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A B S T R A C T

This study demonstrated the composite concept to precisely control the grain boundary composition to address 
TiB2 films inherent brittleness. Such concept was realized by combining high-power impulse magnetron sput
tering (HiPIMS) with direct current magnetron sputtering (dcMS). By employing an HfMoNbZr-HiPIMS/TiB2- 
dcMS co-sputtering configuration, we successfully replaced the B in the grain boundaries with a B-containing 
amorphous multi-principal element alloy (MPEA). The results showed that TiB2 film deposited by dcMS alone 
typically had an overstoichiometric composition, with a B/Ti ratio of 2.96, and a relatively low hardness (H) of 
26.6 ± 1.2 GPa. In contrast, the formation of a nanocomposite structure (nc-MeB2/a-MPEA, i.e., nanocrystalline 
MeB2 (Me = HfMoNbZrTi) embedded in an amorphous MPEA matrix), with MeB2 in-plane grain sizes ranging 
from 2 to 5 nm, increased the hardness to 41.8 ± 3.7 GPa, while also enhancing indentation fracture toughness 
and reducing wear rate. This strengthening mechanism was attributed to lattice distortion within the MeB2 grains 
and the suppression of grain boundary sliding by the MPEA. In addition, density functional theory (DFT) cal
culations indicated that the higher bulk modulus (B) /shear modulus (G) ratio of the TM0.44Ti0.56B2 (TM =
HfMoNbZr) solid solution compared to TiB2 suggested that the brittleness of the TM0.44Ti0.56B2 solid solution was 
lower. This study paves a way for the structure design of diborides for various applications.

1. Introduction

Refractory transition metal based ceramics including carbides, ni
trides, and borides, are well known for their high hardness, with some 
even classified as superhard materials [1–4]. The mechanical properties, 
such as toughness, and effective fracture resistance, can be effectively 
tailored by adjusting the valence electron concentration (VEC) [5–10]. 
This adjustment influences the population of shear-sensitive metallic 
states [11–13], thereby affecting the ability to deform plastically under 
loading. In nitrides and carbides, high hardness arises predominantly 
from robust non-metal-metal bonds, as demonstrated by chemical 
bonding analyses [5,11,12]. In contrast, the hardness of diborides is 
additionally attributed to strong B–B interactions. For many years, 
research in the film industry has focused on improving the properties of 

these materials for use as protective and functional films [14–18]. 
Among these, the transition metal diborides, which generally exhibit 
higher hardness than their nitride and carbide counterparts, have 
attracted considerable research interest [19,20].

Transition metal diborides typically possess a hexagonal AlB2-type 
structure, where hexagonal metal atomic layers alternate with boron 
atom layers along the c-axis. The boron layers are graphite-like while the 
metal atomic layers are nearly densely packed [1]. There are three types 
of bonding in transition metal diborides, strong covalent bonding within 
the B atomic layer, metallic bonding within the metal atomic layer, and 
ionic-covalent bonding between the metal and the B atoms [21,22]. This 
unique structure imparts the material with both metal and ceramic 
properties, such as high hardness, high thermal and chemical stability, 
and good electrical conductivity [1]. These excellent properties make 
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transition metal diborides ideal for a wide range of applications, 
including protective films for microelectronic components [23,24], 
thermal solar absorber [25], cutting tools [26,27], and components in 
the aerospace and nuclear industries [28,29].

Among the transition metal diboride family, TiB2, is the most widely 
studied and used, where overstoichiometric TiB2 films with a hardness 
exceeding 40 GPa have been reported under optimized conditions 
[30–33]. However, the application of TiB2 films is greatly limited by 
their low oxidation resistance and intrinsic fracture toughness (~3.6 
MPa m1/2 [34]). In comparison, the fracture toughness of Ti-Al-N film 
could achieve ~8.0 MPa m1/2 [35]. In particular, TiB2 films grown by 
conventional magnetron sputtering usually suffer from excessive boron 
at the grain boundary, depending on the deposition parameters such as 
working pressure and the target-to-substrate angle and distance 
[36–39]. This boron excess leads to oxidation at elevated temperatures, 
resulting in the formation of B2O3 gas, which easily evaporates and 
leaves behind a porous structure. This porosity creates pathways for 
oxygen ingress, accelerating the oxidation process [40–42]. Another 
critical issue with TiB2 films, is their low intrinsic fracture toughness, 
primarily caused by the high stiffness of Ti–B and B–B chemical bonds 
and the inability of the material to yield before cleavage under tensile 
loading [43]. These challenges can be addressed by replacing amor
phous boron at the grain boundaries with other elements (e.g., C, N, Si, 
Al, Ni, Cu) through HiPIMS and dcMS co-sputtering. For example, Ti-Al- 
B alloy films deposited by HiPIMS (Al) and dcMS (TiB2) co-sputtering 
were observed that the column boundaries changed from B-rich to Al- 
rich, significantly enhancing the oxidation resistance of the films [41]. 
Additionally, introducing metallic elements such as Ni [44] or Cu [45] 
into TiB2 films to form nanocomposite structure, improves toughness 
while maintaining high hardness. An alternative approach to simulta
neously increase film hardness and toughness is also suggested by pre
cisely control the B/Ti ratio, promoting the formation of metallic- 
element-rich planar defects in substoichiometric diborides [46,47].

