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Multivariate Conformal Selection

Tian Bai * 1 Yue Zhao 2 Xiang Yu 3 Archer Y. Yang * 1 4

Abstract

Selecting high-quality candidates from large

datasets is critical in applications such as drug

discovery, precision medicine, and alignment of

large language models (LLMs). While Confor-

mal Selection (CS) provides rigorous uncertainty

quantification, it is limited to univariate responses

and scalar criteria. To address this issue, we pro-

pose Multivariate Conformal Selection (mCS),

a generalization of CS designed for multivari-

ate response settings. Our method introduces

regional monotonicity and employs multivariate

nonconformity scores to construct conformal p-

values, enabling finite-sample False Discovery

Rate (FDR) control. We present two variants:

mCS-dist, using distance-based scores, and

mCS-learn, which learns optimal scores via

differentiable optimization. Experiments on sim-

ulated and real-world datasets demonstrate that

mCS significantly improves selection power while

maintaining FDR control, establishing it as a ro-

bust framework for multivariate selection tasks.

1. Introduction

Selecting a subset of promising candidates from a large pool

is crucial across various scientific and real-world applica-

tions. In drug discovery, researchers search vast chemical

spaces to identify compounds with strong effects, such as

high binding affinity to a specific target (Szymański et al.,

2011; Scannell et al., 2022; Sheridan et al., 2015; Zhang

et al., 2025). Similarly, precision medicine aims to identify

positive individual treatment effects (Lei & Candès, 2021),

and post-hoc certification of large language model (LLM)

outputs seeks to retain only trustworthy generations that

meet user-defined criteria (Gui et al., 2024).
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In these settings, true test responses (e.g., binding affinity

or alignment score) are often unavailable, requiring selec-

tion to rely on machine learning model predictions. Since

selected targets drive downstream decisions, quantifying

selection uncertainty is essential for maintaining efficiency.

Conformal selection (Jin & Candès, 2023) provides a model-

agnostic framework for selection with uncertainty quan-

tification by extending conformal prediction (Vovk et al.,

2005) to multiple hypothesis testing, using conformal p-

values (Bates et al., 2023) and multiple testing corrections.

It has shown promise in real-world drug discovery and LLM

alignment (Gui et al., 2024).

However, existing conformal selection methods are limited

to univariate responses and selection targets of the form

y > c, where c is a user-defined threshold. Many real-world

applications require selection based on multiple interdepen-

dent criteria. For instance, LLM outputs must simultane-

ously satisfy alignment requirements such as fairness, safety,

and correctness (Bai et al., 2022), which are better repre-

sented as multivariate alignment scores. This highlights

the need for a principled selection method with uncertainty

quantification in multivariate settings.

In this paper, we extend the conformal selection framework

to multivariate response settings. To ensure finite-sample

false discovery rate (FDR) control in our procedure, we gen-

eralize the concept of monotonicity (Jin & Candès, 2023)

to regional monotonicity for the nonconformity function.

We propose two types of nonconformity scores that satisfy

this property: (i) distance-based nonconformity scores for

regular-shaped and convex target regions, and (ii) a learning-

based method for optimizing nonconformity scores. The

latter approach leverages a loss function that penalizes ei-

ther the smooth selection size or the conformal p-value to

learn an optimal score. This method is particularly effec-

tive when the dimension of responses is large or when the

target region is irregular or nonconvex. Through experi-

ments on simulated and real-world datasets, both variants of

mCS demonstrates enhanced selection power over baseline

methods while ensuring finite-sample FDR control.

2. Background and Related Work

Problem Setup We let x ∈ R
p represent the p-

dimensional features, and let y ∈ R
d denote the d-

1

ar
X

iv
:2

50
5.

00
91

7v
1 

 [
st

at
.M

E
] 

 1
 M

ay
 2

02
5



Multivariate Conformal Selection

dimensional multivariate response variables. We consider

a training dataset Dtrain = {xi,yi}
n
i=1 and a test dataset

Dtest = {xn+j}
m
j=1, where the corresponding test responses

{yn+j}
m
j=1 are unobserved. We further assume that the

combined set of training and test samples {xi,yi}
n+m
i=1

are drawn i.i.d.1 from an unknown, arbitrary distribution

DX×Y .

We formulate the selection problem as follows: Given a

predefined d-dimensional closed region R ⊆ R
d, our goal

is to identify a subset of indices S ⊆ {1, . . . ,m} from Dtest

such that as many test observations j ∈ S satisfy yn+j ∈
R as possible, while controlling the FDR (Benjamini &

Hochberg, 1995) below a user-specified level q. The FDR

is defined as the expected proportion of false discoveries

(j ∈ S but yn+j /∈ R) among all selected observations

FDR = E

[
|S ∩ H0|

|S|

]
(1)

where H0 = {j : yn+j /∈ R}, with the convention that

0/0 = 0 in the fraction above. This criterion measures the

overall Type-I error rate of the selection procedure.

The overall Type-II error of selection can be quantified by

the power, defined as the expected proportion of desirable

observations (yn+j ∈ R) that are correctly selected,

Power = E

[
|S ∩ H1|

|H1|

]
(2)

where H1 = {j : yn+j ∈ R}. The Type-II error of selec-

tion is therefore (1− Power). An ideal selection procedure

should aim to maximize the power while keeping the FDR

below the specified nominal level.

Conformal Prediction Conformal prediction (CP) (Vovk

et al., 2005) is a popular framework for uncertainty quantifi-

cation that constructs prediction intervals on a per-sample

basis. Assuming exchangeable calibration and test data,

CP provides prediction sets Ĉ1−α(x) with finite-sample

coverage guarantees for α ∈ (0, 1):

P(y ∈ Ĉ1−α(x)) ≥ 1− α.

Although CP was originally designed for univariate re-

sponses, numerous studies have proposed multivariate gen-

eralizations (Kuleshov et al., 2018; Bates et al., 2021; Mes-

soudi et al., 2022; Johnstone & Cox, 2021; Feldman et al.,

2023; Park et al., 2024; Klein et al., 2025). However, these

multivariate CP methods are not directly applicable to our

selection problem. The primary objective of CP – construct-

ing confidence sets for predictions – does not naturally align

1Later, we will relax the i.i.d. assumption to exchangeability
conditions.

with selection tasks. Specifically, the potentially complex

shapes of the multivariate CP sets Ĉ1−α may be incompati-

ble with the pre-defined target region R.

Even in the simpler cases, such as when the response is

binary, using CP for selection introduces a multiplicity issue

(Jin & Candès, 2023). In this context, CP only controls the

per-comparison error rate (PCER), which differs from the

FDR. PCER also measures the Type-I error, and is defined

as (1) with the denominator replaced by m, the size of the

test dataset. By definition, the PCER is always smaller than

the FDR, making it a less stringent error control criterion.

As a result, procedures controlling PCER may fail to meet

the stricter requirements of FDR control.

Conformal Selection Conformal selection (CS) (Jin &

Candès, 2023) is a model-agnostic selection framework that

guarantees finite-sample FDR control. However, CS only

considers the univariate response case (d = 1) and assumes

that the selection region takes the form [c,+∞), where c is

a predefined threshold. In this setting, CS formulates one

hypothesis test per candidate:

H0j : yn+j ≤ c vs. H1j : yn+j > c.

Rejecting the null hypothesis H0j indicates that the j-th test

sample is selected, as its response is deemed to exceed the

threshold c.

CS uses nonconformity scores to guide its selection process.

A nonconformity measure quantifies how atypical (or non-

conforming) an observation is, based on the relationship

between inputs and responses. For calibration samples, the

nonconformity scores are Vi = V (xi, yi), and for test sam-

ples, they are V̂n+j = V (xn+j , c), where c replaces the un-

observed yn+j . These scores are then used to compute con-

formal p-values through a rank-based comparison of V̂n+j

against the calibration scores V1, . . . , Vn. A lower rank of

V̂n+j relative to the calibration scores provides stronger

evidence for rejecting H0j .

To determine the final selected subset S, CS applies

the Benjamini-Hochberg (BH) procedure (Benjamini &

Hochberg, 1995; 1997), a widely used method for control-

ling FDR in multiple testing setting, to the set of conformal

p-values. The use of the BH procedure ensures that the

overall Type-I error rate is kept below the specified level.

3. Multivariate Conformal Selection

In this section, we introduce the key concepts, procedures,

and theoretical foundations of multivariate Conformal Se-

lection (mCS).

First, for each d-dimensional multivariate response yn+j ,

2



Multivariate Conformal Selection

mCS performs the following hypothesis test:

H0j : yn+j ∈ Rc vs. H1j : yn+j ∈ R,

where R represents an arbitrary pre-defined closed target

region in R
d. Multivariate responses yn+j can represent ei-

ther regression or classification outcomes. In this paper, we

focus on the more challenging regression setting. For a dis-

cussion of the classification case, please see Appendix B.1.

The mCS process consists of three main steps:

1. Training: Construct a multivariate predictive model µ̂
for y. This model can be obtained using any suitable

machine learning algorithm.

2. Calibration: Build a regionally monotone multivari-

ate nonconformity function based on µ̂, and evaluate

this function on the calibration dataset and test dataset.

Subsequently, we compute the conformal p-values for

each test sample.

3. Thresholding: Apply the Benjamini-Hochberg (BH)

procedure as in the original CS procedure to the set of

conformal p-values, yielding the final selection set S .

Both the training step and the calibration step rely on the

labeled dataset Dtrain. In the case where a model µ̂ is already

available, mCS can be directly applied using all labeled data

for calibration. Otherwise, the training data is divided into

two subsets: one for model training (the proper training

dataset) and the other for calibration. For simplicity, in the

following discussion, we assume that µ̂ is already available

and all training data {xi,yi}
n
i=1 are used for calibration so

that Dcal = Dtrain.

The conformal p-values (Bates et al., 2023) are used to per-

form the hypothesis tests. If the true responses {yn+j}
m
j=1

were observed, the oracle conformal p-value would be de-

fined as

p∗j =

∑n

i=1 ✶{Vi < Vn+j}+ Uj(1 +
∑n

i=1 ✶{Vi = Vn+j})

n+ 1
(3)

where Vi = V (xi,yi) for i = 1, . . . , n + m and V is a

multivariate nonconformity function based on µ̂, and Uj ∼
Unif(0, 1) is an independent random variable for the tie-

breaking of the nonconformity scores. We defer the specific

choice of V to later sections.

