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Abstract

We consider network formation. A set of locations can be connected in various network

configurations. Every network has a cost and every agent has an individual value of

every network. A planner aims at implementing a welfare maximizing network and

allocating the resulting cost, but information is asymmetric: agents are fully informed

and the planner is ignorant. Full implementation in Nash and strong Nash equilibria

is studied. We show the correspondence consisting of welfare maximizing networks

and individually rational cost allocations is implementable. We construct a minimal

Nash implementable, welfare maximizing, and individually rational solution in the set

of upper hemi-continuous and Nash implementable solutions. It is not possible to have

full implementation single valued solutions such as the Shapley value.
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1 Introduction

Overview of the paper: We consider network formation in a model a la Jackson and Wolin-

ski (1996). A set of locations can be connected in various network configurations. Every

network has a cost and every agent has an individual value of every network. The problem

is to implement and allocate costs of a welfare maximizing network. If agents are left to

themselves to establish and allocate the cost of the network, the outcome will typically not

be a welfare maximizing network. Indeed, it is well-known that the core of the induced

cooperative game can be empty (Megiddo, 1978; Tamir, 1991; Hougaard and Tvede, 2022).

Consequently, decentralized organization of networks can result in inefficient networks or

no network at all pointing to the need for an external agent such as a benevolent social

planner.

We therefore take a mechanism design approach, where agents have complete informa-

tion and study classic Nash implementation (see, e.g., the survey in Maskin and Sjöström,

2002): a benevolent social planner wants all equilibrium outcomes to be desirable in that

the chosen network is welfare maximizing and payments are individually rational for all

possible costs of networks and all possible values of networks for agents. Agents are fully

informed, but the planner is ignorant about the true costs and values.

Specifically, we examine the possibility of full implementation in Nash and strong Nash

equilibria. All Nash implementable solutions can be implemented by the canonical (un-

bounded) mechanism described in Maskin (1977, 1999). Modified and more informationally

efficient versions can be found in Saijo (1988), Lombardi and Yoshihara (2013), and Tatami-

tani (2001). Alternatively, our solutions can also be implemented by a bounded mechanism

as in Jackson et al. (1994).

We first show that it is impossible to implement budget-balanced cost sharing rules for

which there is a unique distribution of the welfare generated by the network (Theorem 1).

These cost sharing rules include the celebrated Shapley value. Therefore, we focus on the

correspondence from states, where states are costs and values, to all desirable outcomes

and show that it is Nash and strong Nash implementable (Theorems 2 and 5). Since the

correspondence of desirable outcomes is rather large, it is natural to examine whether min-

imally implementable correspondences exist. A simple example demonstrates that they do

not (Theorem 3). Adding continuity would be appealing in terms of robustness. But welfare

maximizing networks vary discontinuously with costs and individual values of networks and

payments vary discontinuously with networks. Hence, we consider upper hemi-continuity

instead of continuity and construct a minimal correspondence in the set of upper hemi-

continuous and Nash implementable correspondences from costs and values to desirable

outcomes (Theorem 4). Finally, we discuss how the informational requirements of Maskin’s
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canonical mechanism can be reduced in our case, though our modified mechanism remains

unbounded.

Summing up, the planner on the one hand can implement welfare maximizing networks

with individually rational payments, and on the other hand has to be flexible in assigning

cost shares and not use a specific cost sharing rule such as the Shapley value. Welfare gains

need not be equally distributed: specifically, there is no way to ensure that all agents get

a positive share. Consequently, centralized organization of networks can result in welfare

maximizing networks but not necessarily equitable distributions of welfare.

Related literature: Our paper relates to several strands of literature.

There is a large literature on cost sharing in networks. For the minimum cost spanning

tree model various forms of implementation have been considered. For instance, Berganti-

nos and Lorenzo (2004, 2005) provide an empirical example of a decentralized network for-

mation process, where agents connect sequentially to a source. Bergantinos and Vidal-Puga

(2010) consider implementation of minimum cost spanning trees via a decentralized bar-

gaining process inspired by the bidding mechanism of Perez-Castrillo and Wettstein (2001).

Hougaard and Tvede (2012) consider central implementation and suggest a specific game

form, where agents report connection costs to a planner. The game form fully Nash im-

plements minimum cost spanning trees using a broad class of cost allocation rules like, for

instance, the Folk-solution (Bergantinos and Vidal-Puga, 2007).

Non-cooperative behavior in the more general connection network model was initially

studied in Anshelevich et al., (2008) and Chen et al., (2010). Both papers focus on equi-

librium performance measured by the "Price of Anarchy", respectively "Price of Stability",

i.e., the ratio between maximum welfare and the minimal, respectively maximal, welfare

obtainable in Nash equilibrium. In a context where the planner is fully informed but un-

able to enforce a centralized network solution, Juarez and Kumar (2013) use a game form

inspired by the model in Anshelevich et al. (2008). Loosely speaking, they show that a cost

allocation rule implements an efficient network (in the sense that an efficient network is a

Nash equilibrium outcome, and it Pareto dominates the outcome of all other equilibria) if

and only if the allocation rule is a function of total network cost only: adding equal treatment

of equals, in effect, leaves the equal split rule as the only possibility.

