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Abstract 
 
In this paper, we compare and combine human and automatic voice comparison results 
based on short, regionally variable speech samples. Likelihood ratio-like scores were 
extracted for 120 pairs of same- (45) and different-speaker (75) samples from a total of 
896 British English listeners. The samples contained the voices of speakers from 
Newcastle and Middlesbrough (in North-East England), as well as speakers of Standard 
Southern British English (modern RP). In addition to within-accent comparisons, the test 
included between-accent, different-speaker comparisons for Middlesbrough and 
Newcastle, which are perceptually and regionally proximate accents. Scores were also 
computed using an x-vector PLDA automatic speaker recognition (ASR) system. The 
ASR system (EER=10.88%, Cllr=0.48) outperformed the human listeners (EER=23.55%, 
Cllr=0.75) overall and no improvement was found in the ASR output when fused with the 
listener scores. There was, unsurprisingly, considerable between-listener variability, 
with individual error rates varying from 0% to 100%. Performance was also variable 
according to the regional accent of the speakers. Notably, the ASR system performed 
worst with Newcastle samples, while humans performed best with the Newcastle 
samples. Human listeners were also more sensitive to high-salience between-accent 
comparisons, leading to almost categorical different-speaker conclusions, compared 
with the ASR system, whose performance with these samples was similar to within-
accent comparisons. 
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1. Introduction 
 
This paper examines the performance of untrained, human listeners and an automatic 
speaker recognition (ASR; not to be confused with automatic speech recognition which 
is also commonly referred to as ASR) system at the task of voice comparison. Voice 
comparison involves analysing two (or more) samples of speech with a view to 
assessing whether they contain the voices of the same or different speakers. While 
much work has been done to examine listener performance at voice comparison with 
familiar voices (e.g., Roebuck and Wilding, 1997; Plante-Hébert and Boucher, 2015), 
much less work has been conducted using unfamiliar or regionally variable voices; this 
is despite the identification of, and adaptation to, new voices being extremely important 
for speech processing. There has also been relatively little work examining the 
processing involved in voice comparison by human listeners relative to the empirical, 
algorithmic approaches of ASR systems. 
 
Our aim here is to better understand what linguistic and phonetic information human 
listeners and ASR systems are sensitive to when comparing unfamiliar voices, 
specifically those of different regional accents, and to assess whether this information is 
complementary. This provides a means of explaining some of the underlying processing 
within both human listeners and automatic systems, which are both opaque to some 
extent (embedded in the brains of listeners or the deep neural networks of automatic 
systems). 
 

1.1 Voice comparison by humans 

 
Previous research has demonstrated a range of factors influencing human abilities to 
discriminate between pairs of same- and different-speaker samples of unfamiliar voices. 
With good quality but very short recordings (around two seconds), overall accuracy of 
82.4% is reported by Kreiman and Papcun (1991). Legge et al. (1984) demonstrate that 
performance improves as a function of duration, with accuracy of only around 50% (not 
statistically above chance) reported using six-second samples, and accuracy of 70% 
reported using 60-second samples. Performance degrades as a function of audio 
quality (Smith et al. 2019), while style mismatch (e.g., read vs. spontaneous speech) 
between samples also leads to degradation in listener performance compared with 
style-matched samples. Further, research has shown that listeners use different 
strategies for recognising unfamiliar voices depending on whether the pair of voices 
belong to the same or different speakers (see Afshan et al. 2022), exemplifying 
differences in perceptual strategies for ‘telling voices together’ and ‘telling voices apart’ 
(Johnson et al., 2020). 
 
Work on this topic has also been conducted in the forensic domain, specifically in the 
context of earwitness evidence. Such evidence is used when a witness to a crime hears 
the voice of the criminal, but does not see their face. In such cases, the witness needs 
to demonstrate the ability to recognise the voice of the criminal in the vocal equivalent of 
a line-up. Research has often shown considerable between-listener variation in 
earwitness performance, but with some systematic effects as a function of factors 
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relating to the target voice (e.g., cases of voice disguise or face coverings), factors 
relating to the listener (e.g., young listeners perform better than older listeners), and 
case-specific factors (e.g., time between exposure and line-up) (Bull and Clifford, 1984; 
van Wallendael et al., 1994). Most notably for the purposes of the present study, 
Atkinson (2015) showed better performance among listeners more familiar with the 
accent of the target speaker in a voice line-up task than listeners less familiar with the 
accent (see similar findings in Braun et al. 2018). 

 

1.2 Voice comparison by ASR 
 
The last 20 years has seen considerable improvement in the performance of ASR 
systems. Systems now utilise deep neural networks (DNNs) trained on large amounts of 
data to convert sets of acoustic features extracted from the speech signal into a speaker 
embedding extracted from the DNN (e.g., an x-vector; Snyder et al., 2018), often 
followed by dimension reduction via linear discriminant analysis (LDA). Given that 
systems still typically utilise MFCCs as input and that features are extracted from across 
the entire speech-active portion of a sample, the speaker embedding is thought to 
capture information principally about the supralaryngeal vocal tract, both in terms of 
physiology and also long-term vocal setting (for a phonetic definition of long-term vocal 
setting see Laver, 1980). Systems then compare embeddings from two speech samples 
(one of a known speaker, one of an unknown speaker) to generate a score. This score 
captures the two samples’ similarity (and often their typicality, if using probabilistic linear 
discriminant analysis (PLDA)), but generally the score cannot be interpreted directly 
until it is calibrated using representative scores from sets of comparisons where the 
ground truth is known. The output is then a likelihood ratio (LR), a measure of the 
strength of the evidence given the same- and different-speaker propositions. 
 