The evaluation of the oracle p-value p∗j is infeasible, be-

cause that in the above definition (3), the computation of

Vn+j = V (xn+j ,yn+j) requires knowledge of the unob-

served response yn+j . To address this issue, we replace

Vn+j with V̂n+j = V (xn+j , rn+j), where rn+j is an ar-

bitrarily chosen point in the target region R, yielding the

(practical) conformal p-values:

pj =

∑n

i=1 ✶{Vi < V̂n+j}+ Uj(1 +
∑n

i=1 ✶{Vi = V̂n+j})

n+ 1
.

(4)

Standard results from conformal inference ensure that the

oracle conformal p-values p∗j follow the Unif(0, 1) distribu-

tion, in particular implying that they are conservative in the

sense that p∗j as a random variable has a super-uniform dis-

tribution on [0, 1], satisfying P(p∗j ≤ α) ≤ α (Bates et al.,

2023). To guarantee that the practical conformal p-values

pj also maintain this conservativeness, the nonconformity

function V must satisfy a property that we introduce as

regional monotonicity. With this property the pj’s in the

resulting mCS procedure will ensure the control of the FDR.

We formally define the regional monotonicity as follows:

Definition 3.1 (Regional Monotonicity). A nonconformity

score V : X × Y → R satisfy the regional monotone

property if V (x,y′) ≤ V (x,y) for any x ∈ X , y′ ∈ Rc

and y ∈ R.

Definition 3.1 leads to the conservativeness of pj . The fol-

lowing proposition formalizes this result, with proof avail-

able in Appendix A.1.

Proposition 3.2. Given that the calibration data

{(xi,yi)}
n
i=1 together with the j-th data test data point

(xn+j ,yn+j) are exchangeable for j ∈ {1, . . . ,m}, re-

gionally monotone nonconformity scores V ensures that the

conformal p-value pj defined in (4) is conservative in the

following sense,

P(pj ≤ α and j ∈ H0) ≤ α, for all α ∈ (0, 1). (5)

Remark 3.3 (Clarification on conservativeness). The con-

servativeness described in (5) differs from the conventional

notion of statistical conservativeness, which is not condi-

tional on the event j ∈ H0. Due to the inherent randomness

in yn+j within our hypothesis tests, an unknown depen-

dency exists between the p-values and the event j ∈ H0.

Consequently, the standard form of conservativeness does

not hold in this context.

Remark 3.4 (Univariate monotonicity as a special case). Re-

gional monotonicity generalizes the univariate monotonicity

concept introduced in CS (Jin & Candès, 2023), which was

originally defined for nonconformity scores increasing in

their second argument. The original definition is restricted

to the univariate case, where the target region R is spec-

ified as (c,+∞). For a univariate nonconformity score

V : X ×Y → R, monotonicity implies regional monotonic-

ity. Specifically, for any y ∈ Rc = (−∞, c] and y′ ∈ R,

it holds that V (x, y) ≤ V (x, y′) for all x ∈ X . More-

over, even in the univariate case, the original definition of

monotonicity across the entire domain X is unnecessary and

monotonicity across the regions Rc and R suffices.

3



Multivariate Conformal Selection

Once a regionally monotone multivariate nonconformity

score is defined, conformal p-values can be computed us-

ing (4). Leveraging these conformal p-values, mCS again

applies the Benjamini-Hochberg procedure (Benjamini &

Hochberg, 1995) to construct a selection set S. The com-

plete approach is outlined in Algorithm 1.

Algorithm 1 mCS: Multivariate Conformal Selection

Input: Calibration data Dcal = {(xi,yi)}
n
i=1, test data

Dtest = {xn+j}
m
j=1, target target region R, FDR nom-

inal level q ∈ (0, 1), regionally monotone nonconfor-

mity score V : X × Y → R.

Output: Selection set S .

1: Compute Vi = V (xi,yi) for i = 1, . . . , n, and V̂n+j =
V (xn+j , rn+j) for j = 1, . . . ,m with rn+j ∈ R.

2: Construct conformal p-values {pi}
m
i=1 as in (4).

3: (BH procedure) Compute the BH selection threshold

k∗ = max{k ∈ Z≥0 :
∑m

j=1 ✶{pj ≤ qk/m} ≥ k},

and return the selection set as S = {j : pj ≤ qk∗/m}.

The following theorem shows that Algorithm 1 controls

FDR in finite sample. The proof can be found in Ap-

pendix A.2.

Theorem 3.5. Suppose V is a regionally monotone non-

conformity score, and for any j ∈ {1, . . . ,m}, the random

variables V1, . . . , Vn, Vn+j are exchangeable conditioned

on {V̂n+ℓ}ℓ ̸=j . Then, for any q ∈ (0, 1), the output S of

mCS satisfies FDR ≤ q.

4. Choices of Nonconformity Score

While the previous sections demonstrate that FDR-

controlled selection can be performed using any regionally

monotone nonconformity score, the selection power heav-

ily depends on the quality of the chosen score. Although

related studies have explored this issue in the context of

CP (Romano et al., 2019; Kivaranovic et al., 2020; Sesia &

Candès, 2020), there has been limited focus on the choice

of scores specific for CS.

In this section, we introduce two types of nonconformity

score that satisfies the regional monotonicity. As a result

of Theorem 3.5, applying Algorithm 1 with the purposed

scores would guarantee FDR control.

4.1. mCS-dist: Distance-based Scores

For multivariate selection, we propose distance-based non-

conformity scores of the following form:

V (x,y) = D1(y, R
c)−D2(µ̂(x), R

c) (6)

where µ̂ is a trained predictive model of y, and D1 and D2

are distance functions. Two examples of distance-based

nonconformity score are as follows:

1.(regular) D1(z, R
c) = D2(z, R

c) = inf
s∈Rc

∥z − s∥p.

(7)

2.(clipped) D1(z, R
c) = M · ✶{z /∈ Rc ∪ ∂R},

D2(z, R
c) = inf

s∈Rc
∥z − s∥p, (8)

where M is a large constant that serves as a relaxation of

infinity. We discuss the role of M in the following para-

graphs. These scores generalize the signed error score and

the clipped score (Jin & Candès, 2023), respectively.

This formulation enables the decomposition of V (x,y) into

two terms. The first term D1 inherently ensures the regional

monotonicity of the score V (Definition 3.1), as D1 is a

distance function satisfying 0 = D1(y
′, Rc) ≤ D1(y, R

c)
for any y

′ ∈ Rc and y ∈ R. Meanwhile, the second term

D2 measures the distance between the predicted responses

of the points and Rc; this term is designed to increase as

µ̂(x) moves away from Rc, ensuring that the test points

with the predicted responses having large distance from Rc

will yield smaller test scores V̂n+j . According to (4), these

points will have smaller conformal p-values and are more

likely to be rejected (selected) by the BH procedure. Note

that when the predictive model µ̂ outputs an estimated condi-

tional distribution P̂ (y|x) – as in classification, conditional

density estimation, or Bayesian models – the second term

D2 can be replaced by the predicted probability of being

in the target region: y ∈ R, i.e.
∫
✶{y ∈ R}dP̂ (y|x).

This serves the same purpose: points with high predicted

probability of satisfying the selection criterion will receive

lower scores and are more likely to be selected.

We note that computing V̂n+j = V (xn+j , rn+j) in (4)

requires choosing a point rn+j ∈ R to ensure FDR con-

trol. Although any point in R works, selecting rn+j on the

boundary ∂R is optimal for maximizing selection power for

both regular and clipped scores. In this case, for any fixed

xn+j , the test score V̂n+j achieves its minimum, ensuring

it to be smaller than a larger proportion of calibration scores

Vi = V (xi,yi). For example, with the clipped score, if

rn+j ∈ ∂R, then the first term D1 becomes 0 in V̂n+j ,

while for any calibration samples with yi ∈ R, we have

D1 = M (except when yi lies exactly on ∂R, which occurs

with zero probability.) This yields smaller p-values pj and

enables more samples to be selected. We require M to be

large for the same reason.

The following asymptotic analysis provides a theoretical ba-

sis for preferring the second, clipped score (8) over the first

score (7) when choosing a distance-based nonconformity

score. This result extends the original CS framework (Jin &

Candès, 2023) to the multivariate setting, as formalized in

the following theorem:

Theorem 4.1. Let V be any fixed regionally monotone

4
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nonconformity score, and suppose {(xi,yi)}
n+m
i=1 are ex-

changeable from distribution DX×Y . Let (x,y) denote a

random pair also drawn from DX×Y , and define F (v, u) =
P(V (x,y) < v) + u · P(V (x,y) = v) for any v ∈ R and

u ∈ [0, 1]. Assuming the choice of rn+j ≡ r ∈ R is fixed,

define

t∗ = sup
{
t ∈ [0, 1] :

t

P(F (V (x, r), U) ≤ t)
≤ q

}
. (9)

Suppose that, for any sufficiently small ϵ > 0, there exists

some t ∈ (t∗ − ϵ, t∗) such that t
P(F (V (x,r),U)≤t) ≤ q. Then

the output S of Algorithm 1 from input {(xi,yi)}
n
i=1 ∪

{xn+j}
m
j=1 satisfies

lim
n,m→∞

FDR =
P(F (V (x, r), U) ≤ t∗,y ∈ Rc)

P(F (V (x, r), U) ≤ t∗)
, and

lim
n,m→∞

Power =
P(F (V (x, r), U) ≤ t∗,y ∈ R)

P(y ∈ R)
. (10)

We omit the proof of Theorem 4.1, as it closely mirrors

Proposition 7 in Jin & Candès (2023). An intuitive ex-

planation can be found in Appendix B.2. Leveraging a

characterization of the BH procedure (Storey et al., 2004),

the theorem establishes that the asymptotics of FDR and

power can be precisely achieved by replacing each term

in (1) and (2) with its population counterpart. Notably, in

this context, t∗ represents the population version of the BH

rejection threshold for the p-values.