Refractory multi-principal element alloys (MPEAs), composed 
mainly of high melting point metal elements (Hf, Mo, Nb, Zr, Ti, V, Ta, 
W, etc.), have attracted particular attention due to their excellent me
chanical properties and outstanding thermal properties at high tem
peratures. For instance, Mo-Ta-W MPEA films with a nanocrystalline 
structure show excellent mechanical properties with a hardness of about 
20 GPa [48]. Georg et al. [49] deposited three bcc-structured (MoN
bTaTiW, MoNbTaVW and CrMoNbTaW) films using HiPIMS, which 
demonstrated stability at a 1200 ◦C annealing temperature. Inspired by 
the remarkable mechanical performance of MPEAs, the properties of 
TiB2 film could be further enhanced through alloying with MPEAs, in 
particular by controlling the composition of the amorphous matrix at the 
grain boundary. To successfully implement this amorphous matrix, a 
MPEA with low crystallinity should be adopted. Our recent studies have 
demonstrated that HfMoNbZr-based alloy films exhibit an amorphous 
structure when deposited at either room temperature or 500 ◦C, with 
hardness (~13 GPa) exceeding their metal counterparts [18,50]. This 
makes them a suitable replacement material for the amorphous boron in 
TiB2 film.

In this work, we introduced an amorphous multicomponent 
HfMoNbZr into TiB2 films by using HiPIMS-powered Hf25Mo25Nb25Zr25 
(TM) target. By varying the average discharge power of the TM target, 
the amount of TM and the total amount of metallic element (Me, where 
Me = HfMoNbZrTi) could be altered, allowing for control over the B/Me 
ratio and the grain boundary structure of the TMxTi1-xBy films. A 
detailed investigation into the microstructure and mechanical perfor
mance was conducted. First-principles calculation was also employed to 
investigate the electronic structure and to further understand its inter
play with the mechanical property.

2. Experimental details

2.1. Film deposition

TMxTi1-xBy films were grown in a high vacuum chamber with a base 
pressure of 2 × 10− 3 Pa utilizing two 3-in. circular targets: TiB2 (99.80 
%) and Hf25Mo25Nb25Zr25 (TM, 99.95 %), both with a thickness of 6 mm 
for the discharge. Single-side polished Si (001) wafers, AISI 316 L 
stainless steel (used for tribology tests, with Ra = 14.97 ± 2.02 nm, see 
Fig. S1) and WC-8Co (used for indentation fracture toughness test) were 
used as substrates. The substrates were cleaned with petroleum ether 
and ethanol in an ultrasonic bath for 15 min each, prior to being 
mounted on the substrate holder positioned 11 cm from the target. Films 
were grown at a working pressure of 0.45 Pa, with a flow of 40 sccm 
99.997 % Ar and a substrate temperature at 500 ◦C. The TiB2 and TM 
targets were powered by direct current magnetron sputtering (dcMS) 
and high-power impulse magnetron sputtering (HiPIMS), respectively. 
For the dcMS process, the discharge power (PdcMS,TiB2) was set at 250 W 
by regulating the discharge current. Simultaneously, HiPIMS discharge 
powers (PHiPIMS,TM) of 0, 100, 200, and 300 W were applied to the TM 
target (see Table 1) by altering the target voltage, while keeping the 
pulse length of 20 μs and the frequency of 1000 Hz constant. This 
resulted in peak target currents of 10.9 A (0.24 A/cm2), 20.5 A (0.45 A/ 
cm2), and 27.7 A (0.61 A/cm2) for PHiPIMS,TM of 100 W, 200 W, and 300 
W each. The substrate holder was kept floating during the deposition 
process. All the films were deposited for 180 min and were cooled to 
80 ◦C before breaking vacuum.

2.2. Film characterization

The elemental compositions of the TMxTi1-xBy films were determined 
by Electron Probe Micro Analysis (EPMA, JXA-8530F PLUS) with ZAF 
correction and an accelerating voltage of 15 kV. The cross-sectional 
morphology and thickness were examined under a scanning electron 
microscope (SEM, Sigma 300, Zeiss) operated at an accelerating voltage 
of 3.0 kV. The crystal structures of the films were characterized by θ-2θ 
X-ray diffraction (XRD) using a Philips X'Pert high-resolution X-ray 
diffractometer with Cu Kα radiation (λ = 1.540597 Å), with a step size of 
0.01◦ and a scan speed of 2◦/min. The average crystallite size of the films 
was calculated from the full-width at half-maximum by Scherrer's 
equation [51]. A detailed microstructural investigation of the 
TM0.41Ti0.59B1.74 sample (TM discharge power of 200 W case) was 
conducted using scanning/transmission electron microscopy (S/TEM, 
Talos F200X G2, ThermoFisher) with a field emission gun operated at 
200 kV. The plan-view and cross-sectional specimens were prepared via 
the focused ion beam (FIB, Scios 2 HiVac, ThermoFisher) using a 30 kV 
Ga ion beam for initial polishing, followed by a 5 kV Ga ion beam for the 
final polishing.