State-of-the-art ASR performance is now extremely good, even with challenging 
materials. A forensic evaluation coordinated by Morrison and Enzinger (2019) reports 
equal error rates (EER) of up to 13.9% with older generations of systems (such as the 
Gaussian Mixture Model Universal Background Model (GMM-UBM) approach; see 
Reynolds et al., 2000), compared with 2.2% for the best performing x-vector system. 
Considerable work has been dedicated to developing systems that are increasingly 
robust to technical effects, such as telephone transmission, background noise, and 
duration. Yet large sources of mismatch between samples remain a challenge. These 
includes speaker factors, especially those related to the supralaryngeal vocal tract, as 
demonstrated by Hughes et al. (2023). The extent to which systems are sensitive to 
other linguistic information such as segmental variation or laryngeal features remains 
under-researched. 

 

1.3 Comparing human and ASR approaches 
 
Approaches to testing listeners and ASR systems in voice comparison tasks with 
unfamiliar voices have varied widely and reported a range of results. ASR systems have 
generally been shown to outperform humans (Hautamäki et al., 2010; Khan et al., 2011; 
Das and Prasanna, 2016). With short audio samples, results are much more mixed. 
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Park et al. (2018) compared the performance of 65 human listeners with an i-vector 
(see Dehak et al., 2011; Morrison et al., 2020) PLDA ASR system using two-second 
samples across two speaking styles (read speech, pet-directed speech). Overall 
performance was relatively poor, although humans (EER=30.58%) outperformed the 
automatic system (EER=36.52%) in almost all conditions tested. The exception was the 
case of style-mismatched pairs with ‘perceptually marked’ speakers (defined as “non-
American dialect, overly precise articulation and/or unusual disfluencies in reading” 
(2018: 377), where human performance (EER=46.23%) was considerably worse than 
system performance (EER=37.35%). Park et al. (2018) also found only a weak 
correlation between human and ASR responses, suggesting that the two approaches 
are sensitive to different information when making judgments. Afshan et al. (2020) 
tested the performance of 30 human listeners (of which 24 were L1 English speakers) 
and a state-of-the-art x-vector PLDA system using three-second, style-matched and -
mismatched audio samples. As in Park et al. (2018), humans outperformed the 
automatic system in style-matched conditions (EER: 6.96% vs. 14.35% for read speech, 
15.12% vs. 19.87% for conversational speech), although performance was comparable 
in style-mismatched conditions. Fusion of human and machine responses showed 
improvements in overall performance. This, again, provides evidence to suggest that 
humans capture complementary speaker-specific information to that captured by an 
ASR system. 

 
A small number of studies have assessed human and ASR voice comparison from a 
forensic perspective. In 2010, a human-assisted element was introduced to the US 
National Institute of Standards and Technology (NIST) speaker recognition evaluation 
(Greenberg et al., 2010) by eliciting binary judgments from lay listeners using sets of 
speech samples that had been misclassified by an automatic system (i.e., those 
comparisons that were difficult for the automatic system). Listener performance was 
comparable to the results reported in Section 1.3 (EERs=30-40%), although some 
groups performed better with same-speaker pairs and others with different-speaker 
pairs. Lindh and Morrison (2011) performed a small-scale study of human and ASR 
performance (based on a GMM-UBM system) with a focus on forensic voice 
comparison using 45 pairs of high-quality Swedish voice samples and responses 
averaged over 52 lay listeners. Performance, as measured by the log likelihood ratio 
cost function (Cllr; Brümmer and du Preez, 2006), was considerably better for the 
automatic system (Cllr=0.033) than for the human listeners (Cllr=0.359). Human 
performance was also better when samples were played forwards, rather than 
backwards, indicating that segmental information is useful for listeners in distinguishing 
same- and different-speaker pairs. No fusion of human and automatic responses was 
undertaken as the automatic system was already performing at ceiling in terms of 
discrimination. 
 
Basu et al. (2022) compared the performance of individual listeners to that of an x-
vector ASR system in order to assess the extent to which ASR can be considered a 
form of expert evidence; that is, the extent to which it provides information beyond what 
could be reasonably expected from a judge or jury member. The study used 
challenging, forensically realistic samples of Australian English and tested Australian 
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English, American English, and Spanish-speaking listeners. Performance was 
evaluated on a by-speaker basis using uncalibrated scores and then compared with the 
performance of a calibrated x-vector system (which incorporated adaptation data for 
tuning LDA/PLDA). The automatic system optimally produced a Cllr of 0.42, with log10 
LRs ranging between -3 and +3. Considerable between-listener variability was reported, 
with the best listener producing a Cllr of 0.51, while half of the native English listeners 
produced Cllrs of over 1. Listener performance was also affected by background, such 
that Australian listeners outperformed American listeners, who in turn outperformed 
Spanish-speaking listeners. 

 

1.4 This study 
 
Previous work has demonstrated that a range of factors affect human and automatic 
voice comparison performance, although little work has considered the effect of regional 
accent. Regional accent, however, provides an interesting avenue for exploring the 
extent to which humans and ASR systems capture both group- (i.e., accent features) 
and individual-level (i.e., speaker-specific) information encoded both in segmental and 
suprasegmental features, and whether what is captured by the two approaches is 
complementary. 
 
