
This is a repository copy of Integrated histopathology, spatial and single cell 
transcriptomics resolve cellular drivers of early and late alveolar damage in COVID-19.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/226479/

Version: Published Version

Article:

Lee, Jimmy Tsz Hang, Barnett, Sam N, Roberts, Kenny et al. (26 more authors) (2025) 
Integrated histopathology, spatial and single cell transcriptomics resolve cellular drivers of 
early and late alveolar damage in COVID-19. Nature Communications. 1979. ISSN 2041-
1723 

https://doi.org/10.1038/s41467-025-56473-x

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Article https://doi.org/10.1038/s41467-025-56473-x

Integrated histopathology, spatial and single
cell transcriptomics resolve cellular drivers
of early and late alveolar damage in
COVID-19

Jimmy Tsz Hang Lee 1,16, Sam N. Barnett 2,3,16, Kenny Roberts 1,

Helen Ashwin 4, Luke Milross5, Jae-Won Cho6, Alik Huseynov2,

Benjamin Woodhams 1,7, Alexander Aivazidis1, Tong Li 1, Joaquim Majo8,

Patricia Chaves 2, Michael Lee 2, Antonio M. A. Miranda 2,

Zuzanna Jablonska 2, Vincenzo Arena9, Brian Hanley10, Michael Osborn10,

Virginie Uhlmann 7, Xiao-Ning Xu 11, Gary R. McLean2,12,

Sarah A. Teichmann 1,13, Anna M. Randi 2,3, Andrew Filby14, Paul M. Kaye 4,

Andrew J. Fisher 5,15,17 , Martin Hemberg 6,17 , Michela Noseda 2,3,17 &

Omer Ali Bayraktar 1,17

Themost common cause of deathdue toCOVID-19 remains respiratory failure.

Yet, our understanding of the precise cellular and molecular changes under-

lying lung alveolar damage is limited. Here, we integrate single cell tran-

scriptomic data of COVID-19 and donor lung tissue with spatial transcriptomic

data stratifying histopathological stages of diffuse alveolar damage. We

identify changes in cellular composition across progressive damage, including

waves of molecularly distinct macrophages and depletion of epithelial and

endothelial populations. Predicted markers of pathological states identify

immunoregulatory signatures, including IFN-alpha and metallothionein sig-

natures in early damage, and fibrosis-related collagens in late damage. Fur-

thermore, we predict a fibrinolytic shutdown via endothelial upregulation of

SERPINE1/PAI-1. Cell-cell interaction analysis revealed macrophage-derived

SPP1/osteopontin signalling as a key regulator during early steps of alveolar

damage. These results provide a comprehensive, spatially resolved atlas of

alveolar damage progression in COVID-19, highlighting the cellular mechan-

isms underlying pro-inflammatory and pro-fibrotic pathways in severe disease.

Since the outbreak of the COVID-19 pandemic in late 2019, SARS-CoV-2

infection remains prevalent, with nearly 700 million cases recorded

worldwide and almost 7milliondeaths1.Whilst being a respiratory illness,

the severity across infected patients is variable, with critical cases mani-

festingasa systemicdiseasewithhyperinflammationandcytokine storm,

leading tomultiple organdamage anddysfunction. Crucially, endothelial

damage and associated coagulopathy contribute to severe forms of the

disease2. A better understanding of the cellular and molecular mechan-

isms underlying the devastating lung alveolar damage in COVID-19 could

inform novel therapies to the benefit of patients with severe symptoms.
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The predominant histological lung injury pattern in COVID-19 is

termed diffuse alveolar damage (DAD). DAD presents with hetero-

geneous histopathological features and stages, where early or exuda-

tive DAD (EDAD) is characterised by hyalinemembrane deposition and

inflammation, while late or organising DAD (ODAD) is marked by

extensive fibrosis, with intermediate states showing mixed pathologi-

cal features (MDAD)3. Hence, EDAD and ODAD display increasingly

severe patterns of lung injury and are thought to represent the tem-

poral progression of disease pathology4–7. However, beyond initial

reports documenting expanded immune cells and fibroblast popula-

tions in ODAD7, the cellular and molecular differences across alveolar

damage progression are not known. Furthermore, distinct alveolar

damage stages can be spatially intermixed in a given donor’s lung

samples4,5, obfuscating their molecular signatures in tissue dissocia-

tion based single-cell and bulk RNA-sequencing datasets.

Previously, a wide range of assays, including single cell/single

nucleus RNA sequencing (sc/snRNA-seq), spatial transcriptomics (ST),

and imaging mass cytometry, were successfully applied to study

bronchoalveolar fluid and post-mortem lung tissue samples from

COVID-19 patients8–10. Moreover, targeted profiling using subsets of

genes and proteins demonstrated early immune cell recruitment and

inflammatory pathway activation, followed by fibrosis, but did not

provide a comprehensive overview of the cellular and molecular

changes10,11. Consequently, the exact drivers of tissue remodelling

within DAD stages remain incompletely understood.

Here, we combine sc/snRNA-seq and ST to provide a compre-

hensive cellular and molecular characterisation of alveolar damage

progression stages in COVID-19. We integrated 11 datasets to create a

large multi-study sc/snRNA-seq atlas, with a newly generated ST

dataset profiling histologically definedDAD stages across autopsy lung

tissue samples from 33 patients. For each DAD stage, we identified

distinct molecular biomarkers, pathological cell states, tissue micro-

environments, aswell as cell-cell interactions (Fig. 1A). In particular, we

identify waves of macrophage subtypes accumulating through pro-

gressive alveolar damage and the enrichment of COVID-19-specific

SPP1 (encoding osteopontin - OPN) signalling from macrophage sub-

populations in early damage to specific lung tissue niches. Further-

more, we link SPP1/OPN signalling to fibrinolytic shutdown via

endothelial upregulation of PAI-1 (encoding SERPINE1) upon OPN

treatment. By combining multimodal transcriptomics data and inte-

grating histopathological definitions of tissue damage, our study

provides a framework that canbe applied to other organs in health and

disease.

Results
Single cell transcriptomic atlas of thehealthy andCOVID-19 lung
To maximise the number of COVID-19 lung cells and individuals stu-

died, we generated an integrated sc/snRNA-seq atlas comprising newly

generated snRNA-seq data and 10 publicly available sc/snRNA-seq

datasets (Fig. 1B, C and Supplementary Data 1, 2). Lung tissue from

organ donors (n = 77) were used as a control in comparison with

COVID-19 patients (n = 51). After sample processing and quality con-

trol, the resulting integrated object comprised 514,756 cells and nuclei

(Fig. 1D, E). Integration of transcriptomic data was performed

accounting for variations from donor, cell/nuclei, and 10x Genomics

chemistry (Fig. 1D and Supplementary Fig. 1A–C). Leiden clustering

was performed, and we identified 12 coarse-grained cell states within

four major cellular compartments based on curated lineage-specific

genemarkers andunbiased differential gene expression (DGE) analysis

(Fig. 1F). This included epithelial (EP), endothelial (EC), stromal and

immune cells, including myeloid (MYE) and lymphoid linea-

ges (Fig. 1E).

Further subclustering defined 33 distinct cell states (Fig. 1G,

Supplementary Fig. 1C, D and Supplementary Data 3, 4), including four

EP states and six EC states. The latter included the recently defined

EC.Aerocyte (HPGD, EDNRB, IL1RL1) and two ACKR1+ venous EC

populations (systemic and pulmonary - EC.Venous.Sys, EC.Venous.Pul)

distinguished by expression or lack of COL15A1, respectively12,13 (Fig. 1F

and Supplementary Fig. 1D). Vascular smooth muscle cells (Vascu-

lar.SMC), pericytes andmesothelial cells were also profiled, along with

four fibroblasts (FB) populations within the stromal compartment

(Fig. 1F and Supplementary Fig. 1D).Within immune cells, we identified

B plasma cells expressing either IGHA1 or IGHG1 (B.Plasma.IgA,

B.Plasma.IgG), and fivemacrophage populations, including an alveolar

macrophage subset co-expressing markers from ‘macro-alv-MT’

(including metallothionein (MT) related MT1F and MT1H) and ‘macro-

alv-CCL’ (including chemokines CCL4 and CCL20) identified in pre-

vious studies14, here termed Macro.Alv.Meta.CCL. (Fig. 1F and Sup-

plementary Fig. 1D). Furthermore, we profiled four lymphoid

populations, in addition to two proliferating immune populations

(Proliferating.T.NK, Proliferating.MYE). Consistent with previous

reports10, we observed widespread gene expression differences in

these cell states betweenhealthy andCOVID-19 lungs, including EP.AT1

and EP.AT2 cell states that showed dysregulation of genes associated

with interferon response, and as described below, EC states that

showed dysregulation of the coagulation cascade (Supplementary

Fig. 1E–G and Supplementary Data 5–7).