Theorem 4.1 indicates that the second, clipped score (8)

is preferable to the first score (7) for achieving higher

power. According to (10), since the value V (x, r) =
− infs∈Rc ∥r − s∥p is identical for both scores assuming

r ∈ ∂R, it suffices to compare their asymptotic BH thresh-

olds t∗. The score with the larger t∗ achieves higher asymp-

totic power and is therefore more effective. In the definition

of t∗ in (9), the fraction can be rewritten as

GV (t) ≡
t

P(F (V (x, r), U) ≤ t)
=

P(F (V (x,y), U) ≤ t)

P(F (V (x, r), U) ≤ t)

=
P(V (x,y) ≤ s)

P(V (x, r) ≤ s)

when s is the inverse of F (·, U) at t, assuming it exists. The

first equality follows from the fact that F (V (x,y), U) ∼
Unif(0, 1), while the second arises from the monotonicity

of F with respect to its first argument v. To maximize t∗ in

(9) (equivalently, the inverse s∗), an effective score should

yield a larger V (x,y) relative to V (x, r), thereby reducing

GV (t) for a fixed t. This, in turn, results in a larger t∗ when

computing sup{t : GV (t) ≤ q} in (9).

This criterion is precisely satisfied by the clipped score.

An alternative justification for favoring the clipped score,

based on maximizing the realized FDR, is provided in Ap-

pendix B.2, along with further discussions on Theorem 4.1.

For an empirical comparison of the performance of the two

scores (7) and (8), refer to Appendix C.2.1.

4.2. mCS-learn: Learning-based Nonconformity

Scores

The two distance-based nonconformity scores introduced

in the previous section offer straightforward and practical

solutions for many scenarios. However, their effectiveness,

particularly in the design of the second distance term D2(·),
is limited in some cases. For example, our numerical simu-

lations indicate that mCS-dist would only achieve subop-

timal power when R is a nonconvex set; see Appendix C.2.3

for further details. Furthermore, when the target region R is

irregular, constructing a closed-form distance function can

be challenging, leading to higher computational costs and

potential inaccuracies.

To address these challenges, we propose an alternative

method mCS-learn, which leverages a loss function that

penalizes either the smooth selection size or conformal p-

value to learn an optimal nonconformity score within the

following family:

V θ(x,y) = M · ✶{y /∈ Rc ∪ ∂R} − fθ(x,y;R) (11)

where M is a large constant and fθ : X × Y → R is a

flexible function parametrized by θ, that can be chosen from

a specific machine learning model class, such as kernel ma-

chines, gradient boosting models or neural networks, etc.

The first term, an indicator function identical to D1(·) in (8),

ensures regional monotonicity in Definition 3.1 and boosts

selection power, as suggested in Section 4.1. The second

term generalizes the distance term D2(·) from (6), offer-

ing a more expressive framework for constructing optimal

nonconformity scores.

The following result demonstrates the expressiveness of

the family (11) by showing that it can include the optimal

nonconformity score for any selection task. The proof is

provided in Appendix A.3.

Proposition 4.2. Let {(xi,yi)}
n+m
i=1 be sampled i.i.d. from

a distribution, and assume a fixed choice of rn+j ≡ r. Un-

der Algorithm 1, for any nominal FDR level q and target

region R, there exists a function f∗ such that the score con-

structed using f∗ in (11) maximizes the number of selected

samples (and thus the power) among all scores with FDR

control.

Remark 4.3 (Subfamilies of the score class). A notable

subfamily of (11) is

M · ✶{y /∈ Rc ∪ ∂R} − fθ(µ̂(x);R), (12)

where fθ depends solely on the prediction µ̂(x). This sub-

family includes the clipped distance-based score from Sec-

5
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tion 4.1 as a special case. Here, regional monotonicity is

guaranteed for any constant M , but the score can also be

generalized further by allowing f to depend on x as well:

M · ✶{y /∈ Rc ∪ ∂R} − fθ(x, µ̂(x);R).

In contrast, the broader family defined in (11) offers greater

flexibility by incorporating y in the second term. However,

this added expressiveness requires a sufficiently large M
to preserve regional monotonicity. Specifically, M must

satisfy M > 2|fθ(x,y;R)|. In practice, M is chosen to be

sufficiently large to ensure that this inequality holds across

the entire dataset.

Remark 4.4 (Incorporating pretrained models). This could

be achieved in several ways, such as using the predictions

of µ̂ as inputs to fθ, or train fθ as a prediction on top of

µ̂ when both models are implemented as neural networks.

While such practice does not increase the expressiveness

of the score family, it often facilitates the training of fθ,

as µ̂(x) estimates y and is very informative for selection.

Since fθ can directly learn the data and the selection task,

mCS-learn can still perform well when µ̂ is poorly fitted;

see Appendix C.2.4.

To identify an optimal function within the family (11), we

introduce a differentiable loss function that mimics the inher-

ently non-differentiable mCS procedure. The “hard” sorting

and ranking operations in the mCS workflow are replaced

with their smooth, differentiable counterparts (Blondel et al.,

2020; Cuturi et al., 2019). We adopt the implementation in-

troduced in Blondel et al. (2020), with ℓ2 regularization and

regularization strength set to 0.1. The resulting loss function

is then used for a chosen machine learning method to train

fθ. Specifically, we partition the calibration data into three

batches Dcal = Df -train ∪ Df -val ∪ D′
cal, where Df -train and

Df -val are used for training and validating fθ, respectively.

Upon completion of training and validation, Algorithm 1

can be applied with D′
cal as the calibration dataset for V θ to

generate the final selection set S .

Training Step. The training loss function is defined based

on the smoothed selection size. We denote the softened rank

of an element a ∈ A within the set A by soft-rank(a;A).
We randomly partition Df -train into two subsets Df -train1

and Df -train2, and we assume Df -train1 = {(xi,yi)}
n′

i=1

and Df -train2 = {(xn′+j ,yn′+j)}
m′

j=1 for notational sim-

plicity. We define the smooth conformal p-value p̄θj for

j = 1, . . . ,m′ as

p̄θj =
soft-rank

(
V̂ θ
n′+j ; {V

θ
i }

n′

i=1 ∪ {V̂ θ
n′+j}

)

n′ + 1
. (13)

where V θ
i := V θ(xi,yi) are computed on Df -train1 and

V̂ θ
n′+j := V θ(xn′+j , rn′+j) are computed on Df -train2, with

V θ in (11). Here, Df -train1 and Df -train2 serve as the cali-

bration dataset and test dataset respectively, to obtain the

smoothened conformal p-value for training.

Next, to smooth the BH procedure, we first apply the soft-

sorting operation to the smooth p-values p̄θj to obtain their

corresponding ranks aθj ,

aθj = soft-rank
(
p̄θj ; {p̄

θ
k}

m′

k=1), (14)

and then compute the softened selection size S(θ) as

S(θ)
(i)
= log

m′∑

j=1

ea
θ
js

θ
j , where sθj

(ii)
= σ

(q · aθj/m′ − p̄θj
τ

)
.

In the above equation, the sigmoid function σ with tempera-

ture coefficient τ in (ii) serves as a smooth approximation

of the indicator function ✶{p̄θj < qaθj/m
′}, while the log-

sum-exp function in (i) approximates the element-wise max

function max(aθ1s
θ
1, . . . , a

θ
m′sθm′). This formulation ensures

that S(θ) closely approximates the BH selection size, as the

selection size is defined by the largest rank with a p-value

below the threshold.

To maximize the selection size, the loss function for learning

the mCS-learn score can be defined as

L1(θ) = −S(θ). (15)

While above formulation of the loss L1 is intuitive in its

attempt to approximate the final selection size using differen-

tiable functions, the inclusion of two soft sorting steps may

reduce numerical stability and impede the training process.

In the mCS procedure, the BH procedure is solely intended

for multiplicity correction for FDR control, and thus is not

necessarily required in the formulation of the loss function,

whose primary objective is to learn the function fθ. A sim-

pler yet effective alternative loss function directly penalizes

the smooth p-values p̄θj through the following loss function:

L2(θ) =

m′∑

j=1

p̄θj
[
✶(yn+j ∈ R)−γ ·✶(yn+j ∈ Rc)

]
. (16)

where p̄θj is minimized when the j-th sample is deemed

desirable, as indicated by the first term. The second term,

scaled by a balancing coefficient γ, ensures that the p-value

is not uniformly small but becomes relatively larger for less

favorable samples. This approach eliminates the need to es-

timate the BH threshold via a secondary soft-ordering (14),

leading to improved numerical stability and enhanced over-

all performance. A comparison of the two loss functions

can be found in Appendix C.2.5. After computing the loss

in each epoch, we can follow the standard backpropagation

procedure to train θ.
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Validation Step. To avoid overfitting fθ, we perform

an additional model selection procedure using a hold-out

dataset Df -val. Specifically, for each epoch t = 1, . . . , T
of the backpropagation procedure, we apply K random

partitions on Df -val to obtain D
(k)
f -val1 and D

(k)
f -val2 for k =

1, . . . ,K. For each k, we then apply Algorithm 1 with

the setting Dcal := D
(k)
f -val1 and Dtest := D

(k)
f -val2, and record

the validation power ρk(t). We then compute the average

validation power Power(t) =
∑K

k=1 ρk(t)/K.

In the end, we select t̄ from {1, . . . , T} to be the epoch with

the highest average validation selection power Power(t),
and deploy the associated model fθt̄ for the final selection.

Finally, Algorithm 2 details the complete learning procedure

for mCS-learn scores.

Algorithm 2 mCS-learn Learning Procedure

Input: Training data Df -train, validation data Df -val, target

region R, FDR level q ∈ (0, 1), other hyperparameters.

Output: Trained nonconformity function fθ.

1: Initialize parameters θ = θ0.

2: for epoch t = 1, . . . , T do

Training Step

3: Randomly partition Df -train into two disjoint sub-

sets Df -train1 and Df -train2.

4: Use the current fθ to obtain V θ
i from Df -train1 and

V̂ θ
n′+j from Df -train2.

5: Compute the smooth conformal p-values p̄θj (13).

6: Compute the loss function using (15) or (16).

7: Back-propagate to update the parameters θ = θt.

Validation Step

8: Apply K random partitions on Df -val to obtain

D
(k)
f -val1 and D

(k)
f -val2 for each k = 1, . . . ,K.

9: For each k, apply Algorithm 1 for score func-

tion V θ with the setting Dcal := D
(k)
f -val1, Dtest :=

D
(k)
f -val2 and compute validation power ρk(t).