In the present study, we use forensically-realistic speech samples from three British 
English accents: a standard accent (Standard Southern British English), a regional 
accent which is familiar to most British listeners (Newcastle), and a regional accent 
which is similar to Newcastle, but much less familiar to most British listeners 
(Middlesbrough). As well as a potential difference in levels of familiarity between 
Newcastle and Middlesbrough, the two accents have been chosen because they share 
many features that can be said to be characteristic of accents of the North East region 
(so are liable to be mistaken for each other), but at the same time have features which 
are highly localised and can serve to differentiate them. This not only allows us to test 
the contribution that particular segmental features make to the task of voice 
comparison, but also presents a realistic context of potential speaker misidentification.  
 
These sets of voice samples allow us to address the following research questions: 
 

● Are humans or ASR systems generally better at voice comparison and can 
combining results improve overall performance? 

● To what extent are humans and ASR systems capturing complementary 
speaker-specific information? 

● To what extent is human and ASR performance sensitive to accent variation?  
 
The aim is not to replicate the exact processes of voice comparison and decision-
making in the courts (as in Basu et al. 2022). Rather, we examine human and automatic 
processing more generally whilst considering the implications for forensics. 
 
In addressing these research questions, we also address methodological issues with 
previous work which limit our understanding of the complementarity of human and ASR 
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methods. Firstly, only a small handful of studies have attempted to empirically fuse 
human and ASR responses to assess whether there are improvements in performance 
when combining approaches. Secondly, the majority of work in this area has elicited 
binary accept-reject decisions and evaluated performance in terms of overall error rates. 
Such responses are expressions of posterior probability about identity (i.e., the 
probability of the samples containing the voices of the same or different speakers given 
the evidence) and are therefore logically inconsistent with the LR framework utilised by 
automatic systems and widely considered appropriate for the evaluation of forensic 
evidence (e.g Aitken, Taroni and Bozza 2021). Some studies have asked listeners to 
provide judgments about the similarity of a pair of voices using Likert scales, which can 
be converted to a LR-like score (see Lindh and Morrison 2011). While such an 
approach provides a gradient, numerical response, the output is still logically 
inconsistent with that of modern ASR systems, where typicality is incorporated into the 
computation of scores (Morrison and Enzinger, 2018). The exception is Basu et al. 
(2022) who asked listeners to provide a numerical value to express the relative 
probability of the voice given the same-speaker relative to the different-speaker 
propositions. This value was then used as an uncalibrated, LR-like score. While this 
approach is semantically consistent with the LR framework, the extent to which listeners 
understood what they were asked to do and whether this judgment captures the 
similarity and typicality element of the LR is questionable. 
 
2. Methods 

 

2.1 Speech samples 
 
Speech samples for this study were taken from the TUULS (The Use and Utility of 
Localised Speech Forms in Determining Identity; Llamas et al. 2016-2019) and DyViS 
(Dynamic Variability in Speech; Nolan et al. 2009) corpora; for the purposes of the 
present study, we used only adult male speakers. These corpora contain speakers of 
Newcastle English, Middlesbrough English, and Standard Southern British English 
(SSBE). These accents were chosen to test the effects of standard versus non-
standard/regional accents and the effects of listener accent familiarity on voice 
comparison performance. SSBE is essentially modern Received Pronunciation, i.e the 
standard accent of English English, which all listeners in our study will have had 
considerable exposure to and therefore should have strong familiarity with. Newcastle 
English is a regional accent associated with the North East of England. It is very well 
known in the UK and well represented in the media. Middlesbrough is a town in the 
North East of England which is geographically proximate to Newcastle, although 
Middlesbrough English is much less well-known, especially to people outside of the 
North East. Middlesbrough and Newcastle accents share levelled Northern and general 
North Eastern English features (e.g., monophthongal /eɪ/ (in words such as face) and 
/əʊ/ (in words such as goat)) (Kerswill, 2003), but the two accents are linguistically 
distinct in a number of ways e.g., Newcastle has features such as an open vowel at the 
end of words such as comma and letter, and a monophthongal realisation of the /aʊ/ 
vowel (in words such as mouth) that Middlesbrough does not share (Llamas, 2015). 
Despite this, it is extremely common for Newcastle and Middlesbrough to be confused, 
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with accents from the North East commonly labelled as ‘Newcastle’ by non-linguists and 
non-locals. In the context of forensic casework, it is conceivable that samples of 
Newcastle and Middlesbrough English would be submitted for comparison under the 
assumption that they are the same speaker and the same accent, despite the rather 
subtle accent difference. 

 

2.2 Creation of stimuli 
 
From the 100 speakers in the DyViS database, 45 were chosen at random as the basis 
for our SSBE stimuli. These speakers were all aged between 18 and 25 years. Studio 
samples of a mock police interview (DyViS Task 1) were always used as the nominal 
‘known’ (or reference) samples. These recordings were of high quality, with a sampling 
rate of 44.1kHz and 16-bit depth. Landline telephone samples involving a conversation 
with a mock accomplice (DyViS Task 2) were used as the nominal ‘unknown’ (or 
disputed) samples. Far-end telephone-transmitted versions of the Task 2 recordings 
(bandpass filtered by the telephone) were used in our study, with a sampling frequency 
of 8kHz and a 16-bit depth. The conditions of the comparisons (both in terms of speech 
style and channel) were similar to what would be found in typical forensic voice 
comparison cases. 
 