Transcriptome-wide spatial atlas of alveolar damage
progression
Given that DAD stages can be spatially intermixed in COVID-19 lung

tissue4,5, we used ST to identify transcriptional differences across his-

topathologically defined alveolar damage patterns. For this purpose,

we examined post-mortem lung tissue samples from a multi-centre

patient cohort that we recently characterised using targeted antibody

panels4,5. Our cohort included 33 individuals, mostly males, across

different ages (22–98 years; median 27 years), who died from severe

COVID-19 during the first (ancestral strain) and second wave (B.1.1.7 or

alpha variant) of the pandemic, and spanned diverse ethnic back-

grounds and clinical histories, including both hospital (70% of

patients) and community (30%) deaths (Supplementary Fig. 2 and

Supplementary Data 8).

Here, we performed unbiased ST characterisation of alveolar

damage stages across our patient cohort using the NanoString Whole

Transcriptome assay (WTA), profiling a total number of 326 tissue

regions of interest (ROIs) sized 400 µm2 each (Fig. 2A). As before, we

defined DAD stages strictly based on published histological criteria15

and guided by expert pulmonary pathologists4,5 (Fig. 2B, “Methods”).

We profiled tissue regions with EDAD, MDAD and ODAD, as well as

tissue areas with preserved (PRES) lung morphology contrasting DAD.

To identify the molecular and cellular signatures specific to DADs, we

also examined COVID-19 patients with pulmonary oedema consistent

with acute cardiac failure, as well as superimposed bacterial bronch-

opneumonia. Although all patients were confirmed SARS-CoV-2-

positive via RT-PCR of nasopharyngeal and/or lung tissue swabs,

viral abundance was not quantified in the NanoString WTA Profiling.

Imaging mass cytometry from a related study found no SARS-CoV-2

spike or nucleocapsid proteins in lung tissue4. Finally, as healthy con-

trols, we also sampled lung sections of two patients who died from

non-COVID-19 disease and included a publicly available lung WTA

dataset of three non-COVID-19 patients10 in our analysis. In addition,

we conducted Visium profiling on six FFPE lung tissue sections

obtained from three patients, to validate the findings of our WTA

analysis.

We applied the standard WTA data processing workflow, using

stringent gene filters (> 6000 genes per ROI) for quality control and

background correction using the CountCorrect algorithm that

leverages negative WTA control probes16. This resulted in 260 high-

quality spatial transcriptome profiles with an average of 11,423 genes

and 689 nuclei detected per ROI (Supplementary Fig. 3). Our final
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dataset captures transcriptomic profiles of each DAD stage across

multiple patients (Fig. 2C), where multiple DAD stages can often be

observed in a given patient (Fig. 2B, C). Hence, our dataset enables a

robust comparison of DAD stages accounting for both patient varia-

bility and technical batch effects, providing the most comprehensive

transcriptomic profiles of alveolar damage progression to date. Our ST

data, along with our sc/snRNA-seq atlas, can be accessed at https://

covid19-multiomicatlas.cellgeni.sanger.ac.uk/.

Distinct transcriptional signatures of alveolar damage stages
As a first step to determine the molecular signatures associated with

different alveolar damage states, we used a random forest classifier for
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Fig. 1 | Single cell transcriptomic atlas of the healthy and COVID-19 lung.

A Schematic overview. A multi-study sc/snRNA-seq dataset was integrated with

histopathology driven spatial whole transcriptome analysis. The cell2location tool

was used to map cell types/states to spatial transcriptomic data, with DGE, cell-

colocalization, abundance analysis, and cell-cell interaction interrogation per-

formed downstream. Created in BioRender. Barnett, S. (2025) https://BioRender.

com/n08s131. B Number of COVID-19 patients / donors contributing to the inte-

grated sc/snRNA-seq dataset. Created in BioRender. Barnett, S. (2025) https://

BioRender.com/h64x272. C Percentage contribution of sc/snRNA-seq datasets

from organ donors and COVID-19 patients. D UMAP representation of integrated

COVID-19 (red) and healthy control (blue) datasets contributing to the final sc/

snRNA-seq object. EUMAP representation of the global object with broad cell type

(dotted) and mid-level annotation. F Heatmap representation of markers used for

mid-level annotation. G Sankey plot visualisation of cell state level annotations

derived from subclustering of the broad cell type compartments (Supplementary

Fig. 1C, D and Supplementary Data 3, 4).
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the identification of predictive biomarkers of PRES, EDAD, MDAD, and

ODAD (Fig. 2D and Supplementary Fig. 4A, “Methods”). Within EDAD

ROIs, the classifier identified genes associated with inflammatory

response (SPP1, IFI6, ISG15, and TNFAIP3), regulation of fibrinolysis

(SERPINE1), and metallothionein-related genes (MT1A and MT1M)

(Fig. 2E). Whilst metallothionein (MT) genes are typically attributed to

metal ion homoeostasis and oxidative stress alleviation, they are also

involved in early-stage inflammatory responses17, concordant with the

pathophysiological phenotype of EDAD in acute lung injury. Further,

EDAD is enriched for ADAMTS4 (aggrecanase-1), a protease upregu-

lated in severe influenza infection, which disrupts lung tissue integrity

to enable early immune infiltration by degrading extracellular matrix

proteins, including versican18. Due to a lack of viral particles in our lung

samples, these patterns of gene expression in EDADmore likely reflect

the inflammatory phenotype of DAD rather than direct viral presence,

supporting the “hit and run” hypothesis4. Conversely, in ODAD, we

observed markers associated with fibrosis and TGF-beta pathway

(COL1A1, COL1A2, ID1, HTRA1), as well as anti-inflammatory response

(FOLR2)19 (Fig. 2E). These predicted biomarkers identified from WTA

data displayed consistent expression patterns across Visium spots

annotated as PRES, EDAD, and ODAD histopathological states (Sup-

plementary Fig. 4B). In addition, the top 100 biomarkers exhibited a

high correlation between WTA and Visium datasets, with Spearman’s

correlation coefficients of 0.56 (p-value = 1.4e-9) and 0.52

(p-value = 2.6e-8) in EDAD and ODAD, respectively (Supplemen-

tary Fig. 4C).

DGE analysis of EDAD, MDAD and ODAD compared to PRES his-

topathological states revealed a trend of largely downregulated mar-

kers, including the shared downregulation of 371 genes, as well as 34

shared upregulated genes (Supplementary Fig. 5 and Supplementary

Data 9–12). EdgeR pseudobulk analysis of EDAD vs ODAD ROIs further

highlighted inflammatory and fibrotic signatures within COVID-19 tis-

sue (Fig. 3A). Within EDAD, we observed upregulation of interleukin-

related genes IL1A, IL1B and IL6, interferon alpha and gamma-related

IFNG, IFIT1, and MX1, and proliferation-related G2/M checkpoint mar-

kers CDK1, CDC6, and CDC45 (Fig. 3B, C). Furthermore, EDAD enriched

for SPP1, encoding thematricellular proteinOPN, involved in leukocyte

recruitment and immune cell activation20, whichwas previously shown
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to be increased inmacrophages of patients with idiopathic pulmonary

fibrosis21,22. In contrast, ODAD ROIs enriched for genes associated with

extracellular matrix (ECM) turnover, including matrix metalloprotei-

nases (MMP2, MMP9, and MMP14), as well as collagen deposition

(COL1A1, COL1A2, COL5A1, COL6A1, and COL6A2), the pathological

fibroblast marker CTHRC123, and TGF-beta related genes (SMAD6,

SMAD7, and ID1) (Fig. 3B, C). This signature infers activation of pro-

fibrotic and ECM remodelling pathways in ODAD. Taken together,

these data present biomarkers to stratify alveolar damage stages and

highlight molecular pathways underlying the progression of an

inflammatory phenotype in early damage to a profibrotic phenotype

observed histologically in late damage.
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Dysregulation of the coagulation cascade in COVID-19
With coagulopathy being amajor complication in severe COVID-1924,25,

