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Abstract 

The speed of seismic surface waves generated by the passage of high-speed trains is an important consideration 

in the design of railway earthworks. To ensure track stability and good earthwork performance, it should 

significantly exceed the train speed. Traditionally this requirement has been satisfied by specifying a minimum 

stiffness of earthwork, empirically shown to give acceptable performance. With train speeds increasing, it has 

been preferable to predict and then check (during construction) that minimum specified Rayleigh and shear 

wave velocities are achieved. This requires suitable geophysical tests and an understanding of their 

reproducibility and repeatability in defining wave velocities for compliance assessment. This paper presents the 

results of comparative tests to evaluate differences in estimated shear wave velocities, using Multichannel 

Analysis of Surface Waves (MASW) and Continuous Surface Waves (CSW) on a trial railway embankment. The 

results show that both methods estimated shear wave velocities to similar depths, but CSW produced more 

consistent shear wave velocity profiles when a stiff embankment overlies natural ground.  The variation 

observed in the MASW testing was attributed to the additional complexity resulting from this unusual stiffness 

profile. This needs to be considered when specifying appropriate tests for shear wave compliance in earthwork 

design.  
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1. Introduction 

In major infrastructure projects, earthwork material performance and condition play a significant role in overall 

system performance. For example, the High Speed Two (HS2) project in the UK that is currently under 

construction, requires earthworks that have specific engineering properties designed to meet the project’s aims 

in terms of safety, maintenance and cost over its 120-year design life.  

One aspect of the HS2 earthworks specification is the requirement to achieve minimum Rayleigh wave velocities 

in the ground to manage so-called critical velocity effects (Gao et al., 2017), namely the dynamic amplification 

of ground waves under the passage of a high-speed trains resulting in a rapid deterioration in track condition. 

These are caused when the train speed approaches the Rayleigh wave velocity (VR) of the track-ground system. 

They have been observed at Ledsgaard, Sweden (Takemiya, 2003) and have been modelled numerically by 

several researchers (Krylov et al., 2000). Traditionally this requirement has been satisfied by specifying a 

minimum stiffness of earthwork (stiffness correlates with wave speed) which has been empirically shown to give 

acceptable performance. With train speeds increasing it is preferable to predict and then check in the field during 

construction that minimum specified Rayleigh wave and shear wave velocities are achieved, and these are 

increasingly being specified during construction. This requires suitable in-situ geophysical tests and an 

understanding of their suitability, reproducibility, and repeatability in measuring Rayleigh wave velocities for 

compliance assessment.  

Rayleigh waves propagate at the surface of solids up to the depth of one wavelength and show geometrically 

dispersive behavior (Foti et al., 2014). Because wavelength is inversely proportional to frequency, lower 

frequency Rayleigh waves have a greater depth of penetration than shear waves (Foti et al., 2018). 

In isotropic homogeneous elastic solids, Rayleigh wave (VR) and shear wave velocity (VS) are linked by Poisson’s 

ratio (v), but the errors resulting from anisotropy and heterogeneity in soils are relatively modest, and their 

relationship is commonly described by Equation 1 (Heymann, 2007):  VRVs ≅ (0.874+1.117ν)
(1+ν)     (1) 
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Based on the above, as both Vs and VR can be used to understand the performance of earthworks in respect of 

critical velocity effects, and seismic methods that can analyze either wave types are useful as control/compliance 

tests during construction. Therefore, seismic surface wave methods are potentially useful for this application, 

as they are non-invasive, significantly less expensive than invasive borehole geophysics and faster to apply. The 

methods most frequently used are MASW and CSW. These two have differences in the source used and the 

analysis process to evaluate the signals collected. 

In the CSW energy is generated through a vibratory source at known frequency intervals. This is one of the main 

advantages of the method, as the frequency ranges of testing can be specified and therefore the maximum 

depth of testing can be controlled (Foti et al., 2018). Typically, 6 uni-axial geophones are used, and the vertical 

motion is captured. These are placed in a linear array at a distance from the source (Foti et al., 2018). During 

data acquisition, the parameters derived are the phase difference, and the frequency, from which wavelength 

(λ) and Rayleigh wave velocity (VR) can be calculated as (Equation 3):  λ = 360/ (phase difference),                VR = f λ    (3) 

MASW uses a hammer and a plate to generate seismic waves. A minimum of 24 geophones are commonly used, 

placed in a linear array, and at distance from the source (the offset) to be far enough to avoid near-field effects 

and close enough to limit high frequency attenuation of the signal (Foti et al., 2018). In this case, because the 

input signal is multi-frequency, a dispersion curve is plotted of VR against frequency, from which a VS profile 

against depth is estimated through an inversion process. 