10: Compute Power(t) =
∑K

k=1 ρk(t)/K.

11: end for

12: Determine t̄ = argmaxt Power(t) and return fθt̄ .

5. Simulation Studies

5.1. Baseline Methods

While the standard CS approach is originally designed for

univariate settings and cannot be directly applied to multi-

variate selections, appropriate adaptations can be devised.

In this section, we introduce several naı̈ve methods directly

adapted from CS to address the multivariate case. Later, we

employ these adapted methods as baselines and compare

their performance against our proposed method.

In the scenario when the target region R ⊆ R
d is rectangular,

the overall selection criterion can be decomposed, allowing

each dimension to be evaluated independently. By applying

CS separately to each dimension, we obtain d selection sets

S1, . . . ,Sd, where each Sk contains observations satisfy-

ing the k-th corresponding marginal criterion. The final

selection set S is then given by the intersection of these

individual sets, S = ∩d
k=1Sk. We refer to this approach as

CS int.

It can be shown that CS int, when each CS subroutine

is conducted at a nominal level q, fails to control the FDR

at or below q. This issue is analogous to the intersection

hypothesis testing (IHT) problem in statistics. A common

approach to address this is the Bonferroni correction (Dunn,

1961), which adjusts the nominal level of each subroutine

to a lower threshold q/d. Then obtain the intersection of

individual sets. However, this method is widely recognized

as being overly conservative (Perneger, 1998; Westfall &

Young, 1993). We refer to the Bonferroni-adjusted CS int

as CS ib. An alternative to the Bonferroni correction is

to adaptively account for intersection hypothesis testing.

Rather than predefining the nominal levels for subroutines,

we determine suitable values by validating on a hold-out

dataset. This approach necessitates additional data splits to

construct the hold-out set, and we refer to it as CS is.

Beyond considering each dimension separately, another nat-

ural adaptation of CS involves transforming the response

vector y before applying CS. Specifically, each response yi

is converted to a binary indicator reflecting whether it meets

the selection criterion, defined as ỹi = ✶{yi ∈ R}. Under

this transformation, the new selection threshold can be set

to c = 0, as ỹi > 0 is equivalent to yi ∈ R. We refer to this

approach as bi.

5.2. Numerical Results

We compare the performance of mCS-dist, mCS-learn

(abbreviated as mCS-d and mCS-l respectively) against

the baseline methods outlined in Section 5.1.

In our data generation processes, covariates x are sampled

uniformly from Unif(−1, 1)p where p is the covariate di-

mension, and the responses y are generated as y = µ(x)+ϵ,

where µ denotes the regression function and ϵ represents

noise drawn from either a multivariate Gaussian or multi-

variate t-distribution. By varying the regression function,

the size of response dimensions, and the choice of Gaus-

sian or heavy-tailed noise, we create a range of selection

problems with differing levels of difficulty.

We consider two selection tasks where the target region R
is defined as:

7
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Task 1. The (shifted) first orthant, R = {y : yk ≥ ck ∀k},

Task 2. A sphere centered at c, R = {y : ∥y − c∥2 ≤ r}.

These two specific tasks are particularly relevant in applica-

tions, as they simulate scenarios where (1) d criteria must

be simultaneously satisfied or (2) an instance must be suffi-

ciently close to a specific point c to be deemed acceptable.

In our simulation, the coefficients c and r for each selec-

tion problem are chosen to ensure that approximately 15%

to 35% of the data points lie within R across all six data-

generating processes. Detailed descriptions of the data gen-

eration process, model specifications, and the specific values

of the coefficients are provided in Appendix C.1. We first

train a support vector regression model µ̂ using 1000 data

points, and use an additional labeled dataset of 1000 samples

to construct selection sets for different methods in compar-

ison. We evaluate the selection power and FDR using a

test dataset of size 100. We adopt the clipped score (8) for

mCS-dist, and adopt the loss function in (16) with balanc-

ing coefficient γ = 0.5 for mCS-learn. For mCS-learn,

the calibration data is split to Df -train,Df -val and D′
cal with

ratio 8:1:1, and the model fθ is formulated as a two-layer

MLP with batch normalization. The response dimension is

set to be d = 30, and nominal FDR level is set at q = 0.3.

Number of iterations for validation is set to K = 100. The

selection process is repeated across 100 iterations, with a

new dataset generated independently for each iteration.

Table 1 and Table 2 summarize the experimental results

for the first selection task. As shown in Table 1, CS int

substantially violates FDR control. CS is provides only

approximate FDR control, and in scenarios such as Setting

6, the FDR control may be compromised. In each setting,

the red numbers in Table 2 indicate the highest achieved

power among all methods that properly control the FDR.

Among the four remaining methods that always maintain

valid FDR control, our two proposed methods consistently

achieve the best and second-best power, outperforming the

baseline methods under all settings.

Table 3 summarizes similar results for the second selec-

tion task. Baseline methods CS int and CS ib are not

included as they are not applicable to non-rectangular target

regions. Figure 1 shows the realized FDR and power curves

across varying nominal FDR levels, ranging from 0.05 to

0.5 in increments of 0.05. Results are shown exclusively

for Setting 3 due to space constraints. Among the methods

compared, mCS-dist, mCS-learn, and bi demonstrate

consistent FDR control, as their respective curves remain

below the black dashed line indicating the nominal FDR

threshold. Notably, mCS-learn also achieves consistently

higher power across all nominal levels.

Additional simulation results, including ablation studies

exploring various factors of the selection problem and our

algorithm, are provided in Appendix C.2.

Table 1: Observed FDR for Task 1 (shifted first orthant R).

The nominal FDR level is q = 0.3.

Setting CS int CS ib CS is bi mCS-d mCS-l

1 0.773 0.000 0.280 0.240 0.277 0.251
2 0.801 0.000 0.133 0.300 0.315 0.266
3 0.724 0.000 0.204 0.295 0.264 0.278
4 0.811 0.000 0.255 0.309 0.277 0.315
5 0.810 0.000 0.300 0.266 0.308 0.239
6 0.778 0.000 0.374 0.245 0.287 0.258

Table 2: Observed power for Task 1 (shifted first orthant R).

Setting CS int CS ib CS is bi mCS-d mCS-l

1 1.000 0.000 0.406 0.324 0.555 0.325
2 1.000 0.000 0.012 0.069 0.104 0.108
3 1.000 0.000 0.039 0.059 0.068 0.102
4 1.000 0.000 0.124 0.194 0.324 0.198
5 1.000 0.000 0.019 0.035 0.060 0.042
6 1.000 0.000 0.101 0.027 0.046 0.034

Table 3: Observed FDR and power for Task 2 (spherical R).

The nominal FDR level is q = 0.3.

FDR Power

Setting bi mCS-d mCS-l bi mCS-d mCS-l

1 0.255 0.265 0.279 0.636 0.760 0.534
2 0.260 0.263 0.273 0.343 0.405 0.421
3 0.216 0.223 0.263 0.115 0.134 0.179
4 0.316 0.286 0.254 0.192 0.333 0.180
5 0.307 0.291 0.273 0.137 0.170 0.189
6 0.292 0.283 0.207 0.055 0.063 0.061

6. Real Data Application

We apply the mCS framework to drug discovery, selecting

drug candidates with desirable biological properties. Each

candidate corresponds to a chemical compound, where the

feature vector x encodes structural or chemical characteris-

tics, and the multivariate response y represents biological

properties. The multidimensional nature of y reflects the

need to evaluate multiple biological criteria before advanc-

ing a compound. Ensuring FDR control improves down-

stream processes, such as wet-lab validation.

We employ an imputed public ADMET dataset compiled

from multiple sources (Wenzel et al., 2019; Iwata et al.,

2022; Kim et al., 2023; Watanabe et al., 2018; Falcón-Cano

et al., 2022; Esposito et al., 2020; Braga et al., 2015; Alia-

gas et al., 2022; Perryman et al., 2020; Meng et al., 2022;

Vermeire et al., 2022), comprising n = 22805 compounds

with d = 15 biological assay responses. We focus on three

different selection tasks with the following target regions:

Task 1. The (shifted) first orthant, R = {y : yk ≥ ck ∀k},

Task 2. A sphere centered at c, R = {y : ∥y − c∥2 ≤ r},
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Figure 1: Observed FDR and power across varying nominal levels for Task 1 (shifted first orthant R) and 2 (spherical R).

Task 3. The complement of a sphere centered at c, R =
{y : ∥y − c∥2 ≥ r′}.

We included the two tasks introduced in the numerical sim-

ulations (Section 5), and we also designed the third task to

evaluate the performance of various methods under a non-

convex target region with real data. Each of the selection

task is designed so that approximately 15%–30% of the

compounds qualify as acceptable. Further details on the

dataset and problem setup, including response descriptions

and cutoffs, can be found in Appendix D.

In this experiment, the underlying predictor µ̂ is specified as

a drug property prediction model from the DeepPurpose

Python package (Huang et al., 2020) with Morgan drug

encoding. We train the model using ntrain = 12000 samples,

provide ncal = 8000 samples for calibration and reserves

the remaining data of size ntest = 2805 as test data. We

keep the configuration and hyperparameters of the methods

unchanged as in Section 5. Two nominal levels q = 0.3 and

q = 0.5 are considered, and the selection processes for each

method are repeated across 500 iterations.

Table 4: Observed FDR of different methods with real data.

Task q CS int CS ib CS is bi mCS-d mCS-l

1 0.3 0.760 0.000 0.303 0.038 0.304 0.275
2 0.3 − − − 0.000 0.300 0.293
3 0.3 − − − 0.084 0.301 0.296

1 0.5 0.782 0.393 0.496 0.040 0.499 0.488
2 0.5 − − − 0.000 0.499 0.498
3 0.5 − − − 0.084 0.501 0.497

Tables 4 and Table 5 summarize the FDR and power of

the competing methods respectively. Consistent with our

numerical simulation, the methods bi, mCS-dist, and

mCS-learn all demonstrate valid FDR control. Among

the methods guaranteed to control FDR, mCS-dist and

mCS-learn consistently achieve the best and the second-

best power across all tasks and nominal levels. Notably,

mCS-learn exhibits superior performance under noncon-

Table 5: Observed power of methods with real data.