and the frequent presence of microthrombi in the lung

microvasculature26, we interrogated the expression of genes encoding

factors contributing to clot formation and resolution. DGE analysis of

the sc/snRNA-seq dataset revealed differential regulation of several

genes directly and indirectly involved in the fibrinolysis pathway,

including upregulation of SERPINE1, encoding the fibrinolysis inhibitor

PAI-1, in arterial, capillary, and pulmonary venous EC (Fig. 3C and

Supplementary Data 5). Concomitant downregulation of PLAT,

encoding the fibrinolytic factor tPA, which is inhibited by SERPINE1/

PAI-1, likely contributes to enhancing anti-fibrinolytic effects (Fig. 3D

and Supplementary Data 5). We also observed downregulation of

ANXA2 (Annexin A2), which typically acts as a receptor for PLAT/tPA to

promote fibrinolysis27, as well as downregulation of PROCR (protein C

receptor) and THBD (thrombomodulin), which together are required

for activation of protein C, and downstream inhibition of SERPINE1/

PAI-128 (Fig. 3C, D). Other differentially regulated coagulation sig-

natures included downregulation of anticoagulant ANXA5 (Annexin

A5), and upregulation of procoagulant ANO6 (TMEM16F) (Fig. 3C),

which inhibit and promote exposure of phosphatidylserine residues in

the phospholipid bilayer, respectively, and in turn, enable pro-

thrombin complex formation29,30. We also observe downregulation of

CAV1 (Caveolin-1), which regulates the anticoagulant activity of TFPI

(Tissue Factor Pathway Inhibitor), EDN1 (Endothelin-1) shown to pro-

mote Tissue Factor production31, and SERPING1 (Complement 1 inhi-

bitor) which has both pro- and anticoagulant properties32.

Furthermore, while aerocytes are defined transcriptionally by an

absence ofVWF12,13, we observe their upregulation of VWF in COVID-19,

suggesting a phenotypic shift in the disease.

We confirmed the upregulation of SERPINE1 in COVID-19 by single-

molecule fluorescence in situ hybridisation (smFISH) on COVID-19 post-

mortem lung parenchyma tissue (Fig. 3E), observing a several-fold

increase in SERPINE1 mRNA area staining compared to healthy control

tissue (Fig. 3F). Collectively, this data suggests that SERPINE1, in con-

junctionwithother coagulation related factors,may act as a keyplayer in

the fibrinolytic shutdown and persistency of microthrombi observed in

COVID-19 lung endothelium from early stages of alveolar damage, par-

ticularly since being classified as a marker of EDAD, and upregulated in

EDADcompared toODAD (Figs. 2E, 3A)25,33. In addition,while SERPINE1 is

not differentially expressed inODADcompared toPRES (Supplementary

Data 11), previous studies have demonstrated its overexpression leads to

ECM accumulation, as well as fibroblast and AT2 cell senescence in a

model of idiopathic pulmonary fibrosis34,35, suggesting long term impli-

cations of SERPINE1/PAI-1 in fibrosis and advanced DAD states.

Distinct cellular composition of alveolar damage stages
To reveal the cellular composition changes in COVID-19 and across

alveolar damage progression, we computationally deconvolved cell

states in our ST data via integration with sc/snRNA-seq using the

cell2location-WTA model16,36 (Fig. 4A). Given the pervasive transcrip-

tional changes in COVID-1910 (Supplementary Fig. 1E), we derived gene

expression signatures of cell states from both healthy and COVID-19

donors from our integrated sc/snRNA-seq atlas and mapped them

separately in our WTA dataset (“Methods”). Initially, we compared the

abundanceof coarse-grained cell states betweenhealthy andCOVID-19

ROIs. We observed an increase of immune subtypes (monocyte/mac-

rophages, T & NK, and mast cells) as well as a depletion of epithelial

subtypes (EP.AT1, EP.AT2, EP.Ciliated) in COVID-19 tissue (Fig.4B and

Supplementary Fig. 6A). Differential abundance analysis of our sc/

snRNA-seq dataset using MiloR37 similarly revealed an enrichment of

immune and depletion of epithelial related subpopulations, further

confirmingdestruction of the alveolar bed and increased inflammation

observed clinically in COVID-19 patients7 (Fig.4C and Supplementary

Fig. 6B, C). In addition, smFISHwas used to confirm the loss of AT1 and

AT2 cells in COVID-19 lung parenchyma as indicated by reduced

expression of AGER and SFTPC, respectively (Supplementary Fig. 6D).

Next, we leveraged our integrated sc/snRNA-seq and ST datasets

to identify cellular abundance changes across alveolar damage stages

(Fig. 4D, E and Supplementary Fig. 7A). First, we examinedwhether our

analysis recovered previously known DAD-associated cellular

patterns4,5. Initially, we observed that the healthy gene expression

signatures of epithelial subtypes were depleted in both PRES and DAD

tissue locations compared to healthy controls (Fig. 4D), consistent

with our previous report on disease phenotypes preceding morpho-

logical changes associated with DAD4. Comparing the distribution of

COVID-19 cell state signatures across DAD stages, we found that

fibroblast subtypes (FB.Basal and FB.Alveolar) involved in normal

alveolar function23, aswell asmonocytes associatedwith early stagesof

inflammation38 were enriched in EDAD compared to PRES and ODAD

(Fig. 4E and Supplementary Fig. 7A). Conversely, fibroblast popula-

tions (FB.Myofibroblast and FB.Adventitial) implicated in fibrosis39,

were more abundant in ODAD, consistent with ODAD representing a

pro-fibrotic phenotype6. In addition, lymphoid populations, including

T cells (T.CD4, T.CD8) and B cells (B.Plasma.IgA, B.Plasma.IgG) (Fig. 4E

and Supplementary Fig. 7A), were enriched in ODAD, recapitulating

previous reports7, including our previous study on this patient cohort

based on proteomic profiling4. Of note, while AT1 and AT2 cells were

overall depleted in COVID-19 compared to healthy lung tissue

(Fig. 4C, D and Supplementary Fig. 6), we observed that their disease

cell state gene expression signatures became more abundant across

progressive DAD (Supplementary Fig. 7). In concordance with AT1/2

cell disease phenotypes becoming more prominent across DAD, we

found that many genes upregulated in AT1/2 cells in COVID-19 in our

sc/snRNA-seq dataset (Supplementary Fig. 1E–G) showed increased

expression across DAD progression in our WTA data (Supplementary

Fig. 8). These results validate our spatial transcriptomic mapping

approach and ability to stratify fine-grained cell types across alveolar

damage progression.

Beyond previously characterised cell state changes, we observed

that distinct macrophage subtypes accumulated through progressive

alveolar damage. Macro.HSP, distinguished by heat shock protein-

related markers, and Macro.Alv.Meta.CCL, were enriched in EDAD

compared to PRES tissue areas (Fig. 4E). The presence of these MT +

macrophages in early DAD is consistent with our biomarker and DGE

analyses (Figs. 2E, 3A). These macrophage populations were slightly

reduced in MDAD and ODAD, whereas alveolar macrophages (Mac-

ro.Alv) and CHIT1 + macrophages (Macro.CHIT1.like) increased in

abundance (Fig. 4E). Interestingly, these fourmacrophage populations

were either absent or had significantly lower abundances in COVID-19

patients that died from acute cardiac failure, but were present in

patients with bronchopneumonia with the exception of Macro.Alv

(Supplementary Fig. 7C). This suggests that the superimposed bac-

terial infection seen in the lungs of somepatientswith severeCOVID-19

develops on the immunological background of virus-driven EDAD.

Taken together, our results define specific cellular signatures of DAD

stages and identify changes in macrophage subpopulations across

alveolar damage progression.

