

THE RDE AND THE REAL-WORLD: A DIESEL HYBRID/ADVANCED BIOFUEL/PEMS CASE STUDY

Scott Wiseman¹, Daisy Thomas^{1,2}, Karl Ropkins³*, Hu Li¹ and Alison Tomlin¹

Presented at the

2025 OSAR Conference

Riverside, California

April 17-18, 2025

- ¹ School of Chemical and Process Engineering, University of Leeds, UK.
- ² Now 3DATX Corporation, Buffalo, NY 14228, USA
- ³ Transport Studies, Faculty of the Environment, University of Leeds, UK
- * Email k.ropkins@its.leeds.ac.uk

Background

Next-generation and transitional vehicle emission reduction strategies will likely employ a range of vehicle powertrain and fuel combinations. Governments are actively working to align incoming legislation to regulate vehicles on a fuel and technology neutral basis (e.g., EURO 7 in Europe).

https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6495 [Press release / summary] https://eur-lex.europa.eu/eli/reg/2024/1257 [Regulation (EU) 2024/1257]

Here, using data from an on-going PEMS study into the impact of advanced biofuels on diesel hybrid vehicle emissions, we consider one such benchmark, the Real Driving Emissions work package 4 (RDE-4) methods, the factors driving variability in associated metrics, and the likely real-world emissions outcomes during different activities and modes-of-vehicle operation.

NOTE: This is a short thought-piece on the sources of variability in on-road emissions. It comes from discussions while analysing data from emissions studies at Leeds. The case study is also part of larger body of work on biofuel/hybrid combinations.

REFERENCES: Thomas et al, 2019. Investigating the engine behavior of a hybrid vehicle and its impact on regulated emissions during on-road testing, SAE Technical Paper, https://doi.org/10.4271/2019-01-2199
Thomas et al, 2022. Particle number and size distributions (PNSD) from a hybrid electric vehicle (HEV) over laboratory and real driving emission tests. Atmosphere, https://doi.org/10.3390/atmos13091510
Wiseman et al, 2023. Predicting the physical properties of three-component lignocellulose derived advanced biofuel blends using a design of experiments approach. Sus. Energy & Fuels. 7
https://pubs.rsc.org/en/content/articlelanding/2023/se/d3se00822c
Wiseman et al, 2025. Combustion and Emission Performance from the use of Acid-catalysed Butanol Alcoholysis Derived Advanced Biofuel Blends in a Compression Ignition Engine. SAE International, 2025. https://www.sae.org/publications/technical-papers/content/2025-01-8445/

EURO 6

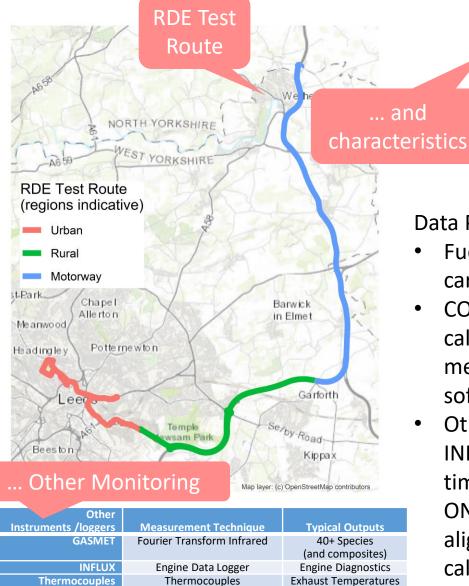
Medium

Size Diesel

Hybrid Car

Case Study

	Test Vehicle	Value
	Vehicle Make and Model	Mercedes C300h
	Registration Year (EU class)	2018 (EURO 6b)
	Vehicle Weight	1,765 (2,065) kg
	Number of Cylinders	4 in-line
	Displacement	2,143 cm ³
	Maximum Engine Power	150 kW
	Maximum Torque	750 Nm
	Transmission	7-speed automatic
	Electric Motor Power	20 kW
	Hybrid Battery Capacity	0.7 KWh
	Emissions Management	DOC, DPF, SCR, EGR
	Type Approval Test	NEDC
	Pre-test Mileage (approx.)	150,000 km


... Running on (ULS) Diesel and Biofuel Blends

Test Fuels/Blend	Diesel : Biofuel Ratio (vol%)	nBuOH*	Calculateo Lower Heating
D100		Ratio (vol%) 0	Value (MJ/kg) 42.5 – 42.9
D90Bu10 - 65:5:30 D90Bu10 - 85:5:10		65:30:5 85:10:5	41.4 41.1
D75Bu25 - 85:5:10		85 : 10 : 5	38.8

