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Abstract 7 

Climate-related risks are shaped not only by changes in mean temperatures, but also 8 

by temperature variability, which increases the probability of weather extremes and 9 

exerts profound impacts on society and ecosystems. Previous studies have documented 10 

contrasting seasonal trend differences in summer and winter temperature variability. 11 

However, spring temperature variability—a transitional period critical for agricultural 12 

production—has received limited attention. Using three indices, namely the standard 13 

deviation of daily temperature (STD), day-to-day temperature variability (DTD), and 14 

rapid cooling events (RCE), we analyze the decadal trends and drivers of spring tem-15 

perature variability and quantify its effects on rice yield anomalies. Our findings reveal 16 

consistent trends in the spatial distribution of temperature variability, with increasing 17 

frequency and intensity in the Yangtze River Basin and Yunnan Province, and a de-18 

creasing trend across much of South China, closely following regional climatological 19 

patterns. Overall, the frequency and intensity of RCE trend exhibit a ‘stronger getting 20 

weaker, weaker getting stronger’ pattern, likely linked to increased STD trends driven 21 

by spatial non-uniformity of warming. Through a multiple regression statistical model, 22 

we find that climate factors, including mean climate and climate variability, explained 23 

19%–49% of the variance in yield anomalies, with up to 11% of the explained variance 24 

attributable to spring temperature variability. This study underscores the critical role of 25 

spring temperature variability in climate resilience, informing strategies to enhance the 26 

adaptability of agricultural systems to extreme climate events. 27 

 28 

  29 
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1. Introduction 30 

Climate change risks arise not only from growing mean temperatures but also from 31 

shifts in temperature variability (Olonscheck et al. 2021; Van Der Wiel and Bintanja 32 

2021). It is well known that short-term temperature variability affects both human 33 

health and natural ecosystems. For instance, enhanced daily temperature variability has 34 

been associated with increased mortality rate (Healy et al. 2023; Pane and Davis 2024). 35 

Moreover, temperature variability modulates the frequency and intensity of extreme 36 

climate events, such as heat waves or droughts, exerting severe impacts on ecosystems 37 

and argricultrue (Ray et al. 2015; Vogel et al. 2019; Kotz et al. 2021; Lesk and 38 

Anderson 2021; Heinicke et al. 2022). While most existing studies have analyzed trends 39 

and impacts related to mean temperature changes (Alexander 2016; Li and Thompson 40 

2021; Rezaei et al. 2023; Samset et al. 2023), the changes in short-term temperature 41 

variability, alongside the mechanisms driving these changes, have received 42 

comparatively limited attention. Understanding this variability is crucial for elucidating 43 

the long-term relationships between climate variability and extreme climate events, 44 

facilitating better-informed decision-making in climate change mitigation. 45 

Previous studies on short-term temperature variability reveal significant seasonal 46 

differences. Reductions in temperature variability have been observed over high-47 

northern latitudes in autumn (Screen 2014; Blackport et al. 2021) and mid-latitudes in 48 

winter (Schneider et al. 2015; Rhines et al. 2017), leading to fewer extreme cooling 49 

events in these seasons (Cui and He 2023; He et al. 2023). On the contrary, summer 50 

temperature variability has increased over most land areas, especially in Eurasia, 51 

southern China and tropical zones (Chan et al. 2020; Xu et al. 2020; Krauskopf and 52 

Huth 2024), exacerbating extreme heatwave events in recent decades (Schär et al. 2004; 53 

Perkins-Kirkpatrick and Gibson 2017; Wei et al. 2023). Climate model simulations also 54 

support these findings, revealing a decreasing trend in winter temperature variability 55 

and an increasing trend in summer temperature variability at mid-latitudes (Holmes et 56 

al. 2016; Bathiany et al. 2018; Tamarin-Brodsky et al. 2020). Mechanisms underlying 57 

these changes in temperature variability have been attributed to multiple physical 58 

processes, including meridional temperature gradients linked to Arctic amplification 59 

(Screen 2014; Bathiany et al. 2018; Dai and Deng 2021), soil moisture–temperature 60 
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feedbacks (Fischer et al. 2012), and local warming pattern (Chan et al. 2020; Tamarin-61 

Brodsky et al. 2020). 62 

However, insufficient attention has been paid to spring temperature variability. As 63 

a transitional season from cold to warm, spring plays a crucial role in agricultural 64 

production (Allstadt et al. 2015; Zhu et al. 2018). On one hand, it marks the harvest 65 

season for winter cereal crops in crop rotation systems (e.g., rapeseed-rice, winter 66 

wheat-rice); on the other hand, it serves as the sowing season for summer cereals (e.g., 67 

early rice, spring maize, spring wheat). Despite advancements in spring plant 68 

phenology under global warming, the risk of a ‘false spring’ is increasing (Allstadt et 69 

al. 2015; Chamberlain et al. 2019; Garner and Duran 2024). This phenomenon occurs 70 

when temperatures fluctuate rapidly from warm to cold anomalies, characterized by 71 

rapid cooling events and late spring cold spells (Xiao et al. 2018; Lin et al. 2023). Such 72 

rapid temperature variability can severely affect the growth, health, competitive ability, 73 

and geographical distribution limits of crops, ultimately leading to reduced crop yields. 74 