We used the TUULS database to create samples of Middlesbrough and Newcastle 
speakers. Samples from a total of 15 male speakers were created per locality. For each 
accent, these included ten young speakers, aged 18 to 25, and five older speakers, 
aged 40 to 65. TUULS contains recordings of a police interview task designed to 
replicate DyViS Task 1 both in terms of the recording setup (position and type of 
microphones, albeit in different studios) and speaking style (question and answer 
format, where the participant is forced to ‘lie’ about certain information relating to a 
crime). As with the DyViS corpus, these recordings were used to represent the ‘known’ 
sample in forensic voice comparison cases. Since TUULS did not contain an 
‘accomplice’ task recorded over a phone line (like DyViS Task 2), we created telephone-
quality samples from the sociolinguistic interviews for the same speakers by bandpass 
filtering between 300 Hz and 3400 Hz. When filtering, we applied 100Hz smoothing at 
the edges of the filter to avoid infinitely steep cut-off. We also added 25 dB of white 
noise and then equalised all samples to 60dB.1 

 
From each of the two recordings for each of the 45 SSBE, 15 Middlesbrough, and 15 
Newcastle speakers, edited samples of 10 to 11 seconds were created. In creating 
these samples, we avoided including content that was overtly incriminating or 
suspicious from mock police interviews and, in the SSBE case, from the accomplice 
telephone calls as well, in case this affected listeners’ responses. Sections taken from 
the TUULS sociolinguistic interviews avoided the inclusion of any identifying information 
about the speakers, as well as any identifiable British place names. The second author 
then listened to each of the Newcastle and Middlesbrough samples and noted which 
ones contained highly localised speech features. Samples with marked localised 

 
1 This was done using a Praat script from Philip Harrison and the Praat Vocal Toolkit (Corretge 2023). 
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features were marked as H (high-salience), while samples with non-salient or no highly 
localised features were marked as L (low-salience). 
 
These samples were then arranged into pairs containing one telephone-quality sample 
and one high-quality sample. Blocks of eight pairs were constructed. Each block 
contained one same-speaker (SS) pair each from an SSBE, a Newcastle, and a 
Middlesbrough speaker; one different-speaker (DS) pair representing two SSBE, two 
Newcastle, and two Middlesbrough speakers; one DS pair containing a high salience 
Newcastle sample and a high salience Middlesbrough sample; and one DS pair 
containing a low salience Newcastle sample and a low salience Middlesbrough sample. 
In total, each block therefore contained three SS pairs and five DS pairs. Blocks were 
balanced such that, in cross-accent DS comparisons, if a high salience Newcastle 
sample was the first (telephone-quality) sample and a high salience Middlesbrough 
sample was the second (HQ) sample in a mixed-region pair, the low salience mixed-
region pair had Middlesbrough first and Newcastle second. 
 
Pairs were constructed to avoid any identical speech content or similar semantic cues 
appearing in both samples of a pair. Listeners were presented with three blocks of eight 
pairs embedded in an online game-based experiment, with each block of comparisons 
used as a separate level. The first level was a basic experimental survey interface, of 
the kind often found with online tools such as Qualtrics. The second and third levels 
involved additional variables to test different research questions (e.g., more graphics/ 
gameplay, conclusions provided by a forensic expert). For the purposes of the present 
study, we focus on listener responses to pairs in just the first block of eight comparisons 
with a basic, non-gameplay interface. Thus, for the present study we only analyse eight 
responses per listener. Listeners were presented with pairs in a random order and 
never heard the same voice more than once. 
 

2.3 Listener testing 
 
Listeners initially consented to the study and provided demographic information about 
their gender, age, and where in the UK they grew up. They also provided measures of 
their self-assessed familiarity (on a 0-100 scale) with SSBE, Middlesbrough, and 
Newcastle accents. The experimental set-up follows the procedure described in Hughes 
et al. (2022). For each comparison, listeners were first presented with the 8kHz, 
telephone-quality speech sample. While this audio was playing, they were presented 
with the question: This is a {Middlesbrough/Newcastle/SSBE} speaker. How typical is 
this voice relative to other speakers of the same accent? They responded on a 0-100 
scale. The high-quality (44.1kHz) interview sample then appeared on the screen and 
participants were asked to respond on 0-100 scales to two further questions: How 
similar are the two voices? and Do these voices belong to the same speaker? The two 
audio clips could be replayed as many times as the participants wanted, and only one 
clip at a time could be played. After providing their responses to a pair, listeners 
progressed to the next pair of samples. Listeners were not supervised while 
participating in the experiment.  
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Data from 896 listeners from across the UK were collected via Prolific (12 participants 
were excluded from the data set for not completing the experiment or providing incorrect 
information in the initial screening stages), which equates to around 60 responses to 
each comparison pair. On average, listeners took 5.4 minutes (range = 1.5 – 50.3 
minutes) to complete the eight comparisons for this study (excluding gaps between 
comparison pairs). The similarity and typicality responses that listeners provided were 
divided by 100 to produce a probability on a 0 to 1 scale. Any values of 0 were 
converted to 0.0001 and any values of 1 were converted to 0.9999. This removed the 
possibility of LR-scores of 0 or infinity, but did limit scores to between 0.0001 and 9,999. 
This was not considered problematic as we intended to not use these responses directly 
as LRs, but rather to calibrate the scores to produce interpretable LRs. 
 
As in Hughes et al. (2022), group-level LR-like scores for each comparison pair were 
computed by dividing the median similarity response by the median typicality response2 
and then taking the natural logarithm. The reason for averaging over listener responses 
was to provide a general measure of how listeners perform at voice comparison, as a 
single point of direct comparison with the output of the ASR system and as a single set 
of scores which could be fused with the ASR. This allows us to assess whether there is 
improvement in ASR when combined with scores from the ‘average’ listener, rather than 
specifically comparing ASR results with individual listeners (representing judges or 
jurors) as in Basu et al. (2022). The use of the median as the measure of central 
tendency reflects the fact that similarity and typicality responses are often highly 
skewed. It also reduces the effect of the best and worst performing individual 
participants in evaluating overall group-level performance. This produced a set of 45 SS 
and 75 DS scores. 