Cellular niches and cell-cell signalling across alveolar damage
progression
To explore the changes in cell-cell signalling occurring across alveolar

damage stages, we combined sc/snRNA-seq analysis with identification

of spatially co-localised cell types and differentially expressed ligand-

receptor pairs across DAD stages in the WTA data (Fig. 5A). We first

used CellChat40 to infer cell-cell communication across all cell states

within our sc/snRNA-seq dataset and identify differentially regulated

pathways between COVID-19 and healthy control lung samples

(Fig. 5B). Broadly, we found enrichment of pro-inflammatory (SPP1)

and pro-fibrotic (COLLAGEN, TGFβ) pathways in COVID-19 (Fig. 5B).
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We also observed down-regulation of EC cell-cell adhesion signalling

via ESAM, potentially reflecting loss of barrier function observed

within the vasculature of COVID-19 patients, as well as downregulation

of IL1, IL6 and IFN-II (interferon gamma) signalling, which may reflect

an end-stage phenotype in post-mortem tissues processed for sc/

snRNA-seq.

Next, we mapped pathological cellular niches across DAD pro-

gression, by assigning spatially deconvolved DAD cell states in WTA

data into distinct tissue microenvironments. We used non-negative

matrix factorisation (NMF) on cell2location estimated abundances to

identify spatially co-localising cell states across each DAD stage (i.e.

cell states that recurrently co-occur in tissue ROIs across a given

pathology). We identified three major pathological niches across the

stages of DAD (Fig. 5C). In niche #1, we observed epithelial,mesothelial

and immune cell states. In niches #2 and #3, we observed distinct

patterns of myeloid-vascular cell colocalization. In niche #2, Macro.-

Alv.Meta.CCL was found to co-localise with both EC.Aerocyte and

EC.Capillary cells, as well as with FB.Alveolar and EP.AT1 cells. While in

niche #3, Macro.Alv co-localised with EC.Venous.Pul and EC.Arterial

cells, alongside FB.Myofibroblast andEP.AT2 cells (Fig. 5C).Comparing

the abundances of niches across DAD progression, we observed that

niches #1 and#2were established in EDAD andpersisted intoODAD. In

contrast, niche #3 along with a fourth distinct cell compartment,

enriching for FB.Myofibroblast, were more prominent in ODAD

(Fig. 5C). These findings present distinct tissue microenvironments

across the early and late stages of DAD.

Finally, we examined whether any COVID-19 cellular pathways

were distinctly associated with early or late alveolar damage tissue

microenvironments. Initially, we selected cellular pathways enriched in

COVID-19 in our sc/snRNA-seq dataset (Fig. 5B) and examined the

expression pattern of their receptor and ligands in EDAD vs ODAD

pathologies in ST data by pseudobulk DGE analysis (Fig. 3A and Sup-

plementary Data 9). This revealed elevated expression of the SPP1

ligand (encodingOPN) in earlyDAD (Fig. 3A andSupplementary Fig. 9),

which we had previously identified as a biomarker of EDAD (Fig. 2E).

SPP1 receptors and downstream interferon genes41 were also
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Fig. 5 | Cellular niches and cell-cell signalling across alveolar damage stages.

A Diagram of analysis approach for mapping cell-cell communication across early

versus late DAD. Created in BioRender. Barnett, S. (2025) https://BioRender.com/

n08s131. B Waterfall plot visualisation of global pathway analysis between healthy

(blue) and COVID-19 (red) sc/snRNA-seq, with significant pathways highlighted in

blue and red respectively. C NMF analysis across histopathological states.

D SPP1 signalling within the COVID-19 sc/snRNA-seq compartment, mapped to

EDAD niche 2. Arrows indicate the directionality of ligand (SPP1) signalling to

receptors between cell states. E Dotplot visualisation of SPP1 signalling to specific

receptors across EDAD niche 2 cell states. P-values are computed from a one-sided

permutation test. F Representative confocal images of endothelial cells treated

with 1 µg/mL rhOPN or vehicle (0 µg/mL) for 24h. Scale bar = 10 µm.G Box-whiskers

plot of PAI-1 average fluorescence intensity. Values normalised to vehicle control

(0 µg/mL rhOPN). n = 3 independent experiments, performed in triplicate. One-way

ANOVA; ** adjusted p <0.01. 0 vs. 0.5 adjusted p-value = 0.0093. 0 vs. 1 adjusted p-

value = 0.0086. Boxplot elements: centre line, median; box limits, upper and lower

quartiles; whiskers, 1.5 x interquartile range. Arb. units = arbitrary units.H Summary

ofMacrophage subtypes contributing topro-thrombotic and anti-fibrinolytic states

in early DAD through SPP1 signalling. Created in BioRender. Barnett, S. (2025)

https://BioRender.com/f13w044.
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expressed in EDAD (Supplementary Fig. 9A). We then examined

SPP1 signalling across EDAD cell states and cellular niches. SPP1

expression was enriched in macrophage subtypes in our COVID-19 sc/

snRNA-seq data, including Macro.Alv.Meta.CCL and Macro.HSP that

accumulates in EDAD (Supplementary Fig. 9B). In EDAD tissue micro-

environments, we identified different types of macrophages as a

potential source of SPP1: Macro.Alv.Meta.CCL in niche #2 and Mac-

ro.Alv and Macro.HSP in niche #3 (Fig. 5D, E and Supplementary

Fig. 9C, D). Predicted cells receiving the signals included a range of

epithelial, endothelial, mesenchymal and immune populations. Fur-

thermore, we validated enrichment of SPP1 upregulation in EDAD

(Supplementary Fig. 4B), andmore specifically, in niches characterised

by co-localisation of macrophages and endothelial populations (Sup-

plementary Fig. 10) using Visium ST datasets. These observations

present macrophage SPP1 signalling as an early event during alveolar

damage progression.

Previous studies have shown that SPP1/OPN can induce TGF-beta

expression42, which in turn can upregulate SERPINE1/PAI-143. Given the

enrichment of both SPP1 and SERPINE1 expression in EDAD (Fig. 2E) and

the dysregulation of the coagulation cascade in endothelial cells in

COVID-19 (Fig. 3), we explored whether SPP1/OPN can upregulate SER-

PINE1/PAI-1 expression in vasculature in vitro. We first validated our sc/

snRNA-seq data by confirming the expression of SPP1/OPN receptors

integrin alphaV-beta1 andalpha5-beta1 in culturedendothelial cells using

immunofluorescence staining (Supplementary Fig. 9E). We then treated

endothelial cells with 0.5 and 1 µg/mL rhOPN for 24h and observed an

upregulation of PAI-1 (Fig. 5F, G). Taken together, we demonstrate that

macrophage-derived SPP1/OPNmay be acting at the intersection of pro-

inflammatory and anti-fibrinolytic pathways via SERPINE1/PAI-1 upregu-

lation in early stages of alveolar damage (Fig. 5G, H).

Discussion
One of the critical questions in understanding COVID-19 pathology is

the advancing transcriptional regulation of early to late-stage alveolar

damage. In this study, we have generated the most comprehensive

single-cell and spatial transcriptomic study of lung pathology in severe

COVID-19 patients to date, providing a characterisation of the cell

states, tissue microenvironments, and cellular interactions that

underlie different stages of alveolar damage. By utilising a multiomics

approach guided by histological analysis, these data begin to highlight

the intricate gene expression changes in COVID-19 lung across various

histopathological microenvironments which underlie coagulation,

inflammation, and fibrosis, highlighting biomarkers for predicting

disease severity and for therapeutic targeting. Our study provides a

unique, open-access resource comprising sc/snRNA-seq from COVID-

19 and donor cohorts, as well as whole transcriptome spatial RNA-seq

data across histopathological states of alveolar damage.

To enable amulti-study analysis of the COVID-19 lung, we present

an integrated sc/snRNA-seq atlas comprising newly generated snRNA-

seq data and 10 publicly available datasets spanning 128 individuals

including COVID-19 patients and donors. Our integration strategy

differs from the Human Lung Cell Atlas by incorporating Seurat v4’s

reciprocal PCA to correct batch effects. Subsequently, we employ

Harmony to adjust the Seurat-integrated counts, addressing minor

batch effects that remaindue to donor and 10X version variations. This

method allows us to precisely identify and refine the integration for

each specific purpose. From our cell type annotation, we successfully

transferred and harmonised the cell state labels from amajor lung cell

atlas14 and recovered 33 distinct cell states. We also identified rare

macrophage populations, including metallothionein (MT) and che-

mokine gene-enriched alveolar macrophages (Macro.Alv.Meta.CCL).

While we attempted to recapitulate previously described cell state

annotations, this was complicated by technical and biological differ-

ences between datasets. The difficulties that we faced highlight the

consequences of choices relating to how the data was processed and

integrated, as inconsistencies can affect biological interpretations.