Previous studies revealed that climate factors account for more than one-third of the 75 

variations in global crop yield variability (Ray et al. 2015; Ray et al. 2019; Baffour-Ata 76 

et al. 2021), with 18%–43% of the explained variance attributable to climate extremes 77 

(Vogel et al. 2019). While it has been established that climate variability significantly 78 

affects crops during the growing season, the impact of rapid temperature variability in 79 

the special season remains underexplored. 80 

As a major agricultural country, China is the world's largest producer of rice and 81 

wheat and the second-largest producer of maize, contributing 27%, 17%, and 24% of 82 

global production, respectively (FAO, 2023). The southern China is the core area for 83 

the rotational cropping system and the primary rice-growing region, where rice 84 

accounts for more than 70% of the national cultivation area (Figure 1a). Given the 85 

importance of southern China in food production, understanding the characteristics and 86 

impacts of climate variability in this region is crucial. However, relatively little 87 

attention has been paid to the transition season in the main grain-producing regions in 88 

the southern China. In particular, the decadal trends and impacts of spring temperature 89 

variability remain unclear, limiting comprehensive analyses of climate-related disaster 90 

impacts in this region. 91 



 

 5 

In the present work, we aim to address the following questions through statistical 92 

analyses of long-term observations: 1) What are the observed changes in spring 93 

temperature variability, and 2) what mechanisms drive these changes? 3) To what 94 

extent does spring temperature variability affect crop production? Here, we present a 95 

comprehensive understanding of observed changes in spring temperature variability 96 

over the past half-century, identifying causal factors and quantifying the impact on crop 97 

yields. Our findings unveil a distinct pattern in the frequency and intensity of spring 98 

rapid cooling events, characterized by ‘stronger getting weaker, weaker getting 99 

stronger’. This pattern is potentially related to the increased standard deviation trend 100 

caused by spatially uneven warming. Spring temperature variability can affect crop 101 

production through cold spells, precipitation, and gusty winds, explaining up to 8% of 102 

the variation in rice yields. 103 

The rest of the paper is organized as follows. The datasets and methods are 104 

described in Section 2. Section 3 details the climatological distribution of rapid 105 

temperature variability. Section 4 explores decadal trends and underlying mechanisms 106 

of rapid temperature variability changes. Section 5 outlines effects of this variability on 107 

climate variations and crop yields. Finally, conclusion and discussion are given in 108 

Section 6. 109 

2. Datasets and methods 110 

2.1 Datasets 111 

The climate variables used in this study were sourced from the National Meteoro-112 

logical Information Center of China Meteorological Administration, including daily 113 

minimum and mean temperature, precipitation, and wind data from 1961 to 2023 at 114 

over 2400 meteorological stations. The dataset has undergone rigorous quality control 115 

and homogenization and is widely used in the study of climate extremes in China (Cao 116 

et al. 2016; Han et al. 2024). To ensure consistency, stations with more than 30 days of 117 

missing data or relocations exceeding 100 meters were excluded, resulting in a selection 118 

of 587 stations in southern China (Figure 1b, colored dots).The selected stations en-119 

compass the majority of rice-growing regions and  rotational cropping system areas in 120 
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China, spanning 13 provinces: Sichuan, Chongqing, Hubei, Anhui, Jiangsu, Guizhou, 121 

Henan, Jiangxi, Zhejiang, Yunnan, Guangxi, Guangdong and Fujian.  122 

In addition, the yearly provincial rice planting areas and yields were obtained from 123 

the National Bureau of Statistics of China for the period of 1970–2022. Due to the 124 

inconsistency in the time span of the meteorological and yield data, the period from 125 

1970 to 2022 was used to analyze the trend and effects of rapid temperature variability. 126 

2.2 Definition of rapid temperature variability 127 

Three methods are used here to quantify rapid temperature variability. Firstly, 128 

standard deviation of daily temperature (STD), calculated as the standard deviation of 129 

daily mean temperature, is a widely used meansure of rapid temperature variability 130 

(Blackport et al. 2021; Cui and He 2023; Krauskopf and Huth 2024). In addition, day-131 

to-day temperature variability (DTD) is also used to meansure rapid temperature vari-132 

ability, which is defined as the absolute difference in daily temperatures between two 133 

adjacent days (Gough 2008; Xu et al. 2020; Ge et al. 2022), expressed as: 134 

𝐷𝑇𝐷 = 1𝑛 ∑｜𝑻𝒊+𝟏 − 𝑻𝒊｜  

𝒏
𝒊=𝟏  135 

Where 𝑇𝑖 denotes 2-meter temperature on day 𝑖, and 𝑛 denotes the total days.  136 