* D Diesel; nBL n-butyl levulinate; DBNE di-n-butyl ether; nBuOH n-butanol

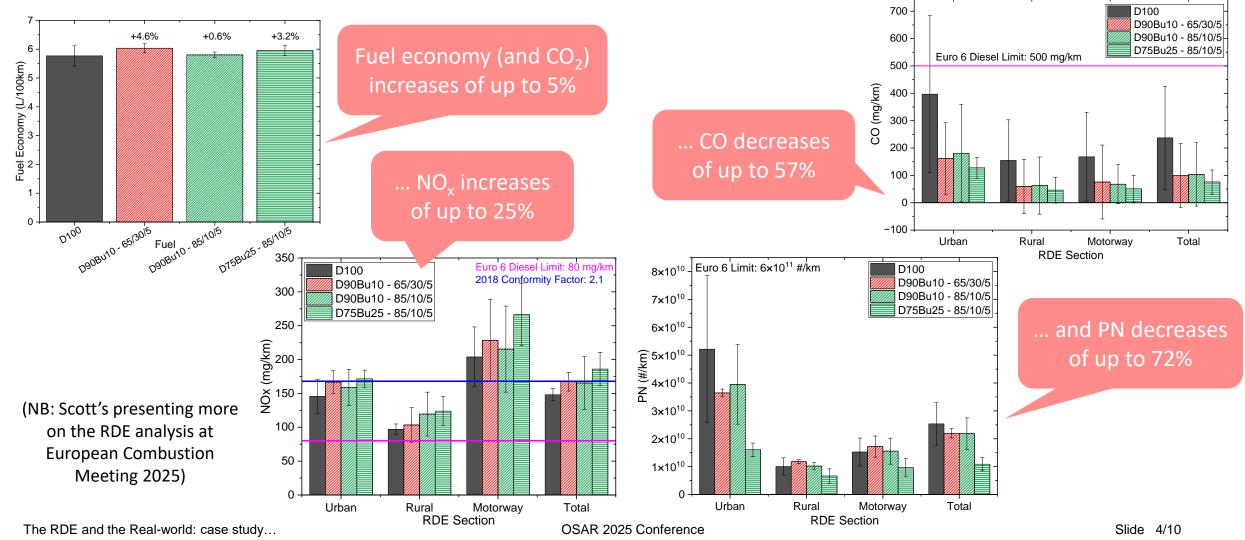
... Primary (RDE) Monitoring

OBS-ONE	Measurement Technique	Calibrated Range
CO	Non-Dispersive Infrared	0 – 10 vol%
CO ₂	Non-Dispersive Infrared	0 – 20 vol%
NO _x	Chemiluminescence	0 – 3000 ppm
PN (23 - 1000 nm)	(IPA) Condensation Particle Counter	0 - 5×10 ⁷ #/cm ³
Exhaust Flow Rate	Pitot Flow Meter	0.3 – 10 m³/min

RDE Route Characteristics	Value
Total Trip Distance	97.2 km
Urban Distance Share	31.5 – 37.7 %
Rural Distance Share	29 – 35.6 %
Motorway Distance Share	29.6 – 35.2 %
Urban Speed Range	0 – 60 km/h
Rural Speed Range	60 – 90 km/h
Motorway Speed Range	>90 km/h
Average Test Duration	1 hr 54 min
Altitude Range	24 – 103 m
Cumulative Elevation Gain	563 m/100km

Data Processing:

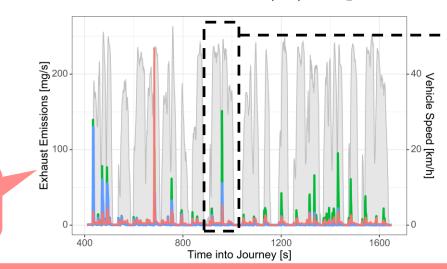
- Fuel economy was calculated by carbon balance
- CO, NO_x, PN RDE emissions were calculated using Package 4 methods using Horiba's OBS-PP software
- Other monitoring (GASMET, INFLUX, Thermocouples) data time-aligned with primary (OBS-ONE) data using correlation alignment, and emissions calculated separately

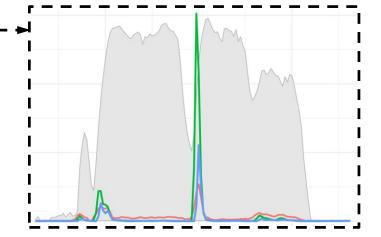

The RDE and the Real-world: case study...