The accuracy, functionality and cost of surface wave methods have been discussed in various case studies, for 

both site characterization and railway track condition monitoring. A UK study on railway earthworks investigated 

both MASW and CSW tests to identify stiffness variations in the UK, showing that the best results were obtained 

by field equipment of wide frequency wave generation, as this helped in mapping the ground over various 

depths (Gunn et al., 2015). CSW was selected to spot the passage from fine to coarse grained material and 

MASW to locate voids; however, in combination the methods identified stiffness variations in complex and 

laterally varying materials. MASW was also applied in a railway embankment that settled in Ireland and was 

useful in mapping the steeply sloping bedrock (Donohue et al., 2011).  

Neither MASW or CSW come with a standard method or practice of application, and their use strongly depend 

on the contractor’s experience, soil material, source type and acquisition protocol (Kyrkou et al., 2022). Some 

limitations of MASW include the non-uniqueness of the inversion to Vs with depth from the measured VR, their 

inability to identify the existence of lateral variations in the ground and the presence of higher modes of wave 

transfer that could be mistaken for the fundamental one (Foti et al., 2018).  

To better understand these limitations on the usefulness of these techniques to verify earthworks construction, 

and because of the significance of Rayleigh waves in high-speed railways, in this study field tests of both methods 

were undertaken to compare the VS -depth profiles and assess the level of difference in the results using similar 

test set ups on a stabilized trial embankment. The purpose of this paper is to present and discuss the results a 

series of tests undertaken at the same location, with geophones and seismic source placed at similar distances. 

 

2. Case Study: Long Itchington Wood Tunnel 

All geophysical tests were undertaken on a site near Southam, Warwickshire as part of the construction of HS2 

on a lime-stabilised trial embankment. The underlying geology consisted of a weathered profile of clays and 

mudstones of the Sidmouth Mudstone Formation, part of the Mercia Mudstone Group; the stratigraphy of the 

area, taken from a nearby borehole, is shown on Table 1.  
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Strata Description Depth (thickness) 

TOPSOIL-soft reddish brown slightly sandy clay with occasional rootlets (< 3 mm x 5 mm) 0.3 m (0.3 m) 

Soft brownish red sandy CLAY. Sand is fine to coarse. De-structured  0.3-1.5 m (1.2 m) 

Stiff brownish red sandy clay with occasional pockets (< 10 mm x 10 mm) of greenish grey silt. Sand is 

fine to coarse. De-structured  
1.5-2.3 m (0.8 m) 

Firm brownish red silty clay with occasional pockets (< 40 mm x 70 mm) of greenish grey silt and with 

occasional lithorelicts (< 60 mm) of reddish-brown mudstone. Sand is fine to coarse. Destructed  
2.3-3.5 m (1.2 m) 

Extremely weak brownish red MUDSTONE. Distinctly weathered. Recovered as angular and 

subangular fragments (< 63 mm) of brownish red mudstone in a sandy matrix  

3.5-3.68 m (0.18 

m) 

Table 1: The site stratigraphy. 

The topsoil and softer superficial soils were removed to a depth of approximately 0.8 m, and the formation was 

proof rolled to give a stiff foundation prior to construction of the trial embankment. The fill material was treated 

with 1.5% lime and the embankment was constructed in 10 layers of 300 mm thickness on top of the natural 

ground to the height of 3 m. 

The stiffness of most natural sites that are investigated using MASW or CSW increase with depth, creating a 

normally dispersive profile for surface seismic waves.  The Long Itchington Wood Tunnel trial is interesting 

because it represents a situation more typical of the stiffness profiles expected for high-speed rail earthworks, 

with a high stiffness engineered embankment overlying a softer foundation whose stiffness then increases with 

depth.  This stiffness profile may be expected to change the passage of the surface seismic waves in comparison 

to a normally dispersive profile which may add significant complexity to the interpretation of the MASW and 

CSW tests. 