Task q CS int CS ib CS is bi mCS-d mCS-l

1 0.3 0.993 0.000 0.019 0.000 0.006 0.010
2 0.3 − − − 0.000 0.278 0.086
3 0.3 − − − 0.000 0.410 0.431

1 0.5 1.000 0.003 0.225 0.000 0.433 0.193
2 0.5 − − − 0.000 0.759 0.515
3 0.5 − − − 0.000 0.449 0.589

vex target regions, corroborating the results presented in

Appendix C.2.3. We note that although the baseline method

bi performed well in the simulation settings, it barely se-

lected any compound in the current task. This outcome may

be attributed to the suboptimal performance of the underly-

ing binary classification model, which achieved an F1 score

of only 0.31.

7. Conclusion

We propose multivariate conformal selection, an extension

of conformal selection to multivariate response settings. Our

experiments demonstrate that mCS significantly improves

selection power while maintaining rigorous FDR control,

outperforming existing baselines across simulated and real-

world datasets. The flexibility of mCS makes it a valuable

tool for selective tasks involved in diverse fields including

drug discovery. Looking forward, we anticipate that the

mCS framework can be further extended to handle addi-

tional practical challenges, including settings with hierarchi-

cal or structured responses. By addressing these challenges,

mCS has the potential to further enhance its applicability

and impact across diverse scientific and industrial domains.

8. Impact Statement

This paper aims to advance the field of machine learning.

While there may be societal impacts, none require specific

attention here.
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A. Technical Proofs

A.1. Proof of Proposition 3.2

Proof of Proposition 3.2. Since V is fixed, the nonconformity scores V1, . . . , Vn and Vn+j are exchangeable. By a standard

result from conformal inference Vovk et al. (2005, Proposition 2.4), the oracle p-value p∗j defined as in (3) is uniform

distributed with value ranging in (0, 1), and P(p∗j ≤ α) ≤ α. This gives

P(p∗j ≤ α and j ∈ H0) ≤ α.

When the null hypothesis H0j is true, yn+j ∈ Rc. Since rn+j ∈ R, by the regional monotone property, we have

Vn+j = V (xn+j ,yn+j) ≤ V (xn+j , rn+j) = V̂n+j . We then have p∗j ≤ pj by definition, and

P(pj ≤ α and j ∈ H0) ≤ P(p∗j ≤ α and j ∈ H0) ≤ α.

A.2. Proof of Theorem 3.5

Proof of Theorem 3.5. We adapt the proof of Theorem 6 in (Jin & Candès, 2023). In the proof that follows, we fix index

j ∈ {1, . . . ,m}. For notational simplicity, only in this proof we deal with the deterministic conformal p-values,

pj =
1

n+ 1

[
1 +

n∑

i=1

✶{Vi ≤ V̂n+j}
]

We note that the deterministic conformal p-values are only valid when the scores {Vi}
n
i=1 ∪ {Vn+j}

m
j=1 have no ties almost

surely, and therefore we also make this assumption. We highlight that the validity of the random conformal p-value does not

rely on this statement. We also define the corresponding deterministic oracle p-values,

p∗j =
1

n+ 1

[
1 +

n∑

i=1

✶{Vi ≤ Vn+j}
]
.

This version of p-values are also conservative by standard results in conformal inference (Bates et al., 2023; Jin & Candès,

2023). For l = 1, . . . ,m, we define a set of slightly modified p-values,

p
(j)
l =

1

n+ 1

[ n∑

i=1

✶{Vi ≤ V̂n+l}+ ✶{Vn+j ≤ V̂n+l}
]
.

Also define S(a1, . . . , am) ⊆ {1, . . . ,m} as the rejection index set obtained by the Benjamini-Hochberg procedure, from

p-values taking values a1, . . . , am. Then, the output of mCS is S(p1, . . . , pm).

In the sequel, we will compare S(p1, . . . , pm) to

S(p
(j)
1 , . . . , p

(j)
j−1, p

∗
j , p

(j)
j+1, . . . , p

(j)
m )

for the test sample j that is falsely rejected, i.e.

j ∈ S, Yn+j ∈ Rc.

First, on this event, we have Vn+j = V (xn+j ,yn+j) ≤ V (xn+j , rn+j) = V̂n+j and p∗j ≤ pj . For the remaining p-values,

{p
(j)
l }l ̸=j , we consider two cases:

(i) If V̂n+l ≥ V̂n+j , then pl ≥ pj . In this case, we also have V̂n+l ≥ Vn+j as V̂n+j ≥ Vn+j . This implies

p
(j)
l =

1

n+ 1

[ n∑

i=1

✶{Vi ≤ V̂n+l}+ ✶{Vn+j ≤ V̂n+l}
]
=

1

n+ 1

[ n∑

i=1

✶{Vi ≤ V̂n+l}+ 1
]
= pl.

12
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(ii) If V̂n+l < V̂n+j , then pl ≤ pj . We also have

p
(j)
l ≤

1

n+ 1

[ n∑

i=1

✶{Vi ≤ V̂n+l}+ 1
]
≤

1

n+ 1

[ n∑

i=1

✶{Vi ≤ V̂n+j}+ 1
]
= pj .

Since j ∈ S, by the definition of Benjamini-Hochberg procedure l ∈ S as pl has smaller rank when ordering the

p-values.

To summarize, if we replace (p1, . . . , pm) by (p
(j)
1 , . . . , p

(j)
j−1, p

∗
j , p

(j)
j+1, . . . , p

(j)
m ) on the event {j ∈ S, Yn+j ∈ Rc}, such

a replacement does not modify any of those p-values pl if they satisfied pl ≥ pj . Also, for all p-values pl with pl ≤ pj

including j itself (l = j), their replaced values p
(j)
l are still no greater than pj . Since all p-values are no larger than their

original values after the replacements, the size of rejection set must not decrease. On the other hand, since j ∈ S and no

p-values larger than pj are modified, no new hypotheses can be rejected by the new set of p-values. We conclude that

S∗
j := S(p

(j)
1 , . . . , p

(j)
j−1, p

∗
j , p

(j)
j+1, . . . , p

(j)
m ) = S(p1, . . . , pm) = S

on the event {Yn+j ∈ Rc, j ∈ S}. By decomposing the FDR we have

FDR = E

[∑m

j=1 ✶{Yn+j ∈ Rc}✶{j ∈ S}

max(1, |S|)

]

=

m∑

j=1

m∑

k=1

1

k
E
[
✶{|S| = k}✶{Yn+j ∈ Rc}✶{pj ≤

qk

m
, j ∈ S}

]

≤
m∑

j=1

m∑

k=1

1

k
E
[
✶{|S∗

j | = k}✶{Yn+j ∈ Rc}✶{p∗j ≤
qk

m
}
]

≤
m∑

j=1

m∑

k=1

1

k
E
[
✶{|S∗

j | = k}✶{p∗j ≤
qk

m
}
]

=
m∑

j=1

m∑

k=1

1

k
E
[
✶{|S∗

j | = k}✶{j ∈ S∗
j }

]
.

The last equality is again by the property of the Benjamini-Hochberg procedure. Also, by its step-up nature, sending p∗j to

zero does not change the rejection set if the corresponding hypothesis of p∗j is rejected, i.e. on the event {j ∈ S∗
j }. We have

S∗
j = S(p

(j)
1 , . . . , p

(j)
j−1, p

∗
j , p

(j)
j+1, . . . , p

(j)
m ) = S(p

(j)
1 , . . . , p

(j)
j−1, 0, p

(j)
j+1, . . . , p

(j)
m ) =: S∗

j→0

Thus,

FDR ≤
m∑

j=1

m∑

k=1

1

k
E
[
✶{|S∗

j→0| = k}✶{j ∈ S∗
j }

]
=

m∑

j=1

E

[
✶{p∗j ≤ q|S∗

j |/m}

max(1, |S∗
j→0|)

]
≤

m∑

j=1

E

[
✶{p∗j ≤ q|S∗

j→0|/m}

max(1, |S∗
j→0|)

]

By definition, {p
(j)
l }l ̸=j is invariant after permuting {Vi}

n
i=1 ∪ {Vn+j}. Since {Vi}

n
i=1 ∪ {Vn+j} are exchangeable

conditioned on {V̂n+l}l ̸=j , the distribution of {p
(j)
l }l ̸=j is independent from the ordering of {Vi}

n
i=1 ∪ {Vn+j} conditioned

on the (unordered) set [V1, . . . , Vn, Vn+j ] ∪ {V̂n+l}l ̸=j . Also, conditioned on {V̂n+l}l ̸=j , S∗
j→0 only depends on {p

(j)
l }l ̸=j

which is in turn only dependent on the unordered set [V1, . . . , Vn, Vn+j ], and p∗j only depends on the ordering of {Vi}
n
i=1 ∪

{Vn+j}. This implies that S∗
j→0 is independent on p∗j conditioned on the (unordered) set [V1, . . . , Vn, Vn+j ] and {V̂n+l}l ̸=j .

Therefore, by the conservative property of conformal p-values and conditional independence,

P

(
p∗j ≤

q|S∗
j→0|

m

∣∣∣ [V1, . . . , Vn, Vn+j ] ∪ {V̂n+l}l ̸=j

)
≤

q|S∗
j→0|

m
.
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By the law of total expectation,

E

[
✶{p∗j ≤ q|S∗

j→0|/m}

max(1, |S∗
j→0|)

]
= E

[
E

[
✶{p∗j ≤ q|S∗

j→0|/m}

max(1, |S∗
j→0|)

∣∣∣ [V1, . . . , Vn, Vn+j ] ∪ {V̂n+l}l ̸=j

]]

≤ E

[
✶{|S∗

j→0| ≠ 0}
q|S∗

j→0|

m|S∗
j→0|

∣∣∣ [V1, . . . , Vn, Vn+j ] ∪ {V̂n+l}l ̸=j

]

≤
q

m
.

Since when |S∗
j→0| = 0, ✶{p∗j ≤ q|S∗

j→0|/m} = 0. Now, the proof is concluded by summing over every j = 1, . . . ,m.

A.3. Proof of Proposition 4.2

Proof of Proposition 4.2. For any specific dataset and selection problem, let V opt denote the optimal nonconformity score

that controls the FDR and maximize the number of selected samples. Define V opt
i = V opt(xi,yi) for calibration samples

and V̂ opt
n+j = V opt(xn+j , rn+j) for test samples. Consider the following score W within the family (11):

W (x,y) = M · ✶{y /∈ Rc ∪ ∂R}+ V opt(x,y).