OSAR 2025 Conference

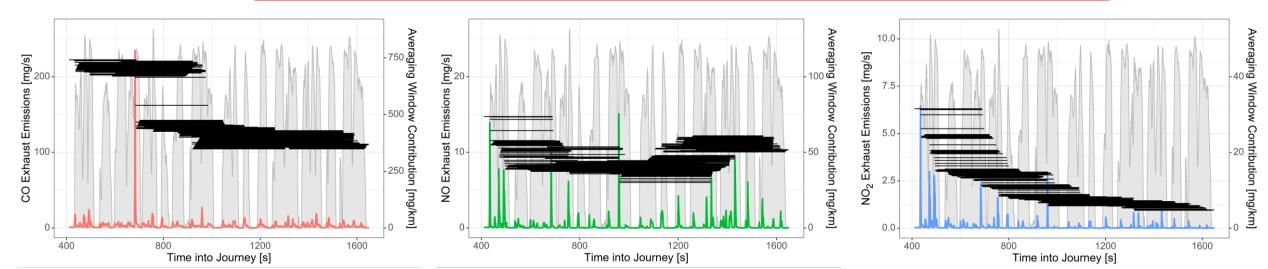
Main RDE-4 Results

Exhaust emission trade-offs for one diesel hybrid vehicle when switching from a conventional Ultra Low Sulphur diesel (ULSD) to a 25% blend of an advanced biofuel (a butyl-based mixture derived from the acid catalyzed alcoholysis of lignocellulosic biomass) and the same diesel

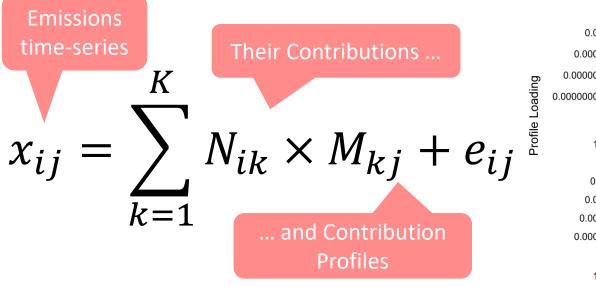


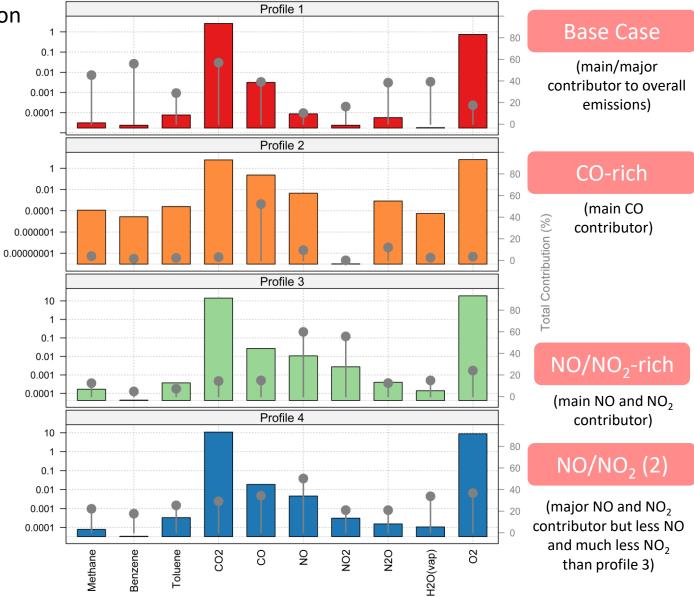

The Challenge

Looking at the sources of variance in the 1-Hz data used to calculate the RDE emission rates and associated error bars...


High emissions of most species associate with load events ...