Although both STD and DTD can describe temperature variability, DTD is more 137 

representive than STD at describing the daily temperature change, particularly for dis-138 

tinguishing between orderly and oscillatory climates. For example, consider two daily 139 

temperature series: an orderly series (e.g., 25, 25, 25, 25, 15, 15, 15, 15 °C) and an 140 

oscillatory series (e.g., 25, 15, 25, 15, 25, 15, 25, 15 °C). Despite both having the same 141 

STD value (5.27 °C), they exhibit a significant difference in DTD (1.25 °C verus 142 
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8.75 °C). This makes DTD more effective at capturing rapid temperature variability in 143 

both orderly and oscillatory climate behaviors. 144 

In addition to STD and DTD, rapid cooling event (RCE) was used to quantitatively 145 

characterize the frequency and intensity of daily temperature variability. Based on the 146 

absolute and relative thresholds, two types of definitions were used to identify RCE. 147 

For the relative threshold method, the day-to-day temperature difference (∆𝑇) was first 148 

calculated, and the relative threshold was defined as the 95th percentile from 1970 to 149 

2022. Then, the RCE was identified when daily ∆𝑇 falls below the relative threshold. 150 

For the absolute threshold method, the RCE was selected as ∆𝑇 below -6 °C, which 151 

matches the threshold used in previous studies (Park et al. 2011; Cui and He 2023). 152 

More importantly, the mean relative threshold across the 836 stations in southern China 153 

is close to -6 °C. The frequency, mean intensity, and extreme intensity of RCE are 154 

calculated as: 155 

𝐹𝑟𝑒𝑞𝑒𝑛𝑐𝑦𝑗 =  ∑ 𝛿𝑖,𝑗𝑀𝑖=1  156 

𝑀𝑒𝑎𝑛 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑗 = ∑ 𝛿𝑖,𝑗 ∗ ∆𝑇𝑖,𝑗𝑀𝑖=1∑ 𝛿𝑖,𝑗𝑀𝑖=1  157 

𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑗 = 𝑀𝑖𝑛(𝛿𝑖,𝑗 ∗ ∆𝑇𝑖,𝑗) 158 

Where 𝛿 is a symbolic function to judge RCE, in which 𝛿𝑖,𝑗 = 1 for days with an 159 

RCE and 𝛿𝑖,𝑗 = 0 for days without an RCE. 𝑖 denotes the day in special seasons, and 𝑗 160 

denotes the year. ∑() and 𝑀𝑖𝑛() indicate the sum and minimum value of the special 161 

seasons, repectively. Here, both the mean and extreme intensity are multiplied by -1 to 162 

express them as positive values for ease of interpretation. 163 

2.3 Decadal trend and significant test 164 
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From the monthly and seasonal evolution of STD and DTD (Figure 2), it is clear 165 

that the temperature variability in southern China is strongest in spring, with March 166 

exhibiting significantly higher variability than other months. Meanwhile, given the im-167 

portance of spring in agricultural production, the present study focused on the charac-168 

teristics of spring temperature variability. The annual cycle of daily temperatures was 169 

removed before calculating STD, DTD and RCE. 170 

To ensure reliable estimation of temperature variability using abundant samples, an 171 

11-year sliding window was applied for calculating decadal trends. STD, DTD and 172 

RCE characteristics were calcaluted for each 11-year period (i.e. 1970–1980, 1972–173 

1982, …, 2012–2022). Linear trend analysis was then used to calculate the decadal 174 

trend. All significant significance tests were conducted using a two-sided Student’s t-175 

test with a 0.05 (5%) critical level of significance. 176 

2.4 Effect of spring variability on crop yield 177 

To quantify the effect of spring variability on crop yield variability, a multi-param-178 

eter statistical model based on temperature and precipitation was constructed, using rice 179 

as an example. This approach has been widely used in previous studies (Ray et al. 2015; 180 

Ray et al. 2019; Vogel et al. 2019). Since the growth period of rice spans from March 181 

to November, the effects of climate variability in spring, summer, and autumn are con-182 

sidered here. At the provincial level, the detrended rice yield anomalies were linearly 183 

regressed against detrended climate anomalies, including mean temperature, tempera-184 

ture variability, mean precipitation and precipitation variability in spring, summer and 185 