Picking rn+j ≡ r ∈ ∂R, the test nonconformity scores Ŵn+j satisfy:

Ŵn+j = W (xn+j , rn+j) = V opt(xn+j , rn+j) = V̂ opt
n+j ,

and for each calibration score,

Wi = W (xi,yi) ≥ V opt(xi,yi) = V opt
i .

Therefore, by replacing V opt with W , the calibration nonconformity scores W1, . . . ,Wn may increase, while the test

nonconformity scores Ŵn+j remain unchanged. According to (4), this leads to a decrease in each conformal p-value pj ,

which in turn increase the value k∗ in Algorithm 1. This means that we would select more samples, by the definition of S .

Consequently, we conclude that there must exist a score within the family (11) that achieves the optimal selection size. A

similar argument applies to the maximization selection power, thereby concluding the proof.

B. Deferred Discussions

B.1. Discussions on Classification Responses

In our paper, we choose to focus primarily on the regression response case for multivariate conformal selection. In fact, the

selection problem for classification responses (univariate or multivariate) can be directly reduced to the univariate conformal

selection framework introduced by Jin & Candès (2023):

For the univariate classification setting, suppose the response space is composed of classes Y = ∪K
k=1Ck with target region

R = ∪s
k=1Ck (with s < K). Then, by defining a binary response: ỹi = ✶{yi ∈ R}, the original selection problem directly

translates into a univariate conformal selection problem, where we select samples with ỹi = 1.

For multivariate classification case, e.g. suppose that bivariate responses yi are drawn from a joint class space Y =

(Y(1),Y(2)) = ∪k,ℓ(C
(1)
k , C

(2)
ℓ ), and the target region R = ∪(k,ℓ)∈I(C

(1)
k , C

(2)
ℓ ). Again, we define a binary indicator

ỹi = ✶{yi ∈ R}, converting the original multivariate selection problem into a standard univariate selection task:

H0j : ỹn+j < 0.5 versus H1j : ỹn+j ≥ 0.5.

Since P (ỹi = 1) = P (yi ∈ R), there is a direct correspondence between the multivariate and univariate nonconformity

scores:

V (x,y) = M · ✶{y ∈ R} − P̂ (y ∈ R|x)

and

V (x, ỹ) = M · ✶{ỹ ≥ 0.5} − µ̃(x)

14
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where µ̃(x) ≡ P̂ (ỹ = 1|x). Moreover, regional monotonicity is simply the usual monotone condition of univariate

conformal selection: V (x, ỹ = 0) ≤ V (x, ỹ = 1).

Thus, every classification-based selection task can be naturally and effectively solved using existing univariate conformal

selection methods.

B.2. Additional Discussions on Theorem 4.1 and Advantages of The Clipped Nonconformity Score

In this section, we first provide interpretations about Theorem 4.1 and offer an alternative perspective on the advantages of

the clipped nonconformity score.

We first note that the (practical) conformal p-values defined in (4) can be rewritten as

pj =
1

n+ 1

n∑

i=1

✶{Vi < V̂n+j}+
1

n+ 1
Uj

n∑

i=1

✶{Vi = V̂n+j}+
1

n+ 1
Uj .

By the Glivenko-Cantelli theorem (the uniform strong law of large numbers), as n → ∞,

sup
t∈R

∣∣∣∣∣
1

n+ 1

n∑

i=1

✶{Vi < t}+
1

n+ 1
Uj

n∑

i=1

✶{Vi = t}+
1

n+ 1
Uj − P(V (x,y) < t)− Uj · P(V (x,y) = t)

∣∣∣∣∣
a.s.
→ 0.

Replacing t in the above by V̂n+j = V (xn+j , r) yields

pj
a.s.
→ P(V (x,y) < V (xn+j , r)|V (xn+j , r)) + Uj · P(V (x,y) = V (xn+j , r)|V (xn+j , r)) = F (V (xn+j , r), Uj)

d
∼ F (V (x, r), U).

Therefore, F (V (x, r), U) is also a conservative random variable.

The quantity t∗ in Theorem 4.1 can also be viewed as the asymptotic counterpart of a corresponding finite-sample quantity.

A characterization of the BH procedure (Storey et al., 2004) states that the rejection set S = {j : pj ≤ τ∗}, where the BH

rejection threshold τ∗ is defined as

τ∗ = sup
{
t ∈ [0, 1] :

t
1
m

∑m

j=1 ✶{pj ≤ t}
≤ q

}
.

By the fact that 1
m

∑m

j=1 ✶{pj ≤ t} − P(pj ≤ t)
p
→ 0 as m → ∞ (which follows due to the the weak law of large numbers

for triangular arrays), and our earlier characterization of F (V (x, r), Uj) which implies P(pj ≤ t) → P(F (V (x, r), U) ≤ t)
as n → ∞, the fraction in the definition of τ∗ satisfies (in the limit n,m → ∞)

t
1
m

∑m

j=1 ✶{pj ≤ t}

p
→

t

P(F (V (x, r), U) ≤ t)
.

This establishes t∗ as the asymptotic limit of the BH rejection threshold τ∗, which further implies

1

m

m∑

j=1

✶{pj ≤ τ∗}
p
→ P(F (V (x, r), U) ≤ t∗) and

1

m

m∑

j=1

✶{pj ≤ τ∗ and yn+j ∈ R}
p
→ P(F (V (x, r), U) ≤ t∗,y ∈ R).

Theorem 4.1 then gives the asymptotic version of FDR and power:

FDR = E

[
|S ∩ {j : yn+j ∈ Rc}|

|S|

]
= E

[
|{j : pj ≤ τ∗} ∩ {j : yn+j ∈ Rc}|

|{j : pj ≤ τ∗}|

]

= E

[
1
m

∑m

j=1 ✶{pj ≤ τ∗ and yn+j ∈ Rc}
1
m

∑m

j=1 ✶{pj ≤ τ∗}

]

→
P(F (V (x, r), U) ≤ t∗,y ∈ Rc)

P(F (V (x, r), U) ≤ t∗)
,
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Power = E

[
|S ∩ {j : yn+j ∈ R}|

|{j : yn+j ∈ R}|

]
= E

[
|{j : pj ≤ τ∗} ∩ {j : yn+j ∈ R}|

|{j : yn+j ∈ R}|

]

= E

[
1
m

∑m

j=1 ✶{pj ≤ τ∗ and yn+j ∈ R}
1
m

∑m

j=1 ✶{yn+j ∈ R}

]

→
P(F (V (x, r), U) ≤ t∗,y ∈ R)

P(y ∈ R)
.

Theorem 4.1 suggests that the clipped score should be preferred from the perspective of maximizing the realized (asymptotic)

FDR (which is still controlled below the nominal level). The asymptotic FDR is bounded through the following chain of

inequalities:

P(F (V (x, r), U) ≤ t∗,y ∈ Rc)

P(F (V (x, r), U) ≤ t∗)
≤

P(F (V (x,y), U) ≤ t∗,y ∈ Rc)

P(F (V (x, r), U) ≤ t∗)
(∗)

≤
P(F (V (x,y), U) ≤ t∗)

P(F (V (x, r), U) ≤ t∗)
=

t∗

P(F (V (x, r), U) ≤ t∗)
. (17)

By the definition of t∗, the final term in (17) is at most the nominal level q. If the bounds in this chain of inequalities could

be further tightened, the realized FDR would more closely align with the nominal level q, effectively allowing for greater

selection power as more of the FDR budget could be utilized.

Using the clipped score tightens the inequality (∗) in (17). Assuming the score function V is clipped, we observe that

P(F (V (x,y), U) ≤ t∗)

P(F (V (x, r), U) ≤ t∗)
−

P(F (V (x,y), U) ≤ t∗,y ∈ Rc)

P(F (V (x, r), U) ≤ t∗)
=

P(F (V (x,y), U) ≤ t∗,y ∈ R)

P(F (V (x, r), U) ≤ t∗)

is approximately zero, since for y ∈ R, the clipped score satisfies V (x,y) ≈ M , implying that P(F (V (x,y), U) ≤ t∗,y ∈
R) ≈ 0, because that F (v, u) is monotone with respect to its first argument v. Notably, the large constant M is originally

introduced in conformal selection as a relaxation of infinity, and these approximations indeed hold. This phenomenon is

verified through our extra simulations in Appendix C.2.1.

C. Additional Details for Numerical Simulations (Section 5)

C.1. Data Generating Processes and Configuration of the Selection Tasks

The configuration of the true regression function µ and noise term ϵ ∈ R
d can be found in Table 6.

For the noise term, the degree of freedom for the t-distribution scenario is set to ν = 3, and the scale matrix Σ is specified

as a matrix with diagonal entries of 0.5 and off-diagonal entries of 0.05. The second column denotes the k-th output entry

of the true regression function µ, which relates to the k-th coordinate yk of the response y and the k-th coordinate ϵk of

the noise ϵ as yk = [µ(x)]k + ϵk. In all of our simulations, we take p = 10 (recall that x ∼ Unif(−1, 1)p but y ∈ R
d). If,

when generating yk the value of xℓ (the ℓ-th coordinate of x) for ℓ > p is needed, we take xℓ = x((ℓ−1) mod p)+1.

Table 7 summarizes the values of coefficient vectors (c and r) that define the selection tasks for each response dimension.

Within each vector, all entries share the same value. For instance, if ck is listed as 1, it indicates that c = (1, 1, . . . , 1).

The six settings we consider differ in two key aspects that influence the difficulty of selection. First, the regression function

µ exhibits varying degrees of nonlinearity across settings. Specifically, Settings 1 and 4 are linear, while Settings 2 and 5

have weak nonlinearity, and Settings 3 and 6 exhibit strong nonlinearity. The degree of nonlinearity affects the predictive

accuracy of the estimated regression function µ̂, which in turn impacts the selection difficulty. Second, the distribution of

the noise term ϵ differs across settings, leading to variations in the conditional variance. In Settings 1, 2, and 3, ϵ follows a

multivariate Gaussian distribution, whereas in Settings 4, 5, and 6, it follows a multivariate t-distribution. The conditional

variance cov(ϵ) = Var(y | x) in the latter three settings is ν
ν−2Σ = 3Σ, which is three times larger than that of the former

three settings, thereby increasing the difficulty of selection.