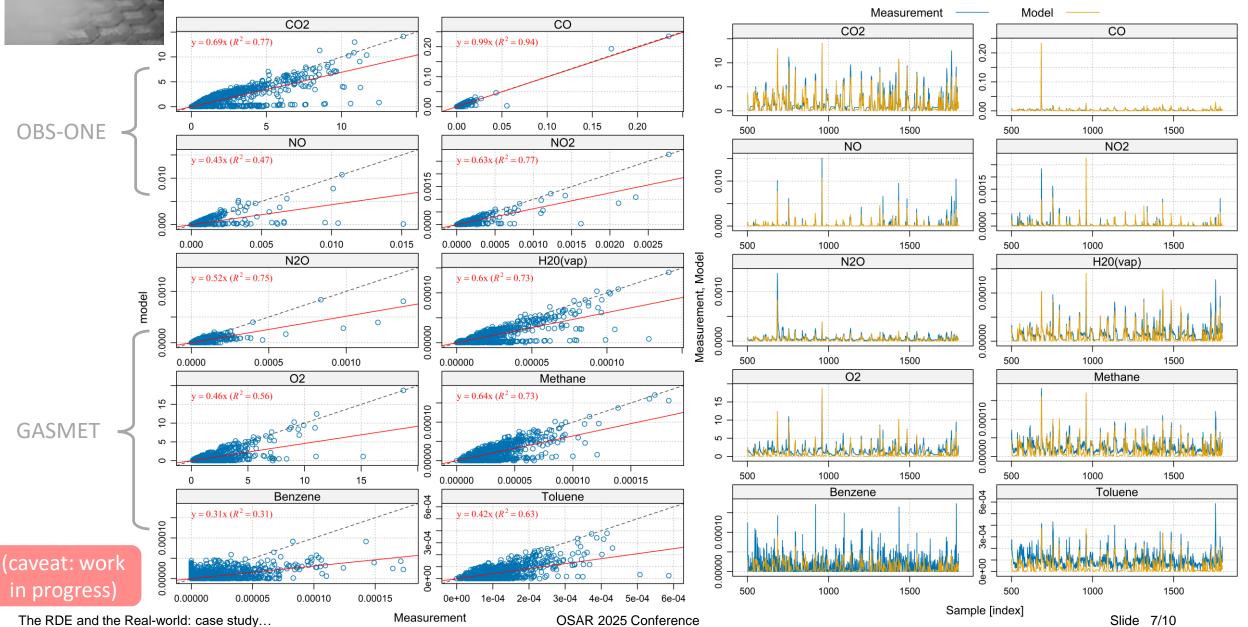
Emissions – CO – NO (x10) – NO₂ (x20)


... Using moving-average windows to demonstrate how the frequency, intensity and duration of these events AND baseline all affect reported emissions

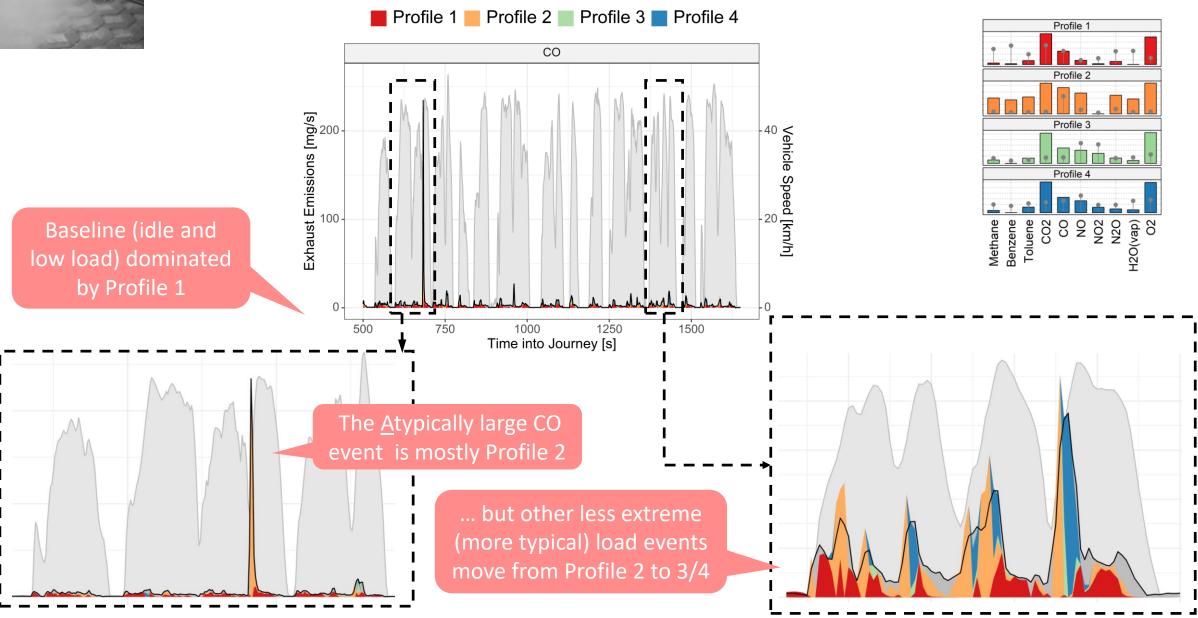

Applying a Source Contribution Approach

Using a conventional 'linear-combination of profiles' model BUT interpreting as indicative of exhaust-out emissions chemistry (and source/sink behavior) rather than a classical 'source'

