature detectors in the early primate visual system function, a feature detector
module would be trained. A key part of the proposal is the reintroduction of
explicit and configurable worlds models, drawing inspiration from cognitive
science; however these also remain trained from data55.

Hybrid approaches
Still other researchers, drawing on a long running proposal but also
gaining renewed motivation from contemporary developments in AI,

N x

N x

Fig. 1 | Key differences in structure and function between natural and artificial
solutions to autonomy. Left: The brain of a honey bee forager Apis mellifera pro-
vides high levels of autonomy integrating multi-modal sensory data to navigate,
communicate locations in space, and learn associations between stimuli and
rewards, all using fewer than 960,000 neurons. Distinct brain regions specialise in
perception including vision (optic lopes, yellow and orange), and olfaction (antennal
lobes, blue), and feed into multimodal memory centres (mushroom bodies, red).
Sensory and memory pathways converge in the central complex which integrates
sensing and learned associations in a single representation of the bee, situated
relative to percepts weighted by the bee’s internal state. This is sufficient to resolve
competing goals, which drives behaviour directly by interfacing with premotor
neurons (not shown). Brain regions are highly differentiated in structure and
function according to task demands, and come together in a modular architecture
with high degrees of intra-module connectivity but limited and well defined inter-
module connections. Image source: insectbraindb.org Right: the generative pre-
trained transformer (GPT) architecture. Multimodal sensory inputs are embedded
in high dimensional space (not shown) then feed into repeated blocks of attentional
mechanisms (yellow) followed by feed forward deep networks (blue), with inter-
mediate normalisation and selection layers (not shown). Each block is hence a very
large and non-sparse matrix, with matrix multiplications propagating through the
GPT to produce the next output in sequence. Knowledge of the task is encoded in the
learned values within the matrices, whose total entry counts typically range in the
billions to trillions. Thus although total GPT parameters vastly exceed the number of
synaptic connections in a simple brain, they are far less robust in behavioural output.
Figure adapted from1.
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have proposed the ‘neurosymbolic approach’26. This approach argues
that, while deep nets are very suitable for perceptual tasks such as object
detection, they are fundamentally unsuited to the symbolic manipula-
tion that is part of reasoning, planning, and decision making. In the
context of transformers, this has recently been supported by observa-
tions that LLMs fail to robustly deal with and manipulate symbolic
knowledge24,32. Thus the proposal is to combine the perceptual strengths
of statistical AIwith the causal strengths of the older, symbolic, approach
to AI. Given the neural bases of symbolic reasoning in the brain are
poorly understood, this is a particularly pragmatic approach. In doing so
it is hoped that the limitations of the first, symbolic, wave of AI, will be
ameliorated by working around the problems they suffered in having
sole responsibility for dealing with the perceptual complexity of the real
world56. We suggest that an even more powerful combination could
include the use of Natural Intelligence approaches to perception, and
modelling of space and decision option sets within it.

Since transformers may inform our understanding of aspects of
‘higher’ cognitive function in real brains (see ‘Natural Intelligence’ above),
they could still have great value informing a component of full autonomous
system stacks grounded on basal mechanisms derived from natural brains,
rather than their foundations themselves. Just as activity and learned filters
in deep neural networks show interesting corollaries with function of nat-
ural brains56, transformers do appear to capture some interesting funda-
mental aspects of language and visual recapitulation57 (but see58 and59), and
hence may form a component of a fully autonomous system grounded on
firmer foundations.

Conclusion
Transformer architectures have brought to robotics the rapid progress that
they had already brought to natural language andmuli-modal AI.However,
there are reasons to continue the search for solutions to the robotics
autonomy problem. Transformer architectures treat the world in purely
statistical terms, albeit grounded in perceptual inputs. This was arguably a
deliberate choice in response to the ‘bitter lesson’60, that inductive biases in
AI have historically failed56. However, this results in an autonomy solution
very different to the way the only truly autonomous artefact known to
humanity, the biological brain, functions.Herewehavehighlighted this, and
conclude by arguing that the tremendous recent advances in data on, and
understanding of, a variety of brains, means the time is ripe to revisit the
‘bitter lesson’, and see what new lessons for AI can be learned from
their study.

Data availability
No datasets were generated or analysed during the current study.
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