To better illustrate the data distributions, Figure 2 presents example scatter plots of the response vector y for the six settings,

with the response dimension set to 2 for visualization purposes. Higher-dimensional cases are not displayed as they are
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Table 6: True regression functions and noise distributions

Setting [µ(·)]k ϵ

1 xk − 1
2xk+1 + xk+2 +

3
2 N (0,Σ)

2 xk + x2
k+2 +

1
2 N (0,Σ)

3
✶{xkxk+1 > 0} · ✶{xk+2 > 0.5} · (0.25 + xk+2)

✶{xkxk+1 ≤ 0} · ✶{xk+2 ≤ 0.5} · (xk+2 − 0.25) + 0.75
N (0,Σ)

4 Same as Setting 1 tν(0,Σ)

5 Same as Setting 2 tν(0,Σ)

6 Same as Setting 3 tν(0,Σ)

Table 7: Coefficients for Selection Task 1 and 2

Response Dimension ck (Task 1) ck (Task 2) rk (Task 2)

2 1 2 1.5

5 0.2 2 2.6

10 −0.2 2 4.1

30 −0.6 2 7.5

more challenging to interpret. Settings within the same column share the same conditional expectation E(y | x), while

those in the lower row exhibit greater noise and more dispersed scatter patterns due to the multivariate t-distributed noise ϵ.

The target regions for the two tasks, defined based on the coefficients in Table 7, are highlighted as red and yellow shaded

areas in the plots.

C.2. Extra Simulated Experiments

C.2.1. COMPARING TWO DISTANCE-BASED SCORES

In Tables 8 and 9, we compare the performance of the two distance-based scores (7) and (8) in mCS-dist. All other

configurations are kept the same as in Section 5.

Table 8: Observed FDR of mCS-dist with score (7) and (8) for Task 1 and 2.

Task 1 Task 2

Setting Score (7) Clipped Score (8) Score (7) Clipped Score (8)

1 0.154 0.277 0.102 0.265

2 0.269 0.314 0.127 0.263

3 0.241 0.265 0.150 0.223

4 0.202 0.278 0.226 0.286

5 0.282 0.308 0.240 0.292

6 0.265 0.287 0.220 0.283

Across a wide range of tasks and experimental settings, the clipped score (8) consistently demonstrates superior performance.
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Figure 2: Scatter plots of 1,000 i.i.d. samples from our data generating processes. Each point represents a sample, with the

x- and y-axes corresponding to its responses entries y1 and y2, respectively. The red and the yellow shaded areas represents

the two target regions for the two selection tasks.

Table 9: Observed power of mCS-dist with score (7) and (8) for Task 1 and 2.

Task 1 Task 2

Setting Score (7) Clipped Score (8) Score (7) Clipped Score (8)

1 0.305 0.555 0.440 0.760

2 0.069 0.104 0.208 0.405

3 0.046 0.068 0.075 0.134

4 0.191 0.324 0.222 0.333

5 0.052 0.060 0.093 0.170

6 0.038 0.046 0.048 0.063

Although both scoring methods guarantee valid FDR control, the clipped score tends to exhibit a higher observed FDR. This

finding is consistent with the asymptotic analysis in Appendix B.2, which suggests that the clipped score can leverage a

larger portion of the available FDR budget.

C.2.2. VARYING RESPONSE DIMENSION

The main article included results with response dimension d = 30. In this section, we access the performance of mCS-dist

and mCS-learn in lower dimensional response settings d ∈ {2, 5, 10}, examining whether mCS-learn continues to

outperform competing methods for smaller values of d. To simplify the analysis, we focus on Setting 3 for these experiments.

All other configurations are kept unchanged.

Tables 10 and 11 show that even for smaller d, mCS-learn and mCS-dist continue to outperform the other baseline

methods, achieving the best and the second-best power respectively (while controlling FDR). Notably, the performance gap

of mCS-learn over competing methods becomes more pronounced as the response dimension increases, suggesting that
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Table 10: Observed FDR of different methods for lower response dimensions.

Task 1 Task 2

d CS int CS ib CS is bi mCS-d mCS-l bi mCS-d mCS-l

2 0.244 0.000 0.142 0.303 0.268 0.281 0.270 0.299 0.302

5 0.706 0.000 0.255 0.290 0.324 0.294 0.246 0.290 0.302

10 0.735 0.000 0.342 0.311 0.276 0.310 0.257 0.265 0.311

30 0.724 0.000 0.204 0.295 0.264 0.278 0.216 0.223 0.263

Table 11: Observed power of different methods for lower response dimensions.

Task 1 Task 2

d CS int CS ib CS is bi mCS-d mCS-l bi mCS-d mCS-l

2 0.029 0.000 0.022 0.032 0.047 0.063 0.050 0.068 0.069

5 1.000 0.000 0.067 0.041 0.049 0.083 0.050 0.057 0.072

10 1.000 0.000 0.055 0.044 0.058 0.069 0.062 0.069 0.106

30 1.000 0.000 0.039 0.059 0.068 0.102 0.115 0.134 0.179

mCS-learn is particularly advantageous for high-dimensional settings.

C.2.3. NONCONVEX TARGET REGION

To examine the suitability of our methods for tasks involving more irregular target regions, we conduct experiments on two

additional tasks in which the target region R is nonconvex:

3. The complement of the (shifted) orthant, R = {y : yk ≥ ck ∀k}c = {y : yk < ck for some k},

4. The complement of a sphere centered at c, R = {y : ∥y − c∥2 > r}.

To ensure that a reasonable proportion (15%-35%) of responses y fall within the selection region, the coefficients ck
and r are defined differently from their counterparts in Task 1 and 2. Table 12 presents the specific values, where each

scalar, following the convention in Table 7, represents a vector whose entries are all equal to that scalar. All other setups,

configurations, and model hyperparameters are the same as in Section 5.2.

Table 12: Coefficients for Selection Task 3 and 4

Response Dimension ck (Task 3) ck (Task 3) rk (Task 4)

2 −0.5 2 3

5 −0.8 2 4

10 1.1 2 5.5

30 1.6 2 9.5

Table 13 and Table 14 summarize the observed power and FDR for the two additional tasks respectively, where the dimension

is d = 30 and nominal FDR level is q = 0.3. For the nonconvex tasks, mCS-dist demonstrates inferior performance

compared to the baseline bi. In contrast, mCS-learn performs comparably to bi in relatively easy settings and surpasses

bi in more challenging scenarios, such as Settings 3 and 6. Consequently, mCS-learn emerges as the preferred choice

when R is nonconvex or otherwise irregular.

C.2.4. OTHER PRETRAINED MODELS µ̂

We also test the performance of various methods when the underlying model µ̂ is less predictive. To simulate this effect, we

train µ̂ as a linear model instead of support vector machines as in Section 5. All other setups remain unchanged.
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Table 13: Observed FDR of different methods for Task 3 and 4.

Task 3 Task 4

Setting bi mCS-d mCS-l bi mCS-d mCS-l

1 0.321 0.267 0.280 0.327 0.298 0.304

2 0.312 0.228 0.332 0.381 0.271 0.286

3 0.334 0.257 0.276 0.385 0.276 0.275

4 0.314 0.328 0.277 0.298 0.298 0.284

5 0.273 0.266 0.279 0.305 0.288 0.313

6 0.237 0.255 0.303 0.335 0.263 0.265

Table 14: Observed power of different methods for Task 3 and 4.

Task 3 Task 4

Setting bi mCS-d mCS-l bi mCS-d mCS-l

1 0.305 0.052 0.255 0.763 0.311 0.555

2 0.008 0.011 0.017 0.098 0.015 0.089

3 0.018 0.005 0.017 0.043 0.012 0.044

4 0.307 0.050 0.241 0.589 0.233 0.446

5 0.024 0.001 0.034 0.114 0.017 0.117

6 0.023 0.001 0.040 0.036 0.016 0.062

Table 15 and Table 16 summarize the FDR and power of different methods when µ̂ is a fitted linear model. Although overall

performance declines for most procedures, mCS-dist and mCS-learn remain comparatively stronger than the baselines.

In particular, mCS-learn appears less sensitive to the imperfect linear fit, thanks to its data-adaptive nonconformity score

V θ, which is learned based on the model µ̂ and the observed data.

Table 15: Observed FDR of different methods for lower response dimensions.

Task 1 Task 2

Setting CS int CS ib CS is bi mCS-d mCS-l bi mCS-d mCS-l

1 0.776 0.101 0.266 0.274 0.264 0.267 0.257 0.273 0.276

2 0.798 0.000 0.230 0.269 0.299 0.288 0.245 0.222 0.275

3 0.742 0.000 0.210 0.312 0.235 0.206 0.232 0.223 0.287

4 0.803 0.000 0.267 0.318 0.290 0.282 0.307 0.286 0.260

5 0.813 0.000 0.174 0.306 0.279 0.272 0.273 0.298 0.285

6 0.779 0.000 0.268 0.259 0.306 0.264 0.292 0.267 0.279

Table 16: Observed power of different methods for lower response dimensions.

Task 1 Task 2

Setting CS int CS ib CS is bi mCS-d mCS-l bi mCS-d mCS-l

1 1.000 0.204 0.467 0.195 0.550 0.379 0.063 0.842 0.583

2 1.000 0.000 0.024 0.077 0.071 0.089 0.386 0.337 0.419

3 1.000 0.000 0.026 0.066 0.074 0.079 0.129 0.138 0.148

4 1.000 0.000 0.203 0.120 0.309 0.186 0.040 0.408 0.188

5 1.000 0.000 0.016 0.036 0.048 0.051 0.176 0.135 0.162

6 1.000 0.000 0.028 0.042 0.039 0.048 0.056 0.056 0.073
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C.2.5. COMPARISON OF LOSS FUNCTIONS IN mCS-learn

Here we compare the performance of mCS-learn with loss L1 (15) and loss L2 (16). The response dimension is d = 30,

and the nominal FDR level is q = 0.3.

Table 17: Observed FDR of mCS-learn with loss L1 and L2.