To evaluate the hardness (H) and elastic modulus (E) of the films, 
nanoindentation measurements were performed using a nano
indentation system (TTX-NHT3, Anton Paar) with a fixed load of 10 mN, 
ensuring the indentation depths did not exceed 10 % of the films 
thickness. For each sample, 12 indentations were conducted to calculate 
the averaged values and absolute errors. In addition, the indentation 
fracture toughness of the films was assessed using the same indentation 
system with a Berkovich diamond tip, indented to a depth of 500 nm 
(Fig. S2). Following indentation, the top-view indentation morphologies 
were examined using SEM. A ball-on-disk tribometer (MFT-5000, Rtec) 
was employed to investigate the tribological properties of the films 
against an Al2O3 ball with 6 mm in diameter. The test was conducted in a 
linear reciprocating sliding mode with a normal load of 2.5 N, sliding 
velocity of 8 mm/s, and a wear-track length of 4 mm, for a total sliding 
duration of 50 min. The wear track morphologies were evaluated by 
using a three-dimensional optical profiler (Contour Elite K, Bruker). The 
wear rates (Wr) of the films were calculated using the equation [18,52]: 
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Wr =
V

F × S
(1) 

Where V represents the wear volume (m3), F is the normal load (N), and 
S is the total sliding distance (m).

2.3. DFT calculation

The Vienna Ab-initio Simulation Package (VASP) [53] was applied to 
conduct first-principles calculations, primarily to calculate the elec
tronic structure and mechanical properties of the material. The projector 
augmented-wave (PAW) [54] method was employed to describe the 
interaction between electrons and ions. The general gradient approxi
mation (GGA) by Perdew-Burke-Ernzerhof (PBE) was used to approxi
mate the exchange-correlation functional [55]. The plane-wave cut-off 
energy of 600 eV was applied, and the Brillouin zone was meshed using 
the Г-centered method with a 4 × 4 × 3 k-grid. For structures optimi
zation, the convergence criterion of energy and force were set to 10− 8 eV 
per supercell and 0.01 eV/Å, respectively. The models of TiB2 and 
TM0.44Ti0.56B2 were constructed using a 3 × 3 × 3 supercell containing 
81 atoms (see Fig. S3). To create the chemical disorder in the 
TM0.44Ti0.56B2 solid solution, a special quasi-random structure (SQS) 
[56] method was employed, using the mcsqs module of Alloy-Theoretic 
Automated Toolkit (ATAT) code [57]. The post-processing was per
formed using VASPKIT [58]. The electron localization function (ELF) 
was visualized by using VESTA software [59]. The mechanical proper
ties were calculated from the elastic constants obtained by the stress- 
strain method using the VASP code. Theoretical hardness values (Hv) 
were estimated using Chen's [60] empirical model as follows: 

Hv = 2
(
G3/B2)0.585

− 3 (2) 

where G and B is shear modulus and bulk modulus, respectively.
The average atomic displacement (Δd) is calculated as follows: 

Δd =
1
N

∑N

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xi − xʹ

i
)2

+
(
yi − yʹ

i
)2

+
(
zi − źi

)2
√

(3) 

Where N is the total number of atoms in a given element, (xi, yi, zi) 
and (xʹ

i, yʹ
i, źi) are the reduced coordinates of the unrelaxed and relaxed 

positions of atom i, respectively.

3. Results

3.1. Elemental composition and crystal structure

The elemental composition, TM/Me ratio, and B/Me ratio for the 
TMxTi1-xBy films are presented in Table 1. The film deposited only with 
the TiB2 target with power of 250 W exhibits an overstoichiometric 
composition, which is in line with previous studies that typically re
ported B/Ti ratios ranging from 2.4 to 3.5 [33,61,62]. As Hf, Mo, Nb, 
and Zr are sputtered from the equimolar TM target, their contents are 
nearly identical. The total TM elemental concentration increases with 
higher PHiPIMS,TM, reaching a peak TM/Me ratio of 0.52 at PHiPIMS,TM =

300 W. Simultaneously, the B content decreases with the increase of 
PHiPIMS,TM, leading to the composition change from overstoichiometry to 

substoichiometry (PHiPIMS,TM = 200 W and 300 W).
The X-ray diffractograms of TMxTi1-xBy films grown at varied PHiPIMS, 