 

2.4 Automatic system testing 
 
ASR testing was conducted using the commercial x-vector Phonexia Voice Inspector 
(v.4.0.2) system. The system architecture is similar to that described in Snyder et al. 
(2018); for a fuller description see Jessen et al. (2019) and Morrison et al. (2020). The 
system requires samples to have an 8kHz sampling rate, as this is what it has been 
trained on originally. For this reason, the ASR system downsampled the 44.1kHz 
interview samples to 8kHz prior to analysis. This means that the ASR system analysed 
different data from the human listeners. We consider this unproblematic as it reflects the 
standard analytical practice for the ASR system, which would be applied in real world 
cases involving channel mismatch. 
 
The first stage of ASR processing involves applying voice activity detection which 
removes all non-speech elements within the signal. Typically, Mel-frequency cepstral 
coefficients (MFCCs) are extracted from overlapping frames across the speech-active 
portion of the signal. MFCCs are produced by fitting a discrete cosine transform to the 
logarithm of the mel-scaled, short-term energy spectrum (see Davis and 

 
2 Z-score normalising participant responses prior to calculating the median produced much poorer overall 

performance, so the results are not reported here. Differences in how the scale is used are also removed 
by using the median for similarity and typicality and then calibrating the data. 
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Mermelstein,1980). Sequences of MFCC frames (a target frame ±7 adjacent frames) 
are then fed into a deep neural network (DNN) which has been pre-trained on a large 
set of diverse data with the aim of recognising speakers. The DNN is a time-delay 
neural network, which takes the two-dimensional matrices of MFCCs across 15 frames 
as input. Frame-level information is fed through the network and summarised with a 
mean and variance for the full recording. These statistics are then fed through further 
layers of the network and a fixed length vector (x-vector embedding) is extracted prior to 
the softmax layer (see Jessen et al.,2019; Morrison et al., 2020). This embedding 
captures speaker-specific information within each sample. Linear discriminant analysis 
(LDA; see Dehak et al., 2011; Morrison et al., 2020) is applied to the x-vector to remove 
unwanted dimensions of variability and produce a speaker representation for each 
sample. LDA is a dimension reduction technique which utilises speaker labels to 
maximise between-speaker variability and minimise within-speaker variability. A score is 
then computed by comparing the dimension reduced x-vectors from two samples using 
probabilistic linear discriminant analysis (PLDA) to produce a LR-like score, accounting 
for both similarity and typicality (see Prince and Elder, 2007; Kenny, 2010; Morrison et 
al., 2020). Note that the PLDA scoring model within the system was pre-trained, rather 
than using data that represented the specific accents in our experiment. In this way, the 
listeners’ estimations of typicality were more specific to the accents in question than 
those within the PLDA scoring. No adaptation data or reference normalisation was 
applied. As in 2.3, the ASR analysis produced scores for the 45 SS and 75 DS 
comparisons. 

 

2.5 Calibration and evaluation 
 
The group-level listener scores and ASR scores were both separately calibrated using 
logistic regression (Pigeon et al. 2000; Morrison, 2013) with Morrison’s (2009) robust 
implementation of the train_llr_fusion.m function from Brümmer’s FoCal toolkit.3 

Calibration is a means of shifting and scaling scores to convert them to log LRs (LLRs). 
The LLR is a numerical value which is interpretable as a measure of the magnitude of 
the evidence, where 0 is the threshold between support for the SS proposition (LLRs > 
0) and support for the DS proposition (LLRs < 0). Calibration is also a means of 
reducing the bias within a set of scores (i.e., susceptibility to more false positives or 
more false negatives), which could be due to a mismatch between the data used to train 
the system (either human or ASR) and the data used for testing. Unlike Basu et al. 
(2022), we apply calibration to the listener scores. While this is not reflective of what a 
jury member would do in a courtroom (i.e., they aren’t able to shift and scale their initial 
response based on knowledge of responses from a set of calibration data), we use 
calibration in this study to maximise the comparability of listener and ASR performance. 
 
Given the relatively small number of comparisons (principally because of the amount of 
data that could be provided by the human listeners), calibration was performed via 
leave-one/two-out cross-validation, whereby each score was calibrated based on scores 
that did not involve the speaker(s) in either of the samples under comparison. In 

 

3 https://sites.google.com/site/nikobrummer/focal 
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practice, this means that scores from comparisons involving all the accents in our 
experiment were used for the calibration models for both the listeners and ASR system. 
This, in turn, means that the scores are not evaluated relative to a specific, forensically 
meaningful pair of propositions. This was a pragmatic decision given the small number 
of test pairs in each accent set and the fact that general benchmarking of ASR systems 
often involves calibrating with scores from regionally variable sets of speakers. Cross-
validated logistic regression fusion was also applied to combine the scores from the 
listeners and the automatic system. This applies the same calibration technique as 
described above, but with multivariate sets of scores to produce a single set of 
calibrated LLRs for evaluation (see Pigeon et al., 2000; Morrison, 2013). 
 