Task 1 Task 2

Setting L1 L2 L1 L2

1 0.255 0.251 0.276 0.279

2 0.279 0.267 0.278 0.273

3 0.299 0.278 0.331 0.263

4 0.274 0.315 0.280 0.254

5 0.210 0.239 0.278 0.273

6 0.296 0.258 0.361 0.207

Table 18: Observed power of mCS-learn with loss L1 and L2.

Task 1 Task 2

Setting L1 L2 L1 L2

1 0.040 0.325 0.051 0.534

2 0.024 0.109 0.111 0.421

3 0.022 0.102 0.041 0.179

4 0.034 0.199 0.019 0.180

5 0.009 0.042 0.041 0.189

6 0.012 0.034 0.032 0.061

As noted in the main article, employing the L2 loss obviates the need for an additional round of smooth ranking, thereby

enhancing both numerical stability and training efficacy. This explains the superior power observed in Table 18 when

mCS-learn utilizes the L2 loss.

C.2.6. COMPARISON OF SCORE FAMILIES IN mCS-learn

When learning fθ in mCS-learn, various forms of data may be utilized as inputs, giving rise to different score families.

The simplest approach draws exclusively on the covariates x as features, making it applicable even in scenarios where the

model µ̂ is not available. Alternatively, incorporating the response y expands the family to (11). When µ̂ is available, its

predictions µ̂(x) can also be included as input. Although this does not increase the overall expressiveness of the family, it

can accelerate the training process. In this section, we evaluate the performance of the following score families with varying

complexity:

1. Covariate only: M · ✶{y /∈ Rc ∪ ∂R} − fθ(x;R).

2. Prediction only: M · ✶{y /∈ Rc ∪ ∂R} − fθ(µ̂(x);R).

3. Covariate and Prediction: M · ✶{y /∈ Rc ∪ ∂R} − fθ(x, µ̂(x);R).

4. Full Family (12) : M · ✶{y /∈ Rc ∪ ∂R} − fθ(x,y;R).

5. All available information: M · ✶{y /∈ Rc ∪ ∂R} − fθ(x, µ̂(x),y;R).

As discussed in the main article, families 4 and 5 incorporate y as an input, which compromises the regional monotonicity

of the score unless M is sufficiently large. Table 19 summarizes the FDR and power of mCS-learn with different families,

with Setting 3. For both Task 1 and Task 2, families 4 and 5 violated FDR control when M = 103. Among the three

subfamilies that maintained valid FDR control, family 3 exhibited the best performance.
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Table 19: Observed FDR and power of mCS-learn with different score families.

FDR Power

Family Task 1 Task 2 Task 1 Task 2

1 0.298 0.237 0.108 0.165

2 0.260 0.291 0.096 0.175

3 0.278 0.263 0.102 0.179

4 0.711 0.594 0.972 0.807

5 0.667 0.494 0.782 0.536

D. Additional Details for Real Data Application (Section 6)

D.1. Overview of Drug Discovery Data and Configuration of the Selection Tasks

The drug discovery dataset we used in Section 6 is compiled from various public sources (Wenzel et al., 2019; Iwata et al.,

2022; Kim et al., 2023; Watanabe et al., 2018; Falcón-Cano et al., 2022; Esposito et al., 2020; Braga et al., 2015; Aliagas

et al., 2022; Perryman et al., 2020; Meng et al., 2022; Vermeire et al., 2022). Because the integrated data contained missing

values, we employed Chemprop (Yang et al., 2019; Heid et al., 2023) to impute these entries. The resulting imputed dataset

was then used in all subsequent experiments. The processed dataset contains n = 22805 data points.

We list the names, units and cutoffs of the responses (only relevant to the first selection task) in the imputed dataset in

Table 20, and provide detailed descriptions of their biological significance and drug discovery relevance in Figure 4. Recall

that in the first task we consider target regions of the shape R = {y : yk ≥ ck ∀k}, where the cutoffs are the values ck
defining the selection problem. Figure 3 shows the distribution of these 15 responses, with vertical red lines indicating their

corresponding cutoffs. Approximately 21% of the test dataset compounds exceed all 15 thresholds, thereby qualifying for

selection.

For the second task, the target region is defined as a sphere {y : ∥y − c∥2 ≤ r}. For convenience, we take the center of the

sphere the same as the cutoffs ck in task 1, and let r = 2.4. Under this definition, approximately 24% of the compounds

qualify for selection. Similarly, for the third task where the target region is the complement of a sphere {y : ∥y− c∥2 ≤ r′},

we adopt the same center c and set r′ = 3.4. This choice ensures that 18% of the compounds qualify for selection.

Table 20: List of responses in the drug discovery dataset.

Name Unit Cutoff ck

CL microsome human log 10 (mL/min/kg) 4

CL microsome mouse log 10 (mL/min/kg) 4

CL microsome rat log 10 (mL/min/kg) 4

CL total dog log 10 (mL/min/kg) 0.5

CL total human log 10 (mL/min/kg) 0

CL total monkey log 10 (mL/min/kg) 0.5

CL total rat log 10 (mL/min/kg) 1

CYP2C8 inhibition log 10 (nMolar IC50) 3.5

CYP2C9 inhibition log 10 (nMolar IC50) 3.5

CYP2D6 inhibition log 10 (nMolar IC50) 3.5

CYP3A4 inhibition log 10 (nMolar IC50) 3.5

Papp Caco2 log 10 (10−6cm/s) 0.8

Pgp human log 10 (efflux ratio) −0.2

hERG binding log 10 (nMolar IC50) 3.5

LogD pH 7.4 log 10 (M/M) 2
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Figure 3: Histograms of 15 responses in the drug dataset. The vertical red lines denote the corresponding cutoffs (for the

first task) for each response.
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Figure 4: Description and drug discovery relevance of the responses.

CL microsome human:

Intrinsic metabolic clearance in human liver microsomes. (Help predict rate of liver metabolism in human

through the in vitro in vivo correlation.)

CL microsome mouse:

Intrinsic metabolic clearance in mouse liver microsomes. (Help predict rate of liver metabolism in human

through the in vitro in vivo correlation.)

CL microsome rat:

Intrinsic metabolic clearance in rat liver microsomes. (Help predict rate of liver metabolism in human

through the in vitro in vivo correlation.)

CL total dog:

Total body clearance measured in vivo in dogs. (Drug exposure in this species, crucial for determine human

dose regimens through translational modeling.)

CL total human:

Total body clearance measured in vivo in humans (Drug exposure in this species, crucial for determine

human dose regimens through translational modeling.)

CL total monkey:

Total body clearance measured in vivo in monkeys. (Drug exposure in this species, crucial for determine

human dose regimens through translational modeling.)

CL total rat:

Total body clearance measured in vivo in rats. (Drug exposure in this species, crucial for determine human

dose regimens through translational modeling.)

CYP2C8 inhibition:

Inhibition potential against human CYP2C8 enzyme. (Assessment of risk of drug-drug interactions (DDIs)

involving drugs metabolized by CYP2C8. Important for safety assessment.)

CYP2C9 inhibition:

Inhibition potential against human CYP2C9 enzyme. (Assessment of drug-drug interactions (DDIs)

involving drugs metabolized by CYP2C9 (e.g., warfarin). Important for safety assessment.)

CYP2D6 inhibition:

Inhibition potential against human CYP2D6 enzyme. (Assessment of drug-drug interactions (DDIs)

involving drugs metabolized by CYP2D6 (e.g., some antidepressants, beta-blockers). Important for safety

assessment.)

CYP3A4 inhibition:

Inhibition potential against human CYP3A4 enzyme. (Assessment of drug-drug interactions (DDIs)

involving drugs metabolized by CYP3A4 (a very common pathway). Important for safety assessment.)

Papp Caco2:

Apparent permeability across Caco-2 cell monolayer. (Potential for oral absorption by crossing the

intestinal wall. High Papp suggests good absorption is likely.)

Pgp human:

Interaction with human P-glycoprotein (Pgp) efflux transporter. (Assess if the drug is pumped out of cells

by Pgp, potentially limiting oral absorption and brain penetration.)

hERG binding:

Binding/inhibition of the hERG potassium channel. (Assessment of risk of cardiac toxicity (QT prolonga-

tion, arrhythmias). A critical safety screen; high binding is a major safety concern.)

LogD pH 7.4:

Logarithm of the distribution coefficient at pH 7.4. (Predicts drug’s lipophilicity (fat vs. water solubility)

under physiological conditions. Influences absorption, distribution, membrane crossing, and CNS penetra-

tion.)
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D.2. Extra Experiments on Real Data

D.2.1. NUMERICAL STABILITY OF DIFFERENT METHODS

In this section, we test the numerical stability of mCS-dist and mCS-learn on real data. To do this, unlike previous

experiments where we sample new data or randomly partition data for each iteration, we fix the pretrained model µ̂, the

calibration data Dcal and the test data Dtest. This is to avoid the variability from data sampling or pretraining, and only

consider the inherent variance of the methods. Due to the high computation cost of retraining fθ, we also keep fθ the same

across different iterations. We keep all other setups and configurations unchanged as in Section 6.

Table 21: Observed standard error of FDRs for different methods with real data.

Task q CS int CS ib CS is bi mCS-d mCS-l

1 0.3 0.000 0.000 0.248 0.000 0.000 0.000

2 0.3 − − − 0.000 0.000 0.002

3 0.3 − − − 0.000 0.021 0.004

1 0.5 0.000 0.000 0.032 0.000 0.001 0.004

2 0.5 − − − 0.000 0.000 0.002

3 0.5 − − − 0.000 0.028 0.005

Table 22: Observed standard error of powers for different methods with real data.

Task q CS int CS ib CS is bi mCS-d mCS-l

1 0.3 0.000 0.000 0.022 0.000 0.000 0.000

2 0.3 − − − 0.000 0.000 0.001

3 0.3 − − − 0.000 0.005 0.002

1 0.5 0.000 0.000 0.056 0.000 0.000 0.004

2 0.5 − − − 0.000 0.000 0.004

3 0.5 − − − 0.000 0.011 0.005

For all methods, the standard errors for both FDR and power remain low, with the exception of CS is at a nominal level

of q = 0.3. This phenomenon likely arises from the unstable nature of the subroutine nominal level search at lower user-

specified nominal levels. The failure of CS is to control the FDR at this low nominal level (Figure 1) further corroborates

this interpretation.
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