Addressing these challenges requires community-driven efforts to

establish consensus on cell annotations, alongside comprehensive

benchmarking to optimise integration methodologies and ensure

reproducibility.

By exploring regulators of the coagulation cascade, we demon-

strate upregulated SERPINE1 as a potential key regulator of the

hypercoagulable state / fibrinolytic shutdown exhibited by COVID-19

patients in our sc/snRNA-seq DGE analysis. DGE analysis of the WTA

data also demonstrated SERPINE1 upregulation across EDAD regions,

suggesting a response in the acute phaseof the disease. A similar result

was obtained using a random forest classifier trained on WTA ST data

to predict markers of disease severity. Previous bulk analyses of lung

tissue revealed an increase in SERPINE1/PAI-1 expression in COVID-19

lung autopsy samples44, and increased PAI-1 protein levels in COVID-19

patient blood plasma45. Interestingly, SERPINE1 gene / PAI-1 protein

upregulation has been linked to ACE2 inhibition via angiotensin-2

production46, potentially suggesting a direct SARS-CoV-2 virus-

mediated mechanism for upregulated SERPINE1/PAI-1. As such, SER-

PINE1/PAI-1 may represent a crucial biomarker for COVID-19 infection,

and for targeting macro- and microthrombi therapeutically in specific

vessel beds along the vascular axis.

Next, we looked at the changes in the distribution of cell states

across alveolar damage progression. Our multi-omic strategy, which

integrated ST data with finely annotated cell types from sc/snRNA-seq,

uniquely allowed the identification of fine-grained cellular changes

across DADprogression and revealed distinctmacrophage subtypes in

early versus late damage. One limitation of our integrated mapping

approach is that our sc-/snRNA-seq reference likely represents a mix-

ture of DAD pathological states, which would likely dilute cell state

signatures associated with each phenotype.

Lastly, we focused on the molecular signalling pathways within cel-

lular niches of alveolar damage stages and identified a role for SPP1/OPN

signalling in specific macrophage populations. SPP1+ macrophages have

been associated with severe COVID-19 in recent human lung cell atlas

integration efforts47,48, aswell as idiopathic pulmonaryfibrosis22. Here,we

leveraged our ST data to extend these findings and demonstrate that

macrophage SPP1 signalling is most highly enriched in EDAD, though

continues through to ODAD and targets various endothelial, epithelial,

mesenchymal and immune cells. Interestingly, SPP1/OPN targets a num-

ber of integrin subunits upstream of TGF-beta activation, potentially

suggesting a role for this in the activation of pro-fibrotic pathways. Our

analysis also suggests a functional role for SPP1/OPN in thrombosis

observed in COVID-19 via PAI-1 upregulation. Macrophage-derived OPN

has also been implicated in various cancers49,50, suggesting that greater

exploration is required tounderstand themechanismof action indisease

contexts. Furthermore, SPP1/OPN inhibition in a mouse model of idio-

pathic pulmonary fibrosis demonstrated decreased fibrosis, suggesting a

candidate for therapeutic targeting of progression to ODAD fibrotic

phenotypes in COVID-19 patients21. This targeting in the early stages of

the disease may also extend to suppression of fibrinolytic shutdown

mediated by endothelial SERPINE1/PAI-151.

While we examined DAD progression in severe COVID-19, our

study profiled a limited number of non-COVID-19 patients and was

supplemented by publishedWTAdata10 to enable comparisonof early-

stage DAD to healthy controls. Due to sample availability, our spatial

analysis is limited to post-mortem tissue sampled frompredominantly

older individuals, with a bias towards male patients. The sample size

for the spatial data was insufficient for robust conclusions to deter-

mine the contribution of co-morbidities and medical history. For

orthogonal validation of our tissue niche assignments fromWTA data,

we provide a small Visium dataset. Future studies utilising more

extensive Visium profiling or high-resolution spatial transcriptomics

technologies52 can provide a deeper view of tissue niche organisation

and cellular interactions underlying DAD progression.
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Taken together, our studyprovides aunique resource to investigate

the cellular and molecular landscape of alveolar damage progression

within COVID-19 lung tissue at single cell and spatial resolution. This

discovery study also provides mechanistic inferences and a baseline to

explore novel putative therapeutic targets for early and late stages of

alveolar damage. Our data is available for interactive browsing and

download at our webportal under https://covid19-multiomicatlas.

cellgeni.sanger.ac.uk/.

Methods
Human lung tissue procurement and ethics
Human lung samples from patients who died with severe COVID-19

were obtained from 3 UK-based biobanks. The Newcastle Hospitals

CEPA Biobank (NHS ethics 17/NE/0070). The Imperial College Health-

care Tissue Bank (ICHTB), supported by the National Institute for

Health Research (NIHR) Biomedical Research Centre based at Imperial

College Healthcare NHS Trust and Imperial College London (NHS

ethics 22/WA/0214). The ICECAP tissue bank at the University of

Edinburgh (NHS ethics 16/ED/0084). Work on these samples at the

University of York was approved by the Hull York Medical School

Ethics Committee (20/52). Additional samples from control donors

were obtained from Cambridge Biorepository for Translational Medi-

cine CBTM), Addenbrooke’s Hospital, Cambridge, under approval

from the East of England - Cambridge South National Research Ethics

Service Committee (REC 15/EE/0152). The collection of clinical meta-

data is described in detail in our previous studies4,5 and themetadata is

presented in Supplementary Data 8.

Tissue processing
Fresh human post-mortem tissue samples were either snap-frozen in

liquid nitrogen and stored at − 80 °C for single nuclei transcriptomics,

or fixed in 10% neutral-buffered formalin for 24–72 h before transfer to

70% ethanol and processed to paraffin (FFPE) for WTA profiling.

Single nuclei extraction and library preparation from COVID-19
lung post-mortem tissue
Snap-frozen COVID-19 patient post-mortem lung was mechanically

dissociated using a pre-cooled pestle and mortar. Dissociated tissues

were transferred to a pre-cooled Dounce homogeniser containing

Homogenisation Buffer (HB) (250mM Sucrose (Sigma Aldrich,

Cat#S0389); 25mM KCl (ThermoFisher, Cat#AM9640G); 5mM

MgCl2 (ThermoFisher, Cat#AM9530G); 10mM Tris Buffer pH 8

(ThermoFisher, Cat#AM9855G); 1 μM DTT (ThermoFisher,

Cat#P2325); 1xEDTA-Free Protease Inhibitor (Sigma Aldrich,

Cat#11873580001); 0.4U/μL RNAseIn Plus (Promega, Cat#N2611);

0.2U/μL SUPERasein (ThermoFisher, Cat#AM2696); 0.1% Triton

X-100 (Sigma Aldrich, Cat#T8787) and Nuclease Free Water (Sigma

Aldrich, Cat#W4502). Samples were further dissociated with

20 strokes of a loose and tight pestle. Cell suspensions were filtered

through a 40μm strainer (Corning, Cat#352340). Nuclei suspensions

were centrifuged at 500 × g for 5mins at 4 °C. The supernatant was

aspirated, and the pellet resuspended Storage Buffer (DPBS-/-

(Gibco, Cat#14190094); 4% Bovine Serum Albumin (Sigma Aldrich,

Cat#A3059); 0.2U/μL Protector RNAseIn (Sigma Aldrich,

Cat#03335402001). Nuclei were stained using NucBlueTM Hoechst

33342 (ThermoFisher, Cat#R37605) and incubated for 10mins on

ice. Nuclei were sorted by FACS (FACSAriaTMIII, BecktonDickinson),

gated on size and DNA-containing events (NucBlueTM positive in the

405-450/50 channel) (Supplementary Fig. 11) and collected in fresh

Storage Buffer. Nuclei were counted, centrifuged at 500 × g for

5mins at 4 °C and resuspended in fresh Storage Buffer at a con-

centration of 1000 nuclei/μL. Single-cell 3’ gene expression libraries

were obtained from single nuclei using 10x Chromium Next GEM

Single Cell v3.1 kit. Quality control of cDNA and libraries was per-

formed using Agilent 2100 Bioanalyser High Sensitivity DNA analysis

(Agilent. Libraries were sequenced using the NovaSeq sequencing

platform, targeting 50,000 reads per nucleus.