Overall performance was evaluated using EER and Cllr (Brümmer and du Preez, 2006) 
with the calibrated LLRs (45 SS, 75 DS) as input. EER is a threshold-independent 
measure of discrimination which captures the percentage error at the point where the 
percentage of false positives is equal to the percentage of false negatives. Cllr assigns a 
weight to each LLR and penalises the system more heavily based on the magnitude of 
the contrary-to-fact LLRs (i.e., errors), capturing both discrimination and calibration 
error. Since between-accent tests were only conducted with DS pairs (i.e., no speaker 
spoke in more than one accent), the results were evaluated using the false positive rate 
and the DS half of the Cllr equation.  As highlighted above, the reason for testing DS, 
between-accent pairs was because of the general confusability of the Newcastle and 
Middlesbrough accents; i.e., it is conceivable that a non-expert could think a pair of 
samples belonged to the same speaker despite one being from Newcastle and the other 
being from Middlesbrough. The performance of individual listeners was also assessed. 
However, due to the very small number of comparisons per listener (eight in total), 
uncalibrated scores were used to calculate a Cllr and EER. Given the use of 
uncalibrated scores, the false positive and false negative rates were also calculated 
separately to assess any bias in listener responses to one type of error over another. 
Note, however, that listeners responded to different sets of eight comparisons, so 
caution is needed in interpreting differences in listener performance. 
 
The magnitude of the LRs was also interpreted using a well-established scale 
(Champod and Evett 2000) which converts numerical LRs into verbal equivalents which 
express the relative strength of the evidence in support of the same-speaker and 
different-speaker propositions. An adapted version of this scale is shown in Table 1. 
 
Table 1: Adapted version of the verbal LR scale from Champod and Evett (2000) 

Log10 LR Verbal expression 

0 – ±1 Limited evidence 

±1 – ±2 Moderate evidence 

±2 – ±3 Moderately strong evidence 

±3 – ±4 Strong evidence 

±4 – ±5 Very strong evidence 

 
3. Results 
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3.1 Overall performance 
 
Figure 1 displays the Tippett plot of calibrated LLRs (here we use base-10 LLRs) output 
by the ASR and by the human listeners. Tippett plots display the cumulative distribution 
of same-speaker (SS) LLRs, and in the case of Figure 1, the inverse cumulative 
distribution of different-speaker (DS) LLRs. Tippett plots provide information about the 
magnitude of the LLRs produced, overall performance (the point at which the SS and 
DS lines cross is the EER), and the extent of calibration. For more information, see 
Meuwly, 2001 and Morrison et al., 2021). Overall, the ASR system outperformed the 
listeners by a considerable margin (ASR: EER=10.89%, Cllr=0.48; Listeners: 
EER=23.55%, Cllr=0.75). The magnitude of the LLRs was also slightly greater with the 
automatic system both for SS (ASR mean SS LLR=0.94; Listener mean SS LLR=0.38) 
and DS (ASR mean DS LLR=-1.06; Listener mean SS LLR=-0.47), although both 
produced average LLRs broadly equivalent to limited evidence. More detailed analysis 
of the listener results suggests a weak negative correlation between the number of 
times an utterance was listened to and accuracy, such that more listens generally lead 
to slightly poorer performance. This suggests listeners’ first intuitions about voices are 
most reliable for voice comparison. However, this is confounded by the fact that 
listeners were likely to listen to more difficult pairs more times than easier pairs, and the 
fact that most utterances were only listened to once or twice. 
 
No improvement in performance was found when fusing the scores from the ASR 
system and the listeners. In fact, while EER remained the same compared with the ASR 
in isolation (10.89%), there was a slight increase in the Cllr when fused (0.52). There 
was also a slight decrease in the magnitude of both mean SS and DS LLRs with the 
fused results compared with the ASR system, although again on average LLRs were 
equivalent to limited evidence. However, analysis of the individual contrary-to-fact LLRs 
(i.e., errors) produced by the ASR system reveals some interesting effects in terms of 
the human responses. The ASR system produced five contrary-to-fact SS LLRs. For 
three of these comparisons, the listeners produced LLRs within the range of limited 
evidence for the SS proposition (i.e., in the correct direction). For the remaining two SS 
ASR errors, the listeners also produced errors, but these were around one order of 
magnitude weaker than the ASR system. The patterns for DS comparisons were more 
mixed. Of the three DS errors produced by the ASR system, only one correctly provided 
support for the SS proposition within the listener results. 
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Figure 1: Tippett plot of the SS (dashed line, right) and DS (solid line, left) LLRs 
produced by the ASR system (black) and human listeners (grey) 

3.2 Accent effects 
 
ASR and listener performance within accents was also considered. The ASR system 
performed best with the Middlesbrough samples (EER=0%, Cllr=0.24) and markedly 
worse with the Newcastle samples (EER=13.33%, Cllr=0.711). Note here that the 
relatively large difference in EER in fact represents just four Newcastle comparisons (3 
SS and 1 DS) producing contrary-to-fact evidence. This reflects the relatively small 
sample size within each accent group. Intermediate performance was found for the ASR 
system with the SSBE samples (EER=13.33%, Cllr=0.374). Less variable, but overall 
poorer, performance was found for the human listeners. The listeners performed best 
with the Newcastle (EER=20%, Cllr=0.70) and SSBE samples (EER=20%, Cllr=0.77), 
and worst with the Middlesbrough samples (EER=33.33%, Cllr=0.84). This difference 
could reflect a familiarity effect (see Figure 2 which displays the underlying distribution 
of familiarity ratings for each accent within our data set), whereby listeners are more 
aware of, and have greater general exposure to, Newcastle English and SSBE 
compared with Middlesbrough English. No improvements to the within-accent ASR 
performance were found when fused with the listener scores. 
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Figure 2: Distributions of self-reported familiarity responses across the 896 participants 
for Middlesbrough (left), Newcastle (middle) and SSBE (right) 