autumn. The full statistical model is expressed as: 186 

𝑦𝑖𝑒𝑙𝑑 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 =  𝛼1 ∗ 𝑇𝑚𝑒𝑎𝑛𝑀𝐴𝑀 + 𝛼2 ∗ 𝑇𝑚𝑒𝑎𝑛𝐽𝐽𝐴 + 𝛼3 ∗ 𝑇𝑚𝑒𝑎𝑛𝑆𝑂𝑁 + 𝛼4 ∗ 𝑇𝑠𝑡𝑑𝑀𝐴𝑀 + 𝛼5187 ∗ 𝑇𝑠𝑡𝑑𝐽𝐽𝐴 + 𝛼6 ∗ 𝑇𝑠𝑡𝑑𝑆𝑂𝑁 + 𝛼7 ∗ 𝑃𝑚𝑒𝑎𝑛𝑀𝐴𝑀 + 𝛼8 ∗ 𝑃𝑚𝑒𝑎𝑛𝐽𝐽𝐴 + 𝛼9188 ∗ 𝑃𝑚𝑒𝑎𝑛𝑆𝑂𝑁 + 𝛼10 ∗ 𝑃𝑠𝑡𝑑𝑀𝐴𝑀 + 𝛼11 ∗ 𝑃𝑠𝑡𝑑𝐽𝐽𝐴 + 𝛼12 ∗ 𝑃𝑠𝑡𝑑𝑆𝑂𝑁 189 
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Where 𝑇𝑚𝑒𝑎𝑛 and 𝑇𝑠𝑡𝑑 denote the mean and standard deviation of temperature 190 

for the special seasons, respectively. Here, yield anomalies are defined as the raw yields 191 

minus a 9-year running mean, while climate variable anomalies are calculated by re-192 

moving the anuual cycle from data with linear trends removed.  193 

 The overall 𝑅2 of the equation represents the explained variance of climate varia-194 

bility on crop yield variability. A reduced statistical model was also constructed by 195 

removing 𝑇𝑠𝑡𝑑𝑀𝐴𝑀 and 𝑃𝑠𝑡𝑑𝑀𝐴𝑀 from the full model. The contribution of climate vari-196 

ability to crop yield was quantified by calculating the difference in 𝑅2 between the full 197 

and reduced statistical models. In addition to the multi-parameter regression, ridge and 198 

lasso regressions were also used to quantify the effects of spring variablity, yielding 199 

similar results. Therefore, only the multi-parameter regression results are shown in this 200 

study. 201 

3. Climatological distribution of rapid temperature variability 202 

Figure 3 shows the climatology of STD and DTD in spring. The STD in southern 203 

China exhibits a zonal distribution, with high values exceeding 3.5 °C in Guizhou–204 

Hunan–Jiangxi regions, and lower values located in the western parts of Yunnan and 205 

Sichuan (Figure 3a). This distribution contrasts significantly with the pattern of cold 206 

wave frequency in winter (Ma et al. 2022). There are notable differences in the monthly 207 

evolution of STD. Compared to April and May, the STD in March is generally higher 208 

and exhibits more pronounced spatial variability, with nearly 8% of stations exceeding 209 

4.0 °C (Figure 3c), which is consisitent with Figure 2. In terms of monthly spatial 210 

distribution, the center of high values remains relatively stable over time and is 211 

consistently located in the Guizhou–Hunan–Jiangxi region (Figure S1). This region is 212 

the primary growing area for early rice cultivation, and as such, the risks associated 213 

with spring temperature variability, such as late spring cold spells, should be closely 214 

monitored and assessed in future agricultural planning and climate adaptation strategies.  215 
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As for DTD, its spatial distribution bears notable similarity to that of STD, with a 216 

spatial correlation coefficient exceeding 0.88 (Figure 3b). However, in contrast to STD, 217 

DTD remains relatively homogeneous from March to May, showing no significant 218 

monthly variation, especially with small spatial differences between March and April 219 

(Figure S1). Since STD is more sensitive to extreme values, the difference between 220 

STD and DTD suggests that more extreme events occur in March than in April and May, 221 

particularly rapid temperature change events. 222 

Considering that STD and DTD alone cannot fully characterize extreme events in 223 

spring, Figure 4 illustrates the frequency, mean intensity, and extreme intensity of RCE 224 

using both relative and absolute threshold methods. The relative thresholds exhibit clear 225 

spatial heterogeneity, with high value centers located in the Guizhou–Hunan–Jiangxi, 226 

Anhui, and eastern Hubei. In these regions, only temperature drops exceeding -7°C can 227 

be ranked within the top 10% in history, indicating that historical temperature drops are 228 

notably larger here than those in surrounding areas. This distribution is consistent with 229 

the patterns observed in STD and DTD. Meanwhile, the mean instensity and extreme 230 

intensity in Figures 4b–c show similar spatial distributions with Figurer 4a, confirming 231 

that the spring temperature variability has the most severe impact on the Guizhou–232 

Hunan–Jiangxi region.  233 

For the absolute threshold method, an average threshold of -6°C, derived from the 234 

mean relative thresholds across all stations in Figure 4a (-5.98°C), was used to identify 235 

RCE. Despite differences in case selection methods, the spatial distributions of 236 

frequency, mean intensity, and extreme intensity of RCE (Figures 4d–f) remain 237 

generally consistent with those of the relative threshold method. Since both methods 238 

present consistent results in describing the characteristics of RCE, the absolute 239 

threshold method will be used in the subsequent section. 240 

Regarding the monthly evolution, the spatial distribution of RCE frequency exhibits 241 

noticeable changes from March to May (Figure S2). The high-frequency center shifts 242 
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from the coastal region to the middle and lower reaches of the Yangtze River, 243 

accompanied by a slight decrease in RCE days. By May, the frequency substantially 244 

decreases across South China, except in the western Yunnan and Sichuan. This indicates 245 

that spring disasters related to temperature varability in southern China are mainly 246 

concentrated in early spring. As for the spatial distributions of mean and extreme 247 

intensity, they do not differ obviously from March to May.  248 

Figures 3 and 4 show that the temperature variability calculated by STD and DTD 249 

aligns well with the distribution of RCE. To further establish their relationship, Figure 250 