Lung tissue histology and pathology annotation
Formalin-fixed paraffin-embedded lung blocks were obtained from

multiple lung regions from each patient and were serially cut and

mounted onto slides and stained with haematoxylin and eosin (H&E).

The primary slide from each block was imaged using brightfield

microscopy and the images were uploaded onto anOMEROwebserver

to serve as a reference slide for interactive annotation. Regions of

interest (ROIs) were selected by a consultant histopathologist with

cardiothoracic expertise with sizes ranging from 0.25mm2

(500 µm× 500 µm) to 1mm2 (1000 µm× 1000 µm), each being the

selection target for a collaborative co-applicationofmultiple advanced

pathology technologies conducted across multiple academic centres.

An ROI classification framework was developed based on experience

gained through an early pandemic pilot population33 and nomen-

clature reflected existing published literature7,53. ROI classifications

included the temporal phases of DAD - exudative DAD (EDAD), orga-

nising DAD (ODAD) and mixed (or ‘intermediate’) DAD (‘MDAD’) - as

well as bronchopneumonia (‘BRON’) and pulmonary oedema con-

sistent with acute cardiac failure (‘ACFF’). Detailed histological selec-

tion criteria and methodology is outlined further in Milross et al.4.

NanoString GeoMXwhole transcriptome atlas slide preparation
In addition to the useof RNase-free reagents, surfaces, equipment, and

staining containers were cleaned using RNase AWAY Surface Decon-

taminant (Thermo) throughout slide processing. Following RNAscope

staining, slides were processed according to the NanoString GeoMX

RNA assay protocol (MAN-10087-02). Sections were briefly rinsed in

nuclease-free water and then post-fixed in 10% neutral-buffered for-

malin for 5min. Fixation was quenched by incubation in 0.1M glycine,

0.1M Tris, twice for 5minutes each, followed by 5min washing in PBS,

whereafter probes were applied immediately, again according to the

assay protocol. The Whole Transcriptome Atlas (WTA) probe reagent

was diluted in pre-equilibrated buffer R to a final probe concentration

of 4 nM and added to each slide, which was covered with a Hybrislip

cover (Grace Bio-Labs) and incubated for 18 h at 37 °C in a HybEZ II

System, humidified with 2 × SSC (saline-sodium citrate) buffer. The

following day, slides were de-coverslipped by brief rinsing in 2 × SSC

with 0.05%Tween-20, and thenwashed twice for 25minutes each in 2×

SSC, 50% formamide at 37 °C, and twice for 5minutes each in 2× SSC at

room temperature. Following washing, slides were counterstained

with the DNA dye SYTO13. A SYTO13 stock (5μM) was clarified by

centrifugation at 13,000× g for 2min, and then diluted to 500 nM in

buffer W prior to staining in the dark for 30min. Finally, slides were

washed twice for 3minutes each in 2 × SSC buffer.

NanoString GeoMX ROI collection
Slides were covered with buffer S and loaded into the GeoMX DSP

instrument for imaging and collection. Channels: SYTO13 (ex.

466–494 nm, em. 505–527 nm), CD68 (ex. 579–597 nm, em.

608–638 nm). Reference H&E images annotated by pathologists were

overlaid and aligned to images. 500 µm× 500 µm ROIs were selected

and transposed using the polygon tool. ROIs were illuminated by UV

light to cleave the barcodes and the aspirate was collected. Following

collection of sequencing tag-containing aspirates, wells were dried

either at room temperature overnight or at 65 °C for 45mins in a

heating block, and then re-suspended in 10μl of nuclease-free water

(Ambion), in order to minimise any differences due to ambient

evaporation.

NanoString GeoMX WTA library preparation and sequencing
ROI-derived oligos were each uniquely dual-indexed using the i5 x

i7 system (Illumina). A 4μl aliquot of each re-suspended ROI aspirate
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containing the photocleaved oligos was amplified in a PCR reaction

containing 1μM i5 and i7 primers and 1 × NSTG PCR Master Mix. UDG

digestion was carried out at 37 °C for 30min, and then deactivated at

50 °C prior to denaturation at 95 °C for 3minutes and 18 cycles of

amplification: 95 °C for 15 s, 65 °C for 1minute, 68 °C for 30 seconds.

The final extension was conducted at 68 °C for 5min. Prior to pur-

ification, PCR products were combined into sub-pools, groups of ROIs

based upon area, in order to permit biasing of sequencing to ensure

sufficient coverage of smaller ROIs. Each subpool of PCR products was

purified with two rounds of AMPure XP beads (Beckman Coulter) at

1.2 × sample volumeof beads. Pooled librarieswere quantified using an

Agilent 2100 Bioanalyzer and High Sensitivity DNA Kit. The libraries

were pooled in a biasedmanner into two sequencing reactions, each of

which was sequenced with 30PE reads across all four lanes of an Illu-

mina NovaSeq 6000 S4 flow cell at a concentration of 400 pM,with 5%

PhiX spike-in, yielding 26 billion reads.

RNAscope in situ hybridisation and immunohistochemistry
FFPE sections for both RNAscope and NanoString WTA were cut at a

thickness of 5μm using a microtome, placed onto SuperFrost Plus

slides (VWR), and baked overnight at 55 °C to dry and ensure adhesion.

Tissue sections were then processed using a Leica BOND RX to auto-

mate staining with the RNAscopeMultiplex Fluorescent Reagent Kit v2

Assay (Advanced Cell Diagnostics, Bio-Techne), according to the

manufacturers’ instructions. Automatedprocessing included baking at

60 °C for 30min and dewaxing, as well as heat-induced epitope

retrieval at 95 °C for 30mins in buffer ER2 and digestion with Protease

III for 15mins. For the visualisation of markers prior to NanoString

GeoMX profiling, a 3-plex RNAscope was developed using tyramide

signal amplification with Opal 570, Opal 620, and Opal 650 dyes

(Akoya Biosciences). No nuclear stain was applied at this stage. For

validation staining, 3-plex or 4-plex RNAscope stains were developed

using Opal 520, Opal 570, and Opal 650 dyes (Akoya Biosciences), as

well as TSA-biotin and streptavidin-conjugated Atto 425 (Sigma).

Nuclei were counterstained with DAPI at 167 ng/ml.

Confocal Imaging
Imaging of validation RNAscope-stained slides was performed using a

Perkin Elmer Opera Phenix High-Content Screening System, in con-

focal mode with 1μm z-step size, using 20 × (NA 0.16, 0.299 μm/pixel)

or 40 × (NA 1.1, 0.149 μm/pixel) water-immersion objectives. Channels:

DAPI (excitation 375 nm, emission 435–480nm), Atto 425 (ex. 425 nm,

em. 463-501 nm), Opal 520 (ex. 488 nm, em. 500-550 nm), Opal 570

(ex. 561 nm, em. 70-630 nm), Opal 650 (ex. 640nm, em. 650–760 nm).

RNAscope quantification
Quantificationof SERPINE1 inCOVID-19 compared todonor tissueswas

performed using ImageJ. Channels were normalised by subtracting the

raw imagewith aGaussian blur transformationwith sigma=5. The value

for area/n_cells was calculated by dividing the number of cells (DAPI

positive nuclei) and the SERPINE1 stain area in each sample. Donor

control area/n_cell values were averaged, and used as a benchmark for

calculating the log2fc of individual COVID-19 samples.

sc/snRNA-seq integration and QC
Library samples prepared in this study were aligned to reference gen-

ome GRCh38-3.0.0 using CellRanger version 3.1.0. Publicly available

data were downloaded from relevant sources (Supplementary Data 2).

Seurat v4 reciprocal PCA (RPCA) was applied to study batches as pre-

viously documented, with SCTransformused to correct for single cell or

single nuclei as source per study batch, regressing out percent mito-

chondrial and ribosomal genes54. A second batch correction was per-

formed on Seurat integrated counts using Harmony55 (v0.0.6),

correcting for single cell or single nuclei as source, donor and 10x ver-

sion. Doublet removal was performed using Scrublet56. Further QC was

performed to filter genes (200 <nFeature_RNA< 7,500), counts (400

<nCount_RNA<40,000), mitochondrial genes (for single cell: per-

cent_mito < 20%, for single nuclei: percent_mito < 5%) and ribosomal

genes (for single cell: percent_ribo <20, for single nuclei: percent_ribo

< 5%). Downstream analysis was performed in Python (v3) using

SCANPY57 (v1.8.2), AnnData (v0.8.0), NumPy (v1.26.4), SciPy (v1.12.0),

Pandas (v1.5.3), Seaborn (v0.12.2), andMatplotlib (v3.5.2). Clusteringwas

performed on the global integrated object using the Leiden algorithm58.