Using EPA ESAT software and Positive Matrix Factorisation (PMF)-style 'multiple runs/random start-point' strategy to solve this...

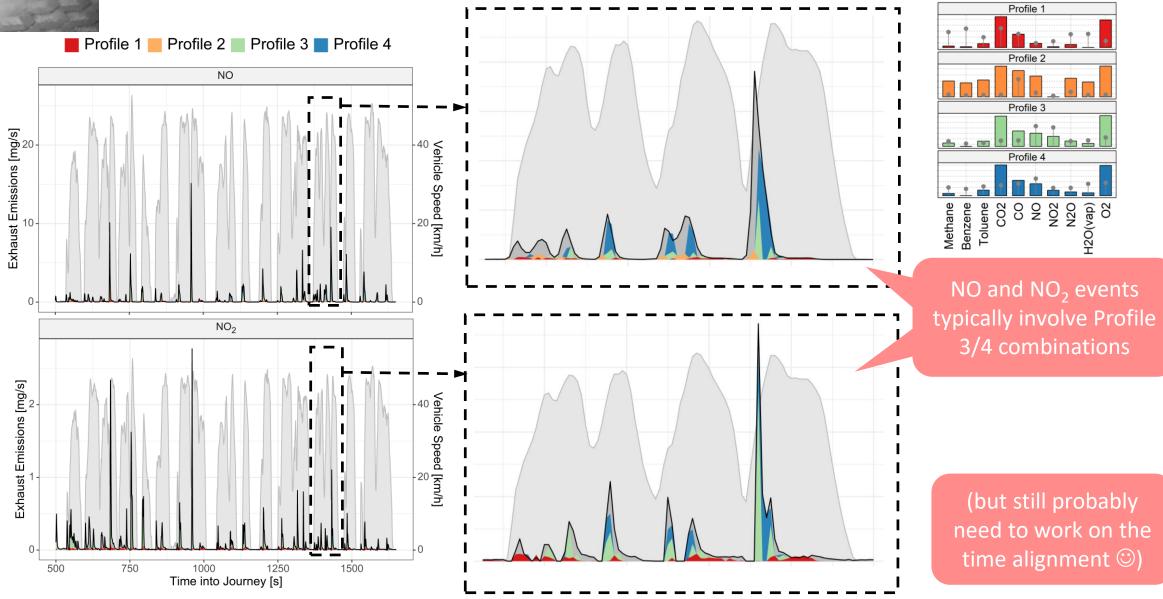

https://quanted.github.io/esat/

The RDE and the Real-world: case study...



Model Validation

Emission Events (1)


The RDE and the Real-world: case study...

OSAR 2025 Conference

Slide 8/10

Emission Events (2)

The RDE and the Real-world: case study...

OSAR 2025 Conference

Conclusion and Comments

Key Points/Comments:

- RDE regulations provide a good benchmark for vehicle manufacturers and policy makers working at larger scales, and, being real-world, are a significant improvement on previous approaches, but are also a 'blunt tool' for anyone considering emissions on smaller scales
- The frequency, intensity and duration of the largest pollution events are obviously an important contribution to average emissions, but baseline levels can also be important
- There is obvious scope to use the raw data routinely collected during such regulatory testing to develop a range of additional non-regulatory outputs, e.g. for civil engineers, town planners, vehicle fleet operators, air quality modelers...

Acknowledgements

The presented case study was partly funded by UKRI EPSRC grant EP/T033088/1 and by UKRI STFC grant ST/Z51035X/1.

The authors also thank for support and input: the SusLABB project team; Scott Prichard (Leeds Engineering); Influx Technology Ltd; and Horiba Mira.

And, special thanks to Horiba UK and Kevin Tully of Tully Engineering Ltd for providing us with the OBS-ONE, and associated technical support.