5 demonstrates the distribution of STD and RCE indices across 836 independent 251 

stations. It is evident that the relative threshold decreases linearly as STD increases, 252 

with the threshold dropping by 0.22 °C for each 0.1 °C rise in STD, suggesting a higher 253 

likelihood of frequent and intense RCEs in the region. Notably, the frequency and 254 

intensity of RCE also show a highly significant linear relationship with STD. Each 255 

0.1°C rise in STD leads to an 11.2-day increase in frequency, as well as a 0.27°C and 256 

0.29°C increase in mean and extreme intensity of RCE, respectively. Similar results are 257 

observed between DTD versus RCE (Figure S3). These findings establish a stable linear 258 

relationship between temperature variability and extreme events, especially for RCEs 259 

in spring. This implies that the frequency and intensity of RCE in a region can be 260 

estimated by straightforward calculations of STD or DTD in the future assessments. 261 

Based on the above analysis on different aspects of rapid temperature variability, it 262 

can be concluded that, although three methods were used for definition, STD, DTD and 263 

RCE are robustly concentrated in the Guizhou–Hunan–Jiangxi region, with intensity 264 

weakening over time in climatology. Furthermore, the frequency and intensity of RCE 265 

can be effectively quantified by STD and DTD, providing a convenient method for 266 

characterizing extreme temperature events. 267 
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4. Decadal trends and causes for rapid temperature variability 268 

To examine changes in rapid temperature variability, the decadal trend in RCE-re-269 

lated characteristics is shown in Figure 6. From 1970 to 2022, the frequency of RCE 270 

has increased in the Yangtze River Basin and Yunnan, with approximately 70% of the 271 

stations in Sichuan, Chongqing, Hubei, Anhui, Jiangsu, and Yunnan passing the 95% 272 

confidence level. The rates of increase in these provinces range from 0.1 to 1.8 days per 273 

decade. Conversely, a decreasing trend is observed in South China, particularly in Gui-274 

zhou, Hunan, Jiangxi, Guangdong, Guangxi, Zhejiang, and Fujian, where rates range 275 

from -0.5 to -1.0 days per decade (Figure 6a). The spatial distribution of RCE frequency 276 

trend aligns well with its climatological pattern, that is, regions with higher climatolog-277 

ical frequencies tend to exhibit a decreasing trend, while regions with lower climato-278 

logical frequencies tend to show an increasing trend. It results in a distinct negative 279 

correlation between decadal changes and the climatological distribution, with a corre-280 

lation coefficient reaching -0.34 for more than 800 independent samples (Figure 6d). 281 

These findings demonstrate that the decadal trend of RCE frequency follows a pattern 282 

of “stronger getting weaker, weaker getting stronger”. 283 

Similar results are observed for the mean and extreme intensity of RCE. Specifically, 284 

the mean intensity also demonstrates a decreasing trend in the Hunan–Jiangxi–Zhejiang 285 

region, consistent with its climatological distribution. Although the correlation between 286 

the climatological distribution and the mean intensity trend is modest at -0.11, it still 287 

passes the 99% confidence test due to the independence of each station’s data. The de-288 

cadal trend of extreme intensity is more pronounced, with a decreasing trend observed 289 

in Guizhou–Hunan–Jiangxi–Zhejiang. More than 64% of stations in these four prov-290 

inces pass the 95% confidence test. Therefore, the decadal trend of extreme intensity 291 

corresponds better with the climatological distribution, with a correlation coefficient of 292 

-0.31. It indicates that regions with high mean-state extreme intensity tend to experience 293 

a weakening trend, and regions with weak mean-state extreme intensity tend to 294 
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experience a strengthening trend. Overall, these findings unveil a long-term trend pat-295 

tern in the frequency and intensity of RCE, characterized by a spatial distribution of 296 

“stronger getting weaker, weaker getting stronger”. 297 

To investigate the underlying mechanisms for the observed changes in RCE trends, 298 