Differentially expressed genes for each clusterwere calculated using the

Wilcoxon Rank Sum Test with Benjimini-Hochberg correction and used

to annotate major cell type populations based on known markers.

Clusters with similar DGE profiles were merged.

CellTypist automated annotation
sc/snRNA-seq data was annotated using three reference lung models

trained on a logistic regression framework provided with the CellTy-

pist tool (v0.1.9), including ‘Cells_Lung_Airway’, ‘Nuclei_Lung_Airway’14,

and ‘Human_Lung_Atlas’47,58. Cells and nuclei were subset and under-

went automated annotation separately based on the ‘Cells_Lung_Air-

way’ and ‘Nuclei_Lung_Airway’ respectively. ‘Human_Lung_Atlas’ was

applied to the combined cell/nuclei object. Briefly, an initial prediction

step was performed using the ‘best_match’ approach, assigning one

cell type label to each individual cell or nucleus, with highly variable

genes not restricted. Next, over-clustering was performed using

default parameters of the ‘majority_voting’ step to refine annotations

based on unbiased Leiden clustering. Predicted annotations were used

to guide manual subclustering annotation.

Manual annotation of major cellular compartments
Major cellular compartments, including epithelial, endothelial, stro-

mal, myeloid, T/NK cells and B cells were subset separately from the

global object. For all compartments, the top 5000 highly variable

genes were calculated using the highly_variable_genes function in

SCANPY57, PCA was performed, and batch correction was performed

using HarmonyPy55. Neighbours were calculated prior to UMAP and

Leiden overclustering. DGEwas calculated with the ‘rank_gene_groups’

function, using Wilcoxon Rank Sum Test with Benjamini-Hochberg

correction. Manual annotation was performed guided by previous

CellTypist predicted annotations in conjunctionwith known cell type /

state markers, with merging of Leiden clusters with similar transcrip-

tional profiles. Sankey plots were generated using PySankey.

Pseudobulk differential gene expression analysis for sc/snRNA-
seq data
DGE analysis by EdgeR pseudobulk was performed for each cell state

between COVID-19 and donor samples59. Differentially expressed

genes were calculated using QLF (Quasi-Likelihood F-test). Significant

genes were filtered for |log2fc | >1 and FDR <0.05.

Differential abundance analysis of sc/snRNA–seq data
Differential abundance analysis was performed using MiloR as pre-

viously documented at cell type level of sc/snRNA-seq data37. Briefly, a

Milo object was generated from the global lung object (RPCA+ SCT +

Harmony integrated). The KNNgraphwas constructedwith k = 175 and

d = 30, and with neighbourhoods defined and counted, differential

abundance testing was performed.

Generation of expression matrices from NanoString GeoMx
WTA data
DSP sequencing data were processed with the GeoMx NGS Pipeline as

described previously16. In brief, after sequencing, reads were trimmed,

merged, and aligned to a list of indexing oligos to identify the source

probe. The unique molecular identifier region of each read was used to

remove PCR duplicates and duplicate reads, thus converting reads into

digital counts. The limit of detection (LoD) in an ROI was defined based
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on the mean and standard deviation (s.d.) of log2-normalised negative

probe counts. On the log scale, the calculation is: LoD=mean+ (2 × s.d.).

All ROI with the number of detected genes lower than 6× 103 was

filtered out.

Count correct of GeoMx WTA data
In the WTA assay, technical noise will be introduced due to non-

specific probe binding and incomplete transcript capture on tissue

samples. To enhance true biological signals and reduce technical

noise, the counts in the target matrix were adjusted with negative

probe counts using the Python package ‘CountCorrect‘ (v0.01).

Pathological ROI classifier
Tocreate a classifier fordiscriminating the4 stages ofDADpathologies

(PRES, EDAD, MDAD, and ODAD) of ROIs by gene expression profile

from the GeoMx WTA data, the top 20% highly variable genes of the

‘CountCorrect‘ matrix selected by the ‘FindVariableFeatures()‘ func-

tion in the R package Seurat were considered for classification. In each

round of classification, one gene was excluded and the importance

score, i.e. the ratio of correct pathology classified, was computed. The

performance of the Support Vector Machine (SVM), Decision Tree,

Naive Bayes Classifier, and Random Forest was compared. For valida-

tion, a 5-fold validation strategy was performed. Of all classifiers,

Random Forest showed the best performance across all ROIs. The

following R packages and functions are used:

– SVM: library(e1071); svm()

– Decision Tree: library(rpart); rpart()

– Naive Bayes Classifier: library(e1071); naiveBayes()

– Random Forest: library(caret); train(method = ‘rf’)

Pseudobulk DGE analysis of GeoMx WTA data
DGE analysis of the GeoMx WTA data was performed by EdgeR pseu-

dobulk. The count matrix generated by ‘CountCorrect‘ was used as

input. A pairwise comparison between DAD stages of COVID-19 was

performed. Significant genes were filtered for |log2fc | > 1 and

FDR <0.05.

Gene ontology analysis
Gene ontology analysis was performed using the ShinyGO tool60, with

FDR threshold < 0.05. Differentially expressed genes from pseudobulk

analysis of GeoMx WTA data of EDAD vs ODAD stages were used for

the gene input, filtered for FDR <0.05 and either |log2fc | > 1 for EDAD

enriched markers (Fig. 3b, upper panel), or |log2fc | <1 for ODAD

enrichedmarkers (Fig. 3b, lower panel). Hallmark.MSigDBwas selected

as the pathway database used to analyse genes in ShinyGO.

Cell state deconvolution and abundance estimation of GeoMx
WTA data
To perform cell state deconvolution, the python package

cell2location-WTA16,36 was used. The integrated sc/snRNA-seq dataset

was first subsetted into healthy and COVID-19 cells to estimate refer-

ence cell state gene expression signatures of the respective conditions,

which were then used separately to train cell2location models. Refer-

ence cell state signatures were estimated by taking the mean of sc/

snRNA-seq gene expressionprofiles per cell state. In thedeconvolution

step, the cell state signatureswereused todecomposemRNAcounts in

WTA ROIs. The healthy control and COVID-19 WTA ROIs were

decomposed using healthy and COVID-19 cell state signatures,

respectively, with the exceptions of Fig. 4D and Supplementary Fig. 7B

where the healthy signatures were mapped onto COVID-19 data. For

the deconvolution of COVID-19 WTA data, processing all ROIs in a

single batch produced results where most cell states were enriched in

ACFF and BRON samples, whereas fewwere enriched in PRES samples.

To mitigate this, the ROIs were processed in two batches of “normal-

like” and “altered” cellular morphologies determined by independent

image analysis. Image texture feature descriptors were extracted from

DAPI image channels of each ROI using Local Binary Pattern analysis61

and embeddedwith UMAP over the first 50principal components. The

inspection of the UMAP showed two distinct clusters with (i) “normal-

like” alveolar morphology, including PRES and ACFF samples, versus

(ii) “altered”morphology including ODAD, MDAD and BRON samples.

EDADsampleswere distributed acrossboth clusters andwereassigned

between them using a random forest classifier trained on PRES and

ODAD to represent normal versus altered morphologies.

Both the cell state gene expression profiles and the WTA data

were subsetted to 11,101 common genes. The following parameters

were used for the cell2location model:

– Training iterations: 20,000

– Learning rate: 0.001

– Prior on cells per location: Mean for each ROI was specified as

the nuclei counts estimated by the NanoString software for each ROI,

based on DAPI stains on the image. Standard deviation was set to 10%

of the mean (CV, representing prior strength, of 0.1).

– Prior on cell types per location: Mean of 6. Default CV of 1.

– Cell type combinations per location: Mean of 5. Default CV of 1.

– Prior to the difference between technologies:Mean of 0.5. SD of

0.125. CV of 0.25 for both.

For visualisation, the abundances of cell state gene expression

signatureswerenormalised by the surface area of ROIs. The alternative

approach to normalise cell state abundances by the total number of

nuclei in each ROI from nuclei segmentation yielded similar results.