2.1 Geophysical Survey Design: Methodology and Test Plan 

The anonymised surveys presented in this paper are part of a larger geophysics trial using the arrangements 

shown in Figure 1.  MASW tests were undertaken by four companies on the same site and the CSW method was 

applied by one. The selected surveys presented herein include an example of the MASW results, the CSW results 

as well as the comparison of both methods, . In the trial, all seismic lines were designed to have the same centre 

location and the same inter-geophone spacing and offset combinations were applied to both methods. Energy 

was generated at two shot locations, at both offset ends of the seismic line (i.e., forward and reverse shots). All 

geophones had 4.5 Hz resonant frequency. In the MASW surveys, energy was generated through a 14 lb hammer 

and a plastic plate, 24 vertical spiked geophones were used. Data were registered using a Geometrics Geode 

Ultra-Light Exploration Seismograph. In the CSW surveys, a 70 kg frequency-controlled vibrator was used as the 

source and 6 vertical spiked geophones used as receivers. The frequency range applied was 7.5 Hz to 100 Hz 

with 2.5 Hz increment and from 100-250 Hz the increment was augmented to 10 Hz.  

 

Figure 1: Field test protocols per method. All lines were centred between geophone G12 and geophone G13 

for MASW and between G3 and G4 for CSW tests- the common mid-point represented by the blue dotted line. 

 

  



4 

 

Since it was important to evaluate the outcome from routine procedures used by the companies for commercial 

geophysical work, all data were acquired and processed by them, using their normal procedures, for example 

for establishing the most appropriate dispersion curves, data inversion to produce Vs-depth profiles and stacking 

datasets to maximise signal to noise ratios. 

 

3. Results and Discussion 

In this section, a selection of resulting VS -depth profiles determined from both methods are compared. The 

interpretation of MASW results requires an assumption of an elastic half-space below which VS is assumed to be 

constant, and only the layers above the half-space (i.e., depth to assumed bedrock) were taken into 

consideration and are included in the figures. In every case, the graphs correspond to the best fit models derived 

from the inversion of the dispersion curve by the companies.  

3.1. Vs-depth profiles from MASW tests (example of 0.75 m spacing and 3 m offset) 

Figure 2 presents the shear wave velocity profiles determined by each company when the geophones were 

spaced at 0.75m and the source had a 3m offset.  This example is typical of the results received for all test 

protocols in that it shows significant variability in the results. Considering the stiffer stabilised fill on top of 

natural ground, only Company C found a progressively increased VS in the top 3 m of stabilised materials, 

although Company A’s data does show a drop in VS below 3 m and Company B shows a high Vs layer at the 

surface overlying soils of lower VS. It is probable that the inverted stiffness profile discussed above is particularly 

challenging to interpret resulting in significant variation in Vs with depth and differences between the results of 

the different companies.  It is possible that the stiffness profile has caused higher order modes to have been 

excited creating artifacts in the final VS profiles (i.e., VS higher than 700m/sec in the top 1.5 m) from the inversion 

process (Foti et al., 2018).  

 

Figure 2: Example of the results of MASW for all companies - survey protocol of 0.75 m spacing/ 3 m offset. 

 

3.2. Vs -depth profiles from CSW tests  

Figure 3 presents the results of Vs -depth profiles for the forward shots (backward shots not included for clarity) 

of two CSW profiles; (3m offset with 0.75 m spacing, as above, and 5m offset with 1 m spacing). For the shorter 

CSW line, the subsurface was mapped to a shallower maximum depth (about 10 m) than the longer line (15 m). 

In the top 7 m, both profiles have high resolution, with data points at intervals <1 m. At greater depths the 

resolution of both plots reduces, significantly for the longer line data which goes to greatest depth. Within the 

top 7 m, both profiles are generally very consistent with each other, typically showing differences of up to 10%. 

Below 7 m, as the resolution of the surveys reduced, the difference between them increased.  
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In contrast to the MASW data of Figure 2, this CSW data shows the ground to have highest stiffness in the top 3 

m and then lower, but consistent stiffness at greater depth. This is what would be expected for a profile which 

consisted of stabilised embankment fill overlying a natural profile of the Sidmouth Mudstone Formation. 

 

Figure 3: The results of CSW (forward shots only) for the two survey protocols. 

 

3.3. VS -depth profiles from MASW and CSW tests for 0.75 m geophone spacing and 3 m offset  

For this offset and geophone spacing, both the forward and reverse shots of CSW were compared to the MASW 

test from Company C whose results seemed to better match with the known soil profile (Figure 4). For this 

comparison, and since MASW showed high variability (Figure 2), the MASW only from one company is presented, 

and the minimum and maximum VS values data spread from the other firms is shown as red bars, up to 10 m 

depth at 2 m intervals to show the extent of variation while maintaining readability of the graph. In terms of the 

maximum investigation depth, the average of CSW shots was 14 m, while for MASW the deepest layer before 

the half space for the selected test was identified at only 7 m below ground level. 