Figure 7 displays the corresponding trends in STD and DTD. Notably, the trend changes 299 

in both STD and DTD share a similar spatial distribution with RCE, with a high spatial 300 

correlation coefficient of 0.87. Specifically, both metrics demonstrate a downward trend 301 

in South China, with over 70% of the stations in Guangxi, Guangdong, and Fujian pass-302 

ing the significance test. In the Yangtze River Basin and Yunnan Province, there is an 303 

increasing trend, particularly in eastern Hubei, Anhui, and Jiangsu. This spatial distri-304 

bution closely aligns with the frequency of RCE, as evidenced by a robust linear rela-305 

tionship, indicated by a spatial correlation coefficient of 0.65. This suggests that the 306 

observed trend changes in the frequency of RCE can largely be attributed to changes in 307 

temperature variability. Specifically, an increase in temperature variability leads to a 308 

rise in extreme events, subsequently elevating the frequency of RCEs. This is consistent 309 

with the stable linear relationship depicted in Figure 5. Additionally, changes in DTD 310 

trends can also help explain changes in RCE frequency (figure not shown). 311 

To future unravel the possible drivers of the observed trends in temperature varia-312 

bility, Figure 8 presents the trend of mean temperature. It reveals that the warming rate 313 

in South China is slower than in the Yangtze River Basin, with Guangxi, Guangdong, 314 

and Fujian experiencing an average increase rate of 0.5–1.0°C per decade, considerably 315 

lower than that of the Yangtze River Basin. Notably, the spatial pattern of mean tem-316 

perature trends closely matches those of STD and DTD. Regions with higher warming 317 

rates correlate with increased STD, while areas with slower warming rates correspond 318 

to decreased STD, yielding a correlation coefficient of 0.54. This finding suggests that 319 

the observed changes in temperature variability trends are primarily driven by the spa-320 

tiotemporal heterogeneity in warming rates. This mechanism is in line with the 321 
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prevailing explanations (Chan et al. 2020; Tamarin-Brodsky et al. 2020), further em-322 

phasizing the role of local warming pattern in shaping  regional temperature variability 323 

changes. 324 

In summary, the trend analysis indicates that the frequency and intensity of RCE 325 

follow a spatial distribution characterized by “stronger getting weaker, weaker getting 326 

stronger”. Specifically, there is a decreasing trend in South China and an increasing 327 

trend in the Yangtze River Basin and Yunnan. The changes in the frequency and inten-328 

sity of RCE are mainly related to trend changes in STD and DTD, possibly driven by 329 

the spatial non-uniformity of warming. 330 

5. Effects of variability on climate variations and crop yield 331 

Spring temperature variability significantly affects agriculture and society by alter-332 

ing key climate variables. To quantify these impacts, Figure 9 illustrates the associated 333 

minimum temperature anomalies, precipitation, and wind speed during RCE. The anal-334 

ysis reveals that when RCEs occur, there is a 90% probability that the majority of sta-335 

tions will experience low temperatures, with minimum temperature anomalies dropping 336 

below 0°C (Figure 9a). The mean intensity of minimum temperature anomalies across 337 

provinces range from -1.0 to 6.4 °C, with notable high-value centers in the Guizhou–338 

Hunan–Jiangxi region. Extreme minimum temperature anomalies can reach as low as -339 

8 °C in Guizhou, Hunan, Jiangxi, Hubei, and Guangxi. This implies that RCEs are as-340 

sociated with severe cold weathers, potentially resulting in pronounced spring cold 341 

spells. 342 

In addition to extreme cold temperature anomalies, RCEs are often accompanied by 343 

increased precipitation and gusty winds across most stations (Figures 9b–c). Specifi-344 

cally, the mean intensity of precipitation in southern China ranges from 5 to 18 mm/d, 345 

with high-value centers concentrated at the intersection of Hubei, Jiangxi, and Anhui. 346 

The extreme intensity of precipitation in these areas can reach up to 25 mm/d. Wind 347 
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speeds are similarly pronounced, with the highest recorded wind speed reaching 15 m/s 348 

in Jiangsu. 349 

In terms of sub-seasonal evolution, there is no significant difference in the occur-350 

rence frequency of minimum temperature anomalies, precipitation, and winds, all with 351 

over 70% probability of occurrence during RCE (Figure 10). However, the intensity 352 

shows pronounced sub-seasonal variations. Minimum temperature anomalies and gusty 353 

winds are strongest in March and weaken as the month progresses. Precipitation, on the 354 

contrary, peaks in May with an average of 20 mm, more than twice the average in March, 355 

reflecting the sub-seasonal progression of the monsoon system in China (Ding and 356 

Chan 2005; Yang et al. 2023). These findings suggest that RCEs are accompanied by 357 

cold temperatures, precipitation and gusty winds, posing serious challenges for agricul-358 

tural and broader social production. 359 

To quantify the impact of spring RCE on crop yields, a statistical model was con-360 

structed to assess the relationship between yield anomalies and climate factors, using 361 

rice as an example. The climate factors include average anomalies of temperature and 362 

precipitation, as well as seasonal variability throughout the entire reproductive period 363 

of rice, totaling 12 elements. As depicted in Figure 11a, the explained variance of the 364 

statistical model across 13 provinces reveals that climate factors account for 19–49% 365 

of yield variability. Notably, Hubei and Guangdong contribute approximately 40%, 366 

while Sichuan shows a comparatively lower contribution. These findings align with 367 

previous results indicating that climate variability explains nearly one-third of the var-368 

iability in crop yields (Ray et al. 2019; Vogel et al. 2019). 369 

A reduced statistical model was constructed to quantify the contribution of spring 370 

temperature and precipitation variability by removing them from the 12 elements. The 371 

difference in the explained variance between the full and reduced statistical models is 372 

displayed in Figure 11b. The values across the 13 provinces range from 1%–11%, with 373 

a mean value of 4%. Higher values are observed in Yunan, Guizhou, Hunan, Hubei, and 374 