TM values are presented in Fig. 1. As shown in Fig. 1(a), the TiB2.96 film 
(PHiPIMS,TM = 0 W) predominately exhibits reflections from the out-of- 
plane (1010) and (1011) planes of AlB2-type TiB2 (JCPDS 35–0741). 
Compared to the TiB2.96 films, the TM0.29Ti0.71B2.1 film shows a signif
icant increase in the intensity of X-ray diffraction peaks (Fig. 1(a)), 
indicating an enhancement in the out-of-plane crystallinity of the film. 
With the increase of the TM content (decrease of B atomic percentage), 
the positions of 1010 and 1011 peak slightly shift to lower diffraction 
angles, consistent with the theoretical calculations, showing expansion 
of the out-of-plane lattice constant (Fig. 1(b)). Additionally, broadening 
of 1010 and 1011 diffraction peaks is observed at higher PHiPIMS,TM 
cases, indicating a reduction in the out-of-plane crystallite size (Fig. 1
(c)). Notably, the broadest reflection, corresponding to the smallest 
crystallite size along the (0001) plane, is achieved for the 
TM0.41Ti0.59B1.74 film (PHiPIMS,TM = 200 W). Further increase in TM 
content (TM0.52Ti0.48B1.39) results in a vanishing of diffraction peaks, 
indicating that the crystalline films transitioned to an amorphous 
structure in the out-of-plane direction. The similar phenomenon was 
also observed in multicomponent nitride [63].

Fig. 2 shows the cross-sectional and plan-view SEM morphologies of 
TMxTi1-xBy films. For the single target discharge case, the TiB2.96 film 
has a thickness of about 2.632 μm, while the TM0.29Ti0.71B2.1 film 
(PHiPIMS,TM = 100 W) exhibits a significantly reduced thickness of 
approximately 1.774 μm when deposited using the co-sputtering 
configuration. As the PHiPIMS,TM increases from 100 W to 300 W, the 
film thickness increases. These variations in growth rate are accompa
nied by changes in both cross-sectional and plan-view morphologies. As 
PHiPIMS,TM increases from 100 W to 300 W, the film surface become 
smoother.

3.2. Mechanical property and tribological performance

Fig. 3 illustrates the hardness (H) and elastic modulus (E) as a 
function of B/Me ratio of TMxTi1-xBy films. The measured H of TiB2.96 is 
approximately 26.6 ± 1.2 GPa, which is within the lower range of the 
hardness typically reported for overstoichiometric TiB2 films grown by 
dcMS [64,65]. With the decrease of B/Me ratio, H initially increases and 
reaches a maximum value for TM0.41Ti0.59B1.74 film before declining. 
The changes in E follow a similar trend, with the TM0.41Ti0.59B1.74 film 
exhibiting the highest E value.

The indentation fracture toughness of films was qualitatively eval
uated by examining the surface and sub-surface after performing an 
indentation test on the WC-8Co substrate. At an indentation depth of 
500 nm, the applied loads on the TiB2.96, TM0.29Ti0.71B2.1, 
TM0.41Ti0.59B1.74 and TM0.52Ti0.48B1.39 films were 108.8 mN, 133.2 mN, 
141.1 mN, and 115.4 mN, respectively (Fig. S2), with the highest load 
applied on the TM0.41Ti0.59B1.74 film, indicating that it has the strongest 
resistance to deformation. As shown in Fig. 4, the TiB2.96 film not only 
exhibits radial cracks but also shows ring-like cracks, indicating that the 
TiB2.96 film has high brittleness. As the PHiPIMS,TM increases from 100 W 
to 300 W, the length of the radial cracks significantly decreases and 
disappears when the PHiPIMS-TM reaches 300 W, indicating that the 
ability of the films to resist crack initiation and propagation increases 

Table 1 
Target discharge power of TiB2 target (PdcMS,TiB2 ) and Hf25Mo25Nb25Zr25 target (PHiPIMS,TM), and the resulting elemental composition, TM/Me ratio, and B/Me ratio of 
the TMxTi1-xBy films. The TM denotes the total elemental concentration of Hf, Zr, Nb, and Mo. The Me denotes total elemental concentration of the TM and Ti.

Film PdcMS, TiB2 (W) PHiPIMS,TM 

(W)
Elemental composition (at. %) TM/Me ratio B/Me ratio

B Ti Hf Zr Nb Mo

TiB2.96 250 0 74.77 25.23 2.96
TM0.29Ti0.71B2.1 250 100 67.72 22.86 2.22 2.24 2.41 2.55 0.29 2.10
TM0.41Ti0.59B1.74 250 200 63.54 21.44 3.48 3.60 3.91 4.02 0.41 1.74
TM0.52Ti0.48B1.39 250 300 58.27 19.67 5.14 5.31 5.76 5.86 0.53 1.40
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with the PHiPIMS,TM. This qualitative evaluation of changes in indenta
tion morphologies conclude that the hardness-toughness trade-off is 
successfully mitigated by the nanocomposite structure (nc-MeB2/a- 
MPEA), as demonstrated in the case of TM0.41Ti0.59B1.74.