Identifying cell state colocalization and tissue
microenvironments
Absolute cell state abundance estimates obtained from cell2location

were divided by pathology and input for NMF to identify spatially

interlaced tissue compartments. For each pathology, NMF imple-

mented in the python package ‘scikit-learn‘ was trained for a range of

R = {6,..,12}, and the decomposition into factors was chosen as a balance

between capturing pathological stages, splitting known compartments

and the cell state signature enriched in specific pathology in Fig. 4D. To

identify themicroenvironment niche, an NMF loading threshold of 0.25

was applied to keep cell states that have higher co-localisation like-

lihood in a given pathology. Here, NMF provides an additional layer of

deconvolution to identify spatially co-located cell states (i.e. tissue

niches) per DAD condition. The default loss function option, i.e. the

Frobenius norm and a random initialisation method were used. The

normalisation of the weight matrix of NMF is performed by dividing

each element in a cell type by the sum of all the elements across factors

per cell type asdescribedpreviously (Kleshchevnikovet al. 2022) so that

we could compare the loading of cell type between factors. Cell types

weremanually assigned tonichesbasedon theirNMFweightsper factor

(e.g., Macro.Alv.Meta.CCL, FB. Alveolar and others clearly enriched in

the same factor which was interpreted as Niche 2 in EDAD, Fig. 5C) as

well as prior biological knowledge (e.g., endothelial subtypes, EC.

capillary and EC.aerocytes, are expected to co-localise and are assigned

to Niche 2 in EDAD, Fig. 5C). Microenvironment niches were identified

according to the common cell state pattern shared between all 4 stages

of DADs. The shared cell states across niches across DAD stages are

interpreted to represent the dynamic nature of tissue state transitions

across DAD progression.

Inferring cell-cell communication
Cell-cell interactions in COVID-19 and healthy control samples were

determined using CellChat (v1.1.3) as previously documented40. Log-

transformed, normalised gene counts were used without accounting

for population size. Using the CellChat pipeline, all potential interac-

tions were calculated, based on COVID-19 or donor lung cell state

expression of ligands and receptors. The ‘RankNet’ function was used

to generate heatmaps to compare pathway enrichment between
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COVID-19 and healthy control samples across all cell states. To resolve

pathological state specificity, the expression of ligands and receptors

contributing to significantly enriched pathways were determined

between EDAD and ODAD disease states. To infer likely interactions

within pathological states, pathways were mapped to relevant disease

state niches (calculated using NMF analysis) and visualised using dot

plots (netVisual_bubble function), circle plots (aggregateNet function)

and chord plots (netVisual_aggregate function). P-values displayed in

dotplots were computed from a one-sided permutation test, as per

CellChat documentation.

OPN treatment and immunofluorescent staining of
endothelial cells
Human umbilical vein endothelial cells (HUVECs; Lonza, C2519A) were

treated with recombinant human osteopontin at varying concentra-

tions (0 µg/mL, 0.5 µg/mL, 1 µg/mL) (rhOPN; R&D Systems, 1433-OP-

050) for 24 hours in serum and supplement-free growth medium

(EGM, Lonza, CC-3162). Following the incubation, cells were fixed in

10% formalin in PBS, then either blocked andpermeabilized in 4% (w/v)

bovine serum albumin (BSA, Sigma Aldrich, A3059) and 0.2% (v/v)

TritonX-100 (Thermo Fisher, 85111) in PBS (Gibco, 20012027) (PAI-

1 staining) or blocked in 1% (w/v) BSA and 5% (v/v) normal goat serum

(EDMMillipore, S26-100ML) in PBS (ITGAV, ITGB1, ITGA5 staining) for

30mins at RT. Incubation with primary antibodies diluted in BSA/Tri-

ton/PBS (Rabbit anti-PAI-1) or BSA/goat serum/PBS (Rabbit anti-ITGAV,

Mouse anti-ITGB1, Rabbit anti-ITGA5)wasperformedovernight at 4 °C.

Isotype controls and secondary antibody only stainings were per-

formed as negative controls. Cells were then stained with secondary

antibodies (anti-Rabbit 488, anti-Mouse 647) diluted in BSA/Triton/

PBS or BSA/goat serum/PBS was performed for 1 hr at RT. Finally, cell

nuclei were stained with DAPI (Invitrogen, D1306) for 15min at RT.

High-throughput image acquisition was carried out using Cellomics

ArrayScan VTI platform (ThermoFisher), using the HCS Studio with

Cellomics Scan Version 6.4.4 software (ThermoFisher). The automated

Zeiss Observer Z1 epifluorescence microscope was used to acquire 12

fields per well at 10x magnification. Fluorescence intensity was recor-

ded in channels 1-3, using the filter sets XF93 Hoechst (DAPI), XF93

FITC (Alexa488), and XF93 Cy5 (Alexa647). Confocal imaging acquisi-

tion was performed with a Zeiss LSM-780 inverted microscope, using

the EC Plan Neofluar 40x/1.3 oil objective at the Imperial College

London Hammersmith FILM facility using 405 nm, 488 nm, and

633 nm lasers for excitation. Image processing was performed in

FIJI (v.2.1.0).

Antibodies
Antibodies used in the OPN validation experiments include Cell Sig-

nalling (49536S) Anti-PAI-1 (E3I5H) XP(R) Rabbit (1:100 dilution);

Abcam (ab150361) Anti-Integrin alpha 5 [EPR7854] Rabbit (1:200 dilu-

tion); Abcam (ab179475) Anti-Integrin alpha V antibody [EPR16800]

Rabbit (1:200dilution); Abcam (ab30394) Anti-Integrinbeta 1 antibody

[12G10] Mouse (1:200 dilution); Cell Signalling (3900S) Normal rabbit

IgG isotype (1:300 dilution); Santa Cruz (sc-3877) Normal mouse IgG1

isotype (1:200 dilution); Cell Signalling (4412S) Goat anti-rabbit Alexa

Fluor 488 (1:200 dilution); andCell Signalling (4410S) Goat anti-mouse

Alexa Fluor 647 (1:200 dilution).

Statistics and reproducibility
SERPINE1 smFISH experiments were performed on four COVID-19

patients and two donor samples. In vitro HUVEC experiments were

performed in triplicate across three independent experiments.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The data generated for this manuscript were submitted to the Eur-

opean Genome-phenome Archive under accession numbers

EGAS00001004442 for the snRNA-seq, EGAS00001004441 for the

Control WTA data, and EGAS00001005817 for the COVID-19 WTA

data. Requests for data access will be referred directly to the Data

Access Committee Portal at https://ega-archive.org/dacs/

EGAC00001000205 and the documentation can be found at https://

ega-archive.org/access/data-access-committee/dac-portal/. The inte-

grated sc/snRNA-seq atlas can be accessed onourwebportal at https://

covid19-multiomicatlas.cellgeni.sanger.ac.uk/. The spatial WTA data

will bemade available under the sameportal. The publicly available sc/

snRNA-seq datasets used in this study are documented in Supple-

mentary Table 2 and include the following: Melms et al.9 Broad Data

Use and Oversight System (DUOS), study ID DUOS-000130 [https://

duos.broadinstitute.org/datalibrary]; Bharat et al.8 Gene Expression

Omnibus (GEO) accession number GSE158127; Delorey et al.10 Broad

DUOS, study IDs DUOS-000126, DUOS-000127, DUOS-000128 and

DUOS-000129 [https://duos.broadinstitute.org/datalibrary]; Reyfman

et al.62 Database of Genotypes and Phenotypes (dbGaP) accession

number phs001750.v1.p1 [https://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs001750.v1.p1]; Morse et al.22 GEO

accession number GSE128033; Habermann et al.63 GEO accession

number GSE135893; Madissoon et al.64 European Nucleotide Archive

(ENA) project ID PRJEB31843; Travaglini et al.65 European Genome-

Phenome Archive (EGA) accession number EGAS00001004344;

Lukassen et al.66 EGA accession number EGAS00001004419; Adams

et al.67 GEO accession number GSE136831. Source data are provided in

this paper.

Code availability
The custom code used for analysis of sc-/snRNA-seq and ST data, and

for creating the figures are available on GitHub at https://github.com/

thjimmylee/UKCIC-COVID19-paper-figures [https://doi.org/10.5281/

zenodo.14372128]. Other codes are available upon request.
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