Anhui. This suggests that spring temperature variability and its associated climatic 375 
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impacts can account for roughly 4% of the variance in rice yield anomalies in southern 376 

China. In addition, the sensitivity to spring variability varies considerably from prov-377 

ince to province, which may be related to local cropping systems, water and fertilizer 378 

management practices, and sowing varieties. 379 

6. Conclusion and Discussion 380 

This study explores the characteristics, trends and mechanisms of rapid temperature 381 

variability and quantifies its impact on crop yields. From various perspectives, rapid 382 

temperature variability is measured in terms of standard deviation of daily temperature 383 

(STD), day-to-day temperature variability (DTD) and rapid cooling event (RCE). These 384 

indices show a consistent climatological pattern for spring temperature variability, with 385 

greater variability and more frequent and stronger RCEs observed in the Guizhou–386 

Hunan–Jiangxi region. Despite differences in calculation methods, the frequency and 387 

intensity of RCEs exhibit strong linear relationships with both STD and DTD. 388 

Specifically, an increase of 0.1°C in STD correlates with an 11.2-day increase in RCE 389 

frequency, alongside increases of 0.27°C and 0.29°C in mean and extreme intensity, 390 

respectively. Thus, temperature variability serves as a reliable indicator of RCE 391 

characteristics. 392 

Over the past half century, the spatial distribution of long-term trends in rapid 393 

temperature variability across southern China reveals significant heterogeneity. 394 

Specifically, RCEs have become more frequent and intense in the Yangtze River Basin 395 

and Yunnan. Over these provinces, the frequency of RCEs in spring has increased by 396 

0.1 to 1.8 days per decade, while the extreme intensity of RCEs has grown by 0.9 to 397 

2.7 °C per decade. Conversely, the frequency and intensity of RCEs exhibit a negative 398 

trend across most of South China. This trend pattern aligns with the overall 399 

climatological distribution, following a ‘stronger getting weaker, weaker getting 400 

stronger’ pattern. The observed trends in RCEs are mainly related to the trend changes 401 

in STD and DTD, which is driven by spatial non-uniformity in warming. This finding 402 

highlights an important consideration that although global warming has enabled the 403 

possibility of earlier rice sowing (Olesen et al. 2012; Fatima et al. 2020; Minoli et al. 404 

2022), the increased variability in spring temperatures introduces a heightened risk for 405 
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crop failure. Therefore, the spring temperature variability deserves more attention in 406 

agricultural production. 407 

Rapid temperature variability has profound implications for both agriculture and 408 

society by altering key climate variables. RCEs are frequently accompanied by low 409 

temperatures, precipitation, and gusty winds, which can severely impact agricultural 410 

productivity and social stability. Our statistical model demonstrates that climate factors, 411 

including mean climate as well as climate variability—explain 19%–49% of the 412 

variance in rice yield anomalies. Although the quantified contributions are not directly 413 

comparable across studies due to differences in regional contexts and methodologies, 414 

the influence of climate factors on yield variability is consistent with previous findings, 415 

which suggested that climate factors explain approximately one-third of crop yield 416 

variations (Ray et al. 2015).  417 

Moreover, we demonstrate that spring variability associated with climate extremes 418 

contributes up to 11% of the explained variance in rice yield anomalies. This 419 

contribution is lower than the 26% attributed to climate variability in a previous study 420 

(Vogel et al. 2019), likely because this study focuses specifically on spring rather than 421 

full-season variability. Our results also indicate that summer variability contributes 422 

more significantly than spring and autumn variability (results not shown), which may 423 

be due to the greater sensitivity of rice to extreme heat waves and heat stress during the 424 

flowering and filling periods (Wang et al. 2019; Song et al. 2022). Additionally, this 425 

study centers on local regions rather than national or global scales, recognizing that the 426 

influence of climate variability on yield variability can differ substantially across 427 

regions due to disparities in agricultural practices, climatic conditions, and crop 428 

management (Heino et al. 2018; Anderson et al. 2019; Lesk et al. 2022). To build on 429 

this work, future research could broaden the geographic scope to encompass diverse 430 

regions and agricultural systems, which would provide a more comprehensive 431 

understanding of climate impacts on crops. Additionally, exploring the dynamic 432 

mechanisms of changes in temperature variability and crop responses through general 433 

circulation model simulations will be crucial. Such approaches can enhance predictive 434 

ability, helping to inform region-specific adaptation strategies and increase agricultural 435 

resilience to climate extremes. 436 

  437 
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 623 

 624 

Figure1  The study area in southern China. (a) Spatial distribution of average rice 625 