Fig. 5 shows the coefficient of friction (COF) as a function of sliding 
time, profiles of wear tracks, wear rate and the three-dimensional 
morphologies of wear tracks for TMxTi1-xBy films deposited on 316 L 
stainless steel. It is observed in Fig. 5 (a) that the COF value fluctuates in 
the running-in period, and gradually increases during the steady-state 
wear stage with an increment of <0.1. Changes in COF during the 
steady-state wear stage are highly correlated with the alloyed-TM con
tent. The TiB2.96 film exhibits a COF value of approximately 0.65, which 
increased significantly with the introduction of TM (e.g., 

TM0.29Ti0.71B2.1). However, when the film turns to substoichiometric, 
the COF decreases to below that of TiB2.96 film before increasing again as 
the TM content rises. At the same time, the wear track of TiB2.96 film 
exhibits the greatest depth (1.94 μm) and width (0.207 mm) in Fig. 5(b). 
As TM is introduced into the films, the depths of wear tracks are 
significantly reduced. Although this trend reverses with higher TM 
content, as seen in the TM0.52Ti0.48B1.39 film. According to the calculated 
wear rate (Fig. 5(c)), the lowest wear rate, in the order of 10− 16 m3N− 1 

m− 1, is achieved by the TM0.41Ti0.59B1.74 film, while the other films 
exhibit wear rates in the order of 10− 15 m3N− 1 m− 1. Comparing the 
three-dimensional morphologies of the wear tracks of TMxTi1-xBy films 
(see Fig. 5(d)), delamination and pits in wear tracks are notably reduced 
in the TM0.29Ti0.71B2.1 and TM0.41Ti0.59B1.74 films compared to the 

Fig. 1. (a) X-ray diffractograms of TiB2.96 (PHiPIMS,TM = 0 W), TM0.29Ti0.71B2.1 (PHiPIMS,TM = 100 W), TM0.41Ti0.59B1.74 (PHiPIMS,TM = 200 W), and TM0.52Ti0.48B1.39 
(PHiPIMS,TM = 300 W) films. (b) out-of-plane d-spacing and (c) full width at the half maximum (FWHM) as a function of B/Me ratio. The intensity of X-ray dif
fractograms in (a) are in linear scale.

Fig. 2. Cross-sectional and plan-view SEM micrographs of TMxTi1-xBy films: (a) TiB2.96 (PHiPIMS,TM = 0 W), (b) TM0.29Ti0.71B2.1 (PHiPIMS,TM = 100 W), (c) 
TM0.41Ti0.59B1.74 (PHiPIMS,TM = 200 W), and (d) TM0.52Ti0.48B1.39 (PHiPIMS,TM = 300 W).
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TiB2.96 (a localized magnified image of the wear track seen in Fig. S4) 
and TM0.52Ti0.48B1.39 films, suggesting lower fatigue and abrasive wear 
in the former. Additionally, the wear tracks of TM0.29Ti0.71B2.1 and 

TM0.41Ti0.59B1.74 are shallower and exhibit smoother surfaces, resem
bling a polishing effect.

3.3. Nanocomposite structure

As shown in Fig. 6, given the enhanced mechanical properties of the 
TM0.41Ti0.59B1.74 film, plan-view and cross-sectional TEM micrographs 
were acquired to provide further insights into its microstructure. Fig. 6
(a) is a low-magnification bright field image, revealing the presence of 
dark dot-like areas embedded within the matrix. The higher magnifi
cation images (Fig. 6(b) and (c)) indicate the dark dot-like areas are 
nanocrystalline. In Fig. 6(b), the interplanar spacing between (1010) 
planes (d1010) of MeB2 solid solution is measured to be 0.262 nm, which 
exactly matches the value of standard TiB2 (0.262 nm). In contrast, the 
d1011 spacing of MeB2 is 0.208 nm, slightly larger than the TiB2 value of 
0.204 nm (JCPDS 35–0741). Moreover, comparing d1011 of MeB2 to 
those of HfB2 and ZrB2 shows a lower d1011 value for MeB2, implying the 
formation of solid solution of MeB2 within the TiB2 crystallites due to the 
incorporation of TM. In general, the d-spacing values measured from 
HRTEM image are consistent with those calculated from the peak po
sitions in the X-ray diffractograms (seen in Fig. 1(b)), so it indicates the 
TM incorporation results in the lattice expansion of the TiB2 crystallites.

The SAED pattern inserts in Fig. 6(a) and 6(h) confirms that the film 
exhibits hexagonal AlB2-type structure. The diffraction rings in the 
SAED are almost continuous, also illustrating nanocrystalline feature of 
the TM0.41Ti0.59B1.74 film, which is in line with the HRTEM images 

Fig. 3. Hardness H and elastic modulus E of TMxTi1-xBy films.