Interesting patterns of performance were found in the between-accent DS comparisons. 
For the high salience between-accent comparisons, listener performance  
(EER=6.67%, Cllr=0.35) was comparable to that of the ASR system (EER=6.67%, 
Cllr=0.28). Further, this was the only condition in which the fusion of ASR and listener 
scores produced an improvement in performance over the ASR in isolation (EER=0%, 
Cllr=0.21), indicating that the listeners were sensitive to complementary speaker-specific 
information in these comparisons. For both the listeners and the ASR system, there was 
a marked drop-off in performance from the high salience to the low salience between-
accent comparisons. For the listeners, this condition produced the poorest overall 
performance compared with any of the within-accent subsets (EER=33.33%, Cllr=1.17), 
with the Cllr suggesting poor calibration of LLRs in addition to poor discrimination. For 
the ASR system, performance with the low salience between-accent comparisons was 
actually better than with the Newcastle subset (EER=13.33%, Cllr=0.51), but poorer than 
with the Middlesbrough and SSBE subsets. 
 

3.3 Individual listeners 
 
The listener results presented in Sections 3.1 and 3.2 reflect averages across all 896 
participants in our study. As in previous studies (e.g., Basu et al. 2022), considerable 
variability in performance was found across listeners’ uncalibrated scores. Note, though, 
that results need to be interpreted with caution given that listeners responded to 
different sets of eight comparisons (three SS, five DS). In our study, by-listener EERs 
ranged from 0% to 100%, with 58 of the 896 producing EERs of 0%. Of those 58 
listeners, only 15 produced 0% errors based on an LLR threshold of 0. The uncalibrated 
scores also showed a bias towards false negatives (across listeners, mean false 
negative was 61.05% compared with mean false positive rate of 21.52%). The best 
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performing listener produced a Cllr of 0.52, while the worst produced a Cllr of 5.09. This 
suggests that there is considerable by-listener variability both in terms of discrimination 
and calibration error. All the listeners with 0% EER produced Cllrs below 1, indicating 
that they are all capturing useful speaker-specific information in a way that many of the 
other listeners are not. The small number of comparisons per listener mean it is not 
possible to break down listener performance by accent subset. 
 
4. Discussion 
 
As has been demonstrated previously (e.g., Basu et al. 2022), in our study the state-of-
the-art automatic system outperforms human listeners at the task of speaker 
recognition. This is true not only in terms of overall listener performance, but also when 
compared on a by-listener basis with even the very best performing listeners. Overall 
performance of both the human listeners and the ASR system is relatively poor. This 
reflects the challenging nature of the materials under analysis (very short, channel-, 
quality-, and style-mismatched samples) and is conceivably representative of ASR and 
listener performance with real forensic materials. Despite this, both approaches produce 
Cllr values below 1 – and in the case of the ASR system, considerably less than 1. Both 
approaches are thus capturing useful speaker-specific information for discriminating 
between SS and DS pairs. In the following sections, we discuss our findings in terms of 
what they tell us about human and ASR processing during speaker recognition, and we 
consider the implications for forensic speech science. 

 

4.1 Human and ASR processing 
 
The results of this study provide insights into the different processing strategies used by 
human listeners compared with automatic systems when recognising unfamiliar 
speakers. This is nicely demonstrated through analysis of the between-accent DS 
comparisons. In the high salience condition, listeners produce markedly better 
performance compared with their overall performance, or compared with any of the 
within-accent conditions. This suggests that listeners are intuitively sensitive to the 
salient segmental accent differences between Middlesbrough and Newcastle and 
respond to these pairs of samples in an almost categorical way (i.e., the accent 
difference means that the voices must belong to different speakers). When those 
segmental cues are not available, such as in the case of the low salience between-
accent comparisons, listener performance is markedly poorer (in fact, this is the 
condition where listeners perform worst). Conversely, the performance of the ASR 
system with the high salience between-accent comparisons is slightly poorer than with 
Middlesbrough-only comparisons, although better than with the Newcastle-only and 
SSBE-only samples. This suggests that the ASR system is much less sensitive to 
important segmental differences between accents that can be utilised for speaker 
recognition and also that the ASR system approaches variability in a continuous, rather 
than categorical, way. This may be because the samples used here were relatively 
short (c. 10s) and so the system doesn’t have enough information to capture the 
acoustic differences between speakers of different accents. 
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In 3.1, we reported a lack of improvement in speaker recognition performance when 
fusing the ASR and listener scores, i.e., the addition of average listener scores was not 
capable of improving performance over and above what is achieved by the ASR system 
alone. While this provides evidence as to relative discrimination performance, it 
provides little insight into the extent to which ASR systems and human listeners are 
sensitive to the same or different speaker-specific information when conducting a 
speaker recognition task. This is because the average performance of the human 
listeners is so much poorer than that of the ASR system, such that the listeners are, on 
average, capturing much less speaker-specific information. This in turn is driven by the 
fact that there is so much variability in performance across the listeners, with the 
poorest listeners producing EERs of 100%, and so capturing little to no useful speaker-
discriminatory information. To understand more about the complementarity of ASR and 
listener processing, in this section we focus only on the results produced by the best 
performing listeners. This is explicitly a post hoc analysis intended to examine the 
speaker-specific information captured by the best performing listeners, removing some 
of the noise from the poorest performing listeners. 
 