planting area in recent five years. The black box in (a) represents the southern China 626 

domain. (b) Distribution of 725 meteorological stations in southern China. 627 

 628 

 629 

Figure 1  Monthly and seasonal evolution of temperature variability. (a) The black 630 

line indicates the multi-year monthly standard deviation of daily temperature from 1970 631 

to 2022. The bar chart represents the multi-year seasonal standard deviation. The light-632 

grey shade indicates March to May. (b) as in (a), but for DTD. 633 

 634 
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 635 

Figure 3  Climatology of STD and DTD. Spring mean (a) STD and (b) DTD of daily 636 

temperature in southern China from 1970 to 2022. Probability density functions of 637 

monthly (c) STD and (d) DTD fitted by kernel density estimation for 836 meteorolog-638 

ical stations in southern China. 639 

  640 
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 641 

Figure 4  Characteristics of rapid cooling events. Spatial distribution of (a) relative 642 

threshold, and seasonal means of (b) mean intensity as well as (c) extreme intensity of 643 

RCE from 1970 to 2022 based on the relative threshold method.  (d–f) as in (a–c), but 644 

for days, mean intensity and extreme intensity based on the absolute threshold method. 645 

 646 
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 647 

Figure 5  Relationship between STD and RCE. Scatter plots for regional averaged 648 

spring STD and (a) threshold, (b) days, (c) mean intensity and (d) extreme intensity of 649 

RCE from 1970 to 2022 across 836 meteorological stations in southern China. The 650 

leastsquares fitting line is shown as the black line in each panel. Correlation coefficients 651 

and p-value are labelled in the lower left of each panel. 652 

 653 
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 654 

Figure 6  Decadal trend of characteristics related to RCE. The decadal trend of (a) 655 

days, (b) mean intensity, (c) extreme intensity of RCE from 1970 to 2022. A plus sign 656 

denotes statistical significance exceeding the 95% confidence level. The relationship 657 

between trend in (d) days, (e) mean intensity, (f) extreme intensity and their climatology 658 

for 836 meteorological stations. The least squares fitting line is shown as the black line 659 

in each panel. Correlation coefficients and p-value are labelled in the lower right of 660 

each panel. 661 
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 663 

Figure 7  Decadal trend of STD and DTD. (a, b) as in Figure 6 (a, b, c), but for the 664 

results of STD and DTD. (c, d) as in Figure 6 (d, e, f), but for the relationship between 665 

(c) STD trend and DTD trend, and (d) STD trend and day trend for 836 meteorological 666 

stations. 667 

 668 

Figure 8  Decadal trend of mean temperature. (a) as in Figure 6 (a), but for the results 669 

of spring mean temperature. (b) as in Figure 6 (d), but for the relationship between STD 670 

trend and mean temperature trend.  671 

 672 
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 673 

Figure 9  Characteristics of climate variables related to RCE. Spatial distribution 674 

of (a) frequency ratio, (d) mean intensity and (g) extreme intensity of minimum tem-675 

peratures anomalies below 0°C during RCE from 1970 to 2022. Anomalies are calcu-676 

lated with annual cycle removed. (b, e, h) as in (a, d, g), but for results with precipitation 677 

exceeding 1 mm/d. (c, f, i) as in (a, d, g), but for results with wind speed exceeding 7 678 

m/s. 679 

 680 
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 681 

Figure 10  Monthly characteristics related to RCE. (a) The average frequency pro-682 

portion of RCEs where the minimum temperature anomalies, precipitation and wind 683 

speed exceeded the corresponding thresholds during March–May in southern China, 684 

respectively. The threshold of the minimum temperature anomalies is less than 0°C, and 685 

the threshold of precipitation and wind speed is greater than 1mm/d and greater than 7 686 

m/s. Probability density functions of monthly (b) minimum temperature anomalies, (c) 687 

precipitation and (d) wind speed related to RCE for 836 meteorological stations during 688 

March–May in southern China. The light green, light blue and light red dotted lines 689 

represent the average of 836 stations in March, April and May, respectively. 690 

 691 
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 692 

Figure 11  Explanied varaition for rice yield anomalies. (a) 𝑅2 values of the full 693 

statistical model accounting for mean climate conditions and climate variability. (b) 694 

Difference in 𝑅2 of full statistical model and reduced model, estimating the partial ex-695 

plained variance from spring climate variability. 𝑅2 values are calculated from the ex-696 

plained variance of the multiple regression of rice yield anomalies aganist climate var-697 

iable anomalies. 698 

 699 
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Figure S1.  Spatial distributions of monthly means of (a–c) STD and (d–f) DTD dur-710 

ing March–May from 1970 to 2022. 711 

 712 
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 714 

Figure S2.  Spatial distributions of monthly means of (a–c) days, (d–f) mean intensity 715 

and (g–i) extreme intensity of RCE during March–May from 1970 to 2022. 716 

 717 

 718 



 

 37 

 719 

Figure S3.  As in Figure 5, but for relationship between DTD and RCE. 720 

 721 
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