Fig. 4. The indentation site morphologies of (a) TiB2.96 (PHiPIMS,TM = 0 W), (b) TM0.29Ti0.71B2.1 (PHiPIMS,TM = 100 W), (c) TM0.41Ti0.59B1.74 (PHiPIMS,TM = 200 W), and 
(d) TM0.52Ti0.48B1.39 (PHiPIMS,TM = 300 W) on WC-8Co substrate.
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shown in Fig. 6(b) and (c). No obvious diffraction ring is detected from 
the body-centered cubic (BCC) TM alloy, which again indicates that 
there is no agglomeration or crystallite formation by the TM alloy 
[18,50]. In Fig. 6(c), diffusely distributed nano-scale grains with a in- 
plane size of 2–5 nm, surrounded by amorphous matrix, are observed. 
The detailed nanocrystalline/amorphous structure is confirmed in the 
high-resolution TEM image and the FFT pattern shown in Figs. 6(c)-(e), 
where AlB2-type MeB2 nanocrystallites are in variable shape and size, 
and surrounded by large volume of amorphous matrix. Therefore, the 
nanocrystalline component consists of MeB2, while the amorphous 
matrix located between individual grains is primarily composed of 
MPEA (where MPEA is composed of Me and lower concentration of 
boron). EDX map (see in Fig. S5) and Atom Probe Tomography (APT, see 
in Fig. S6) analysis further confirms that no significant segregation is 
observed between the grains and the amorphous matrix. Additionally, 
the HRTEM image in Fig. 6(h) shows that no significant lattice fringing 
was observed, which indicates that the TM0.41Ti0.59B1.74 film is low 
crystallinity in the cross-sectional direction.

3.4. DFT calculation

The total density of states (TDOS) and partial density of states 
(PDOS) of TiB2 and TM0.44Ti0.56B2 are shown in Fig. 7. In Fig. 7(a), the 
DOS of TiB2 shows a pseudo-gap on the Fermi level [66]. The presence of 
a non-zero electronic density of states on the Fermi level suggests that 
the metallic property of TiB2. In the DOS of B atom, the overlap of s and p 
orbitals is correlated with the formation of B–B covalent bonds. The 
states from − 5 eV to the Fermi level are mainly contributed by the 
overlap of Ti 3d and B 2p orbitals. The strong hybridization of the Ti 3d 
and B 2p orbitals suggests that Ti–B bond has covalent characteristics 

[66,67]. In Fig. 7(b) and (c), the DOS for TM0.44Ti0.56B2 has similar 
characteristics as that of TiB2, owing to the similarity in crystallographic 
structure and chemical bonding of these diborides [68]. However, the 
DOS of TM0.44Ti0.56B2 shifts to a low-energy range, and higher values 
compared to TiB2 at the Fermi energy level. This indicates a higher 
metallicity [21] and lower chemical stability for TM0.44Ti0.56B2 [69,70]. 
This shift is mainly attributed to the increase of VEC for TM0.44Ti0.56B2, 
where the valence electron number is 4 for Ti, Zr, and Hf, and 5 and 6 for 
Nb and Mo, respectively. This results in increasing concentration of 
d electrons per formula unit (provided by Mo and Nb substitutions) at 
the Fermi level. Furthermore, as the number of valence electrons in
creases, the Me-B interactions are enhanced, suggesting a greater 
contribution of covalent bonds to Me-B bonding.

The electronic localization function (ELF) for TiB2 and 
TM0.44Ti0.56B2 on the (0001) and (1120) planes is shown in Fig. 8. On 
the (0001) plane, non-localized electrons accumulate between neigh
boring metallic atoms indicating typical metallic bonding characteristic 
for both diborides. On the (1120) plane, the yellow region between 
neighboring B atoms shows highly localized electrons, suggesting the 
presence of strong covalent bonds between the B atoms. Charge transfers 
occur mainly from the metal atoms to the B atoms due to the differences 
in electronegativity, reflecting the ion-covalent feature of Me-B bond. 
Comparing the ELF in Fig. 8(a) and Fig. 8(b), the ELF values between 
neighboring metal atoms and between Me and B atoms increase after the 
introduction of TM. The Me-B and Me-Me (dd) bonding are strengthened 
by the addition of TM atoms. However, the strengthened Me-Me and Me- 
B bonding results in a weaker B–B bonding strength, which could 
reduce material theoretical hardness (see charge distribution between B 
atoms in Fig. S7). Overall, the addition of TM leads to a non-uniform 
bonding distribution by regulating Me-B and Me-Me bonding, which 

Fig. 5. (a) The coefficient of friction (COF) as a function of sliding time, with semi-transparent lines representing the raw (unsmoothed) data for comparison. (b) 2D 
profiles of wear tracks, (c) wear rate and average COF, and (d) the three-dimensional morphologies of wear tracks of TMxTi1-xBy films.
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in turn influences the bonding-related properties, such as mechanical 
properties, electrical conductivity, and thermal conductivity.