Using data from only the 58 listeners who produced 0% EERs, we re-ran the tests 
conducted in 3.1 (note that there was no obvious correlation between self-reported 
familiarity and performance, with the 58 best performing listeners reporting a wide 
variety of familiarity with all three accents). Because of the between-subjects nature of 
the human listener experiment, data from only 104 (39 SS, 65 DS) of the 120 
comparisons were available for analysis. With this subset of the data, the listener 
performance (EER=12.56%4, Cllr=0.42) was much closer to that of the ASR system 
(EER=7.69%, Cllr=0.37). Fusing scores from the two approaches did not produce an 
improvement in EER, but did considerably reduce the Cllr to 0.277. This demonstrates 
that the best performing listeners are capturing complementary information to that of the 
ASR, at least in terms of improving calibration (if not discrimination). Further, Figure 3 
displays the relationship between the LLRs produced by the ASR and the best 
performing listeners for each of the comparisons in our subset. No correlation is found 
between the two sets of results when analysing SS and DS pairs separated, such that 
ASR LLRs predict less than 1% of the variance in the listener LLRs. A stronger overall 
correlation was found when pooling data from SS and DS comparisons (R2=0.254), but 
this captures the fact that both listeners and ASR are generally separating SS and DS 
pairs to some extent. The lack of correlation is exemplified by the fact that one DS 
comparison produces a LLR of -7.56 for the listeners (three orders of magnitude higher 
than the very strong evidence category on Champod and Evett’s (2000) verbal scale), 
while only producing a LLR of -0.28 for the ASR (equivalent to limited evidence). 
Conversely, another DS LLR produces a LLR of -5.22 for the ASR, but 0.55 (i.e., 
contrary-to-fact limited evidence) for the listeners. Interestingly, this comparison is also 
a between-accent high salience pair.  
 

 
4 Note that the combination of LR-like scores produces an EER of 12.56% despite individuals producing 

0%. This is because the scores are uncalibrated when they are averaged, meaning that different listeners 
produce scores at different points on the scale. In the averaging process, this leads to what become 
contrary-to-fact LLRs post-calibration. 
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Figure 3: Scatter plot with linear regression lines (and 95% confidence intervals) for 
calibrated SS (triangles/ dashed line, top right) and DS (circles/ solid line, bottom left) 
LLRs output by the ASR system (x-axis) and the average of the best performing 58 
listeners (y-axis) based on a subset of 104 comparisons (39 SS, 65 DS) 

Taken together, these data indicate that listeners are sensitive to different speaker-
specific information when making speaker recognition judgments compared with 
automatic systems. Listeners appear to respond to segmental differences and are 
particularly able to utilise their pre-existing linguistic knowledge of regional accents to 
aid with speaker recognition. The ASR system is less sensitive to such information in 
part potentially because of the shortness of the samples, but also because of the 
extraction of MFCCs and pooling of data in generating speaker embeddings. 

 

4.2 Implications for forensic speech science 
 
With our data, the ASR system provides better voice comparison performance 
compared with averaging across naive human listeners. This is true even with the 
additional benefit of calibrating listener responses to reduce calibration error (unlike the 
Basu et al. 2022 study), producing more comparable results with those from the ASR 
system. The ASR system also outperforms even the very best individual listeners - 
although it is worth reiterating that by-listener results were not calibrated due to the 
small amount of data. While our study did not intend to replicate the decision-making 
process of individual jurors or judges, the results demonstrate that ASR is providing 
speaker-specific information for separating SS and DS pairs beyond what could 
reasonably be expected of the average lay listener – a criterion in the England and 
Wales Crown Prosecution Service’s definition of expert evidence. 
Of more interest is the fact that listener and ASR strategies of voice comparison appear 
to be somewhat complementary, such that the best performing listeners are capable of 
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improving on the baseline performance of an ASR system. This raises an interesting 
question about the extent to which the views of potential members of a jury may be 
usefully integrated with ‘expert evidence’ (in this case, the output of an ASR system) in 
order to improve the validity of the evidence. Given how much variability there is across 
listeners, however, the key issue would be whether it is possible to pre-emptively predict 
which listeners are likely to be ‘good performers’ for speaker recognition. Post hoc 
analysis of our data reveals no demographic predictors of good listener performance. 
The exception here is that familiarity with an accent appears to aid performance, at the 
group level, as evidenced through poorer performance with samples of the much less 
well-known Middlesbrough accent. (No clear correlation was found between individual 
listener performance and familiarity, although the number of data points per listener, per 
accent is very small.) We also considered the performance of listeners on other levels 
within our game as a means of predicting performance with the stimuli in the present 
study. This was done by fusing responses from subsets of listeners identified as ‘good’ 
performers in other levels with the output of the ASR system. However, this did not 
prove to be a useful diagnostic, with none of these listener groups providing the same 
improvements in performance as the best listeners from within the data set presented in 
this paper. 
 
5. Conclusion 
 
In this paper, we have explored the relative and combined performance of an ASR 
system and human listeners using stimuli from a range of British English accents, 
including a set of between-accent comparisons. We used a novel methodology to 
produce comparable data from the automatic system and the listeners. Consistent with 
previous research, our results suggest that ASR systems and well performing listeners 
are sensitive to complementary speaker-specific information due to the differences in 
the ways they process speech. Future work will continue to explore factors explaining 
group- and individual-level differences in listener performance, specifically in terms of 
what phonetic information is available in a sample (e.g., the type and frequency of 
regionally-marked features, and more global features such as voice quality). We will 
also compare the findings reported in this paper with the results for the other levels in 
our game in order to assess the extent to which listeners’ judgments are affected by 
other information in a criminal case and the conclusion of a forensic expert. 
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