Comparing forward and reverse shots from the CSW surveys shows similar profiles, revealing that the ground 

does not present significant lateral variations as the data are similar in both directions and the ground 

corresponds similarly in the wave’s propagation, as would perhaps be expected in a well-controlled constructed 

stabilised embankment. The most significant difference between these shots is in the top 1.5 m, which also 

showed the greatest difference to the selected profile from the MASW testing, indicating that the data in the 

very near surface is difficult to rely upon, possibly linked to the issue of higher order modes in analysis described 

above. From 1.5 to 7.5 m depth, the difference in average VS between the two CSW shots is approximately 10%, 

and this depth range also shows the best match to the MASW data presented. Below 7.5 m the resolution from 

the CSW decreases and their differences tend to increase a little. This will obviously be critical to the ground 

model used in analysis. 

Comparing MASW and CSW, over the entire depth profile the MASW data fluctuate significantly as described 

previously, whereas the CSW data seem to be more consistent.  

3.4. VS -depth profiles from MASW and CSW tests for 1 m geophone spacing and 5 m offset 

The results for this offset and geophone spacing are shown in Figure 5. To map the difference of forward and 

reverse CSW shots, they were both compared to MASW, to show the relevance in the results of this frequency-

controlled method. The variability of VS -depth profile from all MASW tests from the other companies is also 

shown again with red bars similar to Figure 4. Based on Figure 5, CSW mapped the subsurface to approximately 

60% deeper than MASW.  

For the forward and reverse shots of CSW, there are significant differences in the top 1 m (up to 30% on the 

average VS), but below this the two shots show a very good agreement, at least to 7 m before the resolution 

reduces significantly. 
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Figure 4: The VS to depth profiles for both MASW and CSW surveys, for the same geophone spacing and offset 

location (0.75 m spacing, 3 m offset). The MASW plot is the one which best fits the CSW data.  

 

Figure 5: The VS to depth profiles for both MASW and CSW surveys, for the same geophone spacing and offset 

location (1 m spacing, 5 m offset).  

 

4. Conclusions 

In this study, the methods applied were MASW and CSW and aimed to explore the level of agreement between 

them in respect of assessing the estimated shear wave velocity variations with depth of a stabilised 

embankment. For both methods, shear wave velocity profile is interpreted from measured Rayleigh waves and 

this interpretation requires several assumptions to be made. In CSW there is greater data resolution in the near 

surface due to the ability to generate specific source frequencies and intervals, compared to MASW where the 

frequencies generated depends on the energy of the impact shot with the triggering hammer. Specific 

conclusions are: 

• CSW gives more detailed information for the near surface, compared to MASW, when all company data 

were compared.  
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• The overall investigation depth between the two methods, where resolution does not decrease, is 

relatively similar.  In CSW method, the longer length survey reached a depth that was approximately 

60% higher than for the case of shorter line. 

• The CSW forward and reverse shots showed similar VS -depth profiles for both survey design protocols. 

• Conversely, the MASW results from all companies showed high variability between companies and in 

some cases significant variability of VS within this soil profile. This could be attributed to this particular 

site having a high stiffness stabilised embankment overlying natural soil which adds significant 

complexity to the inversion process required to assess VS, and corresponding artifacts in the VS (for 

instance significantly high velocities, attributed to issues with higher order modes). 

Regarding data resolution, this was better in the shorter line of CSW compared to the longer one. However, 

when comparing the two methods, it is not clear from these results that closing the geophone’s spacing gives 

necessarily more accurate interpretation of the near surface.  Accuracy is also dependent on the amount of 

supporting information available to the analyst and their skill.  

Broadly, these data showed that CSW on this site provides more robust information in the near surface than 

MASW. Further research will be undertaken on a wider dataset into the way the fundamental mode is picked 

from MASW dispersion data, and the parameters that mostly affect the final Vs to depth profiles in the post 

processing inversion process. This will aim to get a better understanding of issues related to control and 

variability within MASW testing and data processing. This will further investigate if the variability in these data 

was due to the issues with a relatively thin stiff layer (the stabilised embankment) overlying natural ground and 

how this is accommodated in analysis. This is an important issue to understand for compliance testing of shear 

wave velocity on stabilised embankments.   
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