The bulk modulus (B), shear modulus (G), Young's modulus (E), 
Poisson's ratio (ν), B/G and Vickers Hardness (Hv) of TiB2 and 
TM0.44Ti0.56B2 are listed in Table 2. The bulk modulus of TM0.44Ti0.56B2 
is higher than that of TiB2, while the G, ν and Hv of TM0.44Ti0.56B2 are 

lower due to the change in bonding characteristics regulated by the VEC. 
As the theoretical B is a monotonic function of VEC, the introduction of 
TM increases the VEC from 10 for TiB2 to 10.33 for TM0.44Ti0.56B2, 
leading to an increase in B [71]. Additionally, the increase of VEC 
strengths Me dd bonding, in turn, leads to a reduction in resistance to 
shear deformation and a decline in the G [72]. Both TiB2 and 

Fig. 6. (a), (b) and (c) are the plan-view TEM images of TM0.41Ti0.59B1.74 film, (d) and (e) are the FFT images in the blue and yellow boxes of the TEM image in (c), 
respectively. (f), (g) and (h) are the cross-sectional (S)TEM images of TM0.41Ti0.59B1.74 film. The inserts in (a) and (h) are selected area electron diffraction (SAED) 
patterns. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The calculated total and partial electronic density of state (DOS) of (a) TiB2, (b) and (c) TM0.44Ti0.56B2. The Fermi level is represented by a vertical 
dashed line.
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TM0.44Ti0.56B2 materials have a Pugh's ratio [73] B/G of <1.75, indi
cating their intrinsic brittleness. However, TM0.44Ti0.56B2 is expected to 
exhibit higher ductility because of its higher B/G value.

4. Discussion

The B/Me ratio and the content of TM are crucial in determining the 
film structure during growth. The out-of-plane crystallite size of the 
TiB2.96 film (PHiPIMS,TM = 0 W) is estimated to be approximately 5–6 nm, 
based on the (1011) and (1010) diffraction peaks (Fig. 1(c)). This 
crystallite size of TiB2 could be limited by the excess segregated amor
phous B at the grain boundaries, as the growth of crystallites was 
inhibited [38,46,61,74,75]. The TM0.29Ti0.71B2.1 film has smaller out-of- 
plane crystallite sizes (3–4 nm) but improved crystallinity compared to 
the TiB2.96 film. This improvement is due to the addition of TM atoms, 
which act as nucleation sites, promoting crystallite refinement of the 
MeB2 phase. As the TM content increases, the X-ray diffraction peaks 
broaden and eventually vanish for the film deposited with PHiPIMS,TM =

300 W, indicating a structural transition from nanocrystalline to amor
phous. This transformation can be explained by the deficiency of B in the 
film. In the diboride solid solution, a severe lack of B (B–B covalent 
bond) causes significant lattice distortion, which subsequently leads to 
lattice collapse and thus results in the complete loss of crystallinity [76]. 
A similar phenomenon is often observed in high-entropy alloys where 
high lattice distortion induces the formation of amorphous structure 

[77,78]. Moreover, the excess TM formed the disordered amorphous 
matrix, rather than metal-rich planer defects observed in the TiB1.43 case 
[40]. Additionally, the amorphization brings a more uniform and 
smoother film surface in line with the cases where Ni [44] and Cu [45] 
were added.

As shown in Fig. 4, the hardness of the TiB2.96 film is only 26.6 ± 1.2 
GPa, while the TM0.41Ti0.59B1.74 film achieves a significantly higher 
hardness at 41.8 ± 3.7 GPa. However, theoretical calculations indicate 
that TiB2 has an intrinsic hardness of 49.1 GPa, which is higher than the 
intrinsic hardness of TM0.44Ti0.56B2 solid solution (40.0 GPa). This 
discrepancy arises because the theoretical hardness H, as estimated by 
Chen empirical model, only based on elastic moduli alone, and does not 
consider factors such as lattice distortion and microstructure [60,79]. 
The hardness of TiBx films (1.2 ≤ x ≤ 2.8) prepared by co-sputtering of 
TiB2 and Ti targets decreases from ~29 GPa to ~26 GPa with decreasing 
B content. In contrast, our films exhibited a trend of hardness initially 
increasing and then decreasing (ranging from approximately 27 GPa to 
42 GPa and subsequently dropping to 30 GPa). This difference suggests 
that the enhanced hardness in our best samples may be attributed to the 
solid-solution strengthening and the formation of a nc-MeB2/a-MPEA 
structure resulting from the introduction of TM. In the TM0.44Ti0.56B2 
solid solution, local lattice distortions occur due to the coexistence of 
multiple metal elements. The average atomic displacements (Δd) from 
their unrelaxed positions for Hf, Mo, Nb, Zr, Ti, and B are estimated to be 
0.667, 0.334, 1.137, 1.138, 0.827, 0.004 respectively. This lattice 

Fig. 8. The electron localization function (ELF) of (a) TiB2, (b) TM0.44Ti0.56B2 is shown on planes parallel to (0001), which pass through boron layers, and on (1120) 
that are across both metal and boron atoms. The interval of the contour lines is 0.1. ELF values of 0 and 1 correspond to the delocalized state and the localized state, 
respectively, while an ELF of 0.5 represents a uniform electron gas.

Table 2 
Bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio (ν), B/G and Vickers Hardness Hv values of TiB2 and TM0.44Ti0.56B2.

Material VEC B G E ν B/G Hv

TiB2 10 252.84 257.84 577.28 0.119 0.981 49.09
TM0.44Ti0.56B2 10.33 259.39 235.08 541.62 0.152 1.103 40.02
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distortion is supported by the X-ray diffractograms (see Fig. 1(a)) and 
HRTEM images (Fig. 6(c)), where the diffraction peaks shift to lower 
angles and the interplanar spacing d1011 increases in the 
TM0.41Ti0.59B1.74 film compared to standard TiB2.

While the solid solution strengthening effect increases the film 
hardness with probability of compromising toughness. The primary 
mechanism of plastic deformation during nanoindentation is the pro
liferation and movement of dislocations. As the crystallite size de
creases, the number of grain boundaries increases, which prevents 
dislocation formation, thereby enhancing the material's strength [80]. 
This phenomenon is known as the Hall–Petch effect, which fails when 
the crystallite size is reduced to tens or even a few nanometers [81]. 
According to the previous reports by Veprek et al. [82,83] and Chris
tiansen et al. [84], dislocations barely form in nanocrystals smaller than 
3–6 nm, the plastic deformation is dominated by grain boundary sliding 
and grain boundary softening [85]. This explains why the Hall–Petch 
effect fails in nanocrystalline structure. In our case, the TM0.41Ti0.59B1.74 
film exhibits a nc-MeB2/a-MPEA structure (see in Fig. 6(b) and 6(c)), 
where a few nanometer crystallites are embedded in the amorphous 
matrix. Effective dislocation formation is initially suppressed in such 
small crystallites, and the huge amorphous matrix inhibits grain sliding 
[86], increasing the hardness of the TM0.41Ti0.59B1.74 film. Our results 
demonstrate that the nc-MeB2/a-MPEA structure has a significant 
strengthening effect, resisting the Hall - Petch breakdown. The amor
phous MPEA, however, is significantly softer than the crystalline MeB2, 
with previous experimental results indicating hardness varied between 
9.0 GPa [50] and 13.2 GPa [18] for amorphous HfMoNbZr films. This 
softness partially accounts for the improved plasticity, toughness, and 
fracture resistance observed in the TMxTi1-xBy films. Another contrib
uting factor is the increased concentration of d electrons per formula 
unit (provided by Mo and Nb substitutions) at the Fermi level, analogous 
to nitrides and carbides [5,12,87]. Although the incorporating of a large 
amount of softer amorphous TM in the film will further improve the film 
indentation fracture toughness, it will inevitably reduce its hardness, as 
seen in the TM0.52Ti0.48B1.39 case (Fig. 3).

Hardness is a crucial parameter for evaluating the tribological 
properties of films, as the wear rate is mainly determined by the hard
ness at low loads [88]. In Fig. 5(b), the wear rate decreases when the film 
gets harder. Due to the poor indentation fracture toughness of TiB2.96 
film (Fig. 4(a)), cyclic stress promotes crack initiation and propagation 
during the wearing, resulting in substantial plastic deformation and the 
highest wear rate among the films. For the TM0.29Ti0.71B2.1 and 
TM0.41Ti0.59B1.74 films, the surfaces of the wear track appear relatively 
smooth, similar to a polishing effect. Meanwhile, the addition of TM 
inhibits the growth and expansion of cracks as the indentation fracture 
toughness is enhanced. In contrast, the TM0.52Ti0.48B1.39 film exhibits 
furrows in the wear track, a typical feature of abrasive wear. This is due 
to a further increase in amorphous component (TM content), reducing 
hardness. The abrasive particles generated during wearing become 
involved in the process, leading to the creation of furrows and increases 
in wear rate.

5. Conclusion

TMxTi1-xBy films, with varying compositions ranging from x = 0 to 
0.52, were synthesized by co-sputtering using a TM-HiPIMS/TiB2-dcMS 
configuration. Combining the experiments and theoretical calculations, 
we investigated the effect of TM content on the microstructure and 
mechanical properties of TMxTi1-xBy films. The results showed that the 
main phase of the films is hexagonal TiB2 with no crystalline TM phase 
detected. With the increase of TM content, the film structure transi
tioned from nanocrystalline to amorphous structure, and surface 
smoothness improved. The hardness initially increased from 26.6 ± 1.2 
GPa to 41.8 ± 3.7 GPa, and then dropped to 30.9 ± 1.0 GPa in the 
TM0.52Ti0.48B1.39 film with a fully amorphous structure. Meanwhile, the 

indentation fracture toughness of the films increased significantly with 
the increase of TM content. Theoretical calculations indicated that the 
VEC of TM0.44Ti0.56B2 solid solution increased with introduction of TM, 
i.e., which enhancing the metallicity and consequently improving 
toughness compared to TiB2. The TEM characterization for the 
TM0.41Ti0.59B1.74 film, which exhibited the highest hardness confirmed 
that the film had a nc-MeB2/a-MPEA structure. This unique structure not 
only improved the indentation fracture toughness but also maintained 
its high hardness. Additionally, the TM0.41Ti0.59B1.74 film showed 
excellent wear resistance, which is in relation with its higher hardness.
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