Generalizing the game form in Hougaard and Tvede (2012) to connection networks,

Hougaard and Tvede (2015) obtain similar results in a centralized setting. Full Nash imple-

mentation of an efficient network is only possible provided the planner knows the connec-

tion demand of every agent, and only under very strong assumptions on the cost allocation

rule, in effect violating individual rationality. In case the planner does not know connec-

tion demands, truthful reporting is a Nash equilibrium that implements a cost minimizing
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connection network, but other equilibria can induce highly inefficient networks. Indeed,

the "Price of Anarchy" is unbounded even if the planner has full knowledge of connection

costs. It is therefore somewhat striking that full Nash implementation of desirable outcomes

is possible in the more general version of the model, where agents have limited willingness

to pay for connectivity, albeit not when using a specific cost sharing rule.

Considering a network model a la Jackson and Wolinsky (1996) as in our case, Mu-

tuswami and Winter (2002) show that a specific solution, namely the Shapley value, can be

implemented in subgame perfect Nash equilibrium. A difference from our setting is that

the planner knows the connection costs. Generally, as shown by Jackson et al. (1994) and

Sjöström (1994), any social choice function is boundedly implementable provided it satis-

fies certain separability requirements. We could apply a mechanism similar to theirs and

implement efficient networks where, for instance, agents pay in proportion to their value,

provided that it would be possible to exclude agents from getting access to the network

(making the network an excludable public good). Another option would be to allow for

unbalanced payments. Along those lines, Young (1998) presents a simple auction mech-

anism to implement a welfare maximizing network in strong Nash equilibrium accepting

that the mechanism can produce a surplus to the planner. Recently, Mackenzie and Trudeau

(2023) provide an example of a Groves-like mechanism in a general exclusion model where

surpluses are accepted as well.

Finally, our results have a parallel interpretation concerning the provision of multiple

public goods (Mutuswami and Winter, 2004; Hougaard and Moulin, 2014).

2 The Model

In the present section, we introduce our framework and discuss the model.

Set Up

Let L be a finite set of n locations (nodes). Let gn denote the complete graph. The set of

possible undirected networks (graphs) is G = {g | g ⊂ gn }.

Every network has a cost. Costs are a function from the set of networks to non-negative

real numbers C : G → R+. We write Cg for the cost of network g and assume C /0 = 0,

and Cg > 0 for every g 6= /0. As such, the networks are congestion-free. The set of costs is

denoted C . Costs are additive provided for every pair of locations a and b there is connection

cost cab such that Cg = ∑ab∈g cab for every network g.

Let M = {1, . . . ,m} be a set of finitely many agents with m ≥ 3. Every agent has a value

associated with each network. Values are a function from the set of networks to vectors of
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individual values, V : G →R
m. We write V

g
i for agent i’s value of, or willingness to pay for,

network g, and assume V /0
i = 0 for every i ∈ M . The set of values is denoted V .

The social welfare of costs, values and network, (C,V,g), is ∑iV
g
i −Cg. For costs and

values (C,V ), a Welfare Maximizing Network (WMN) g is a graph such that for every other

graph h,

∑
i

V
g
i −Cg ≥ ∑

i

V h
i −Ch.

The set of welfare maximizing networks is non-empty and finite because the set of graphs

is non-empty and finite.

Costs are strictly monotonic provided for every pair of networks g and h, g ⊂ h and g 6= h

implies Cg <Ch. Values are non-cyclic provided for every pair of networks g and h, there is

path from a to b in g if and only if there is a path from a to b in h imply V g =V h. Recall that

a graph is a tree provided there is a unique path between every pair of locations in the graph

and a forest provided it is a union of disjoint trees. Clearly, if costs are strictly monotonic

and values are non-cyclic, then g being a WMN implies g is a tree or a forest.

An outcome is a network and a list of cost shares, (g,πg), where g∈G and πg =(πg
i )i∈M

with ∑i π
g
i = 1. Cost shares can be positive or negative corresponding to agents paying or

being paid. The outcome (g,πg) results in the network g and costs (πg
i Cg)i for the agents.

For costs and values (C,V ) and an outcome (g,πg), the utility of agent i is u
g
i (C,V,πg) =

V
g
i −π

g
i Cg. Let O be the set of outcomes.

A desirable outcome is an outcome (g,πg) for which: g is a WMN; and, nobody pays

more than their willingness to pay, i.e., u
g
i = V

g
i −π

g
i Cg ≥ 0 for each i ∈ M . A minimal-

subsidy (MS) desirable outcome is a desirable outcome (g,πg) for which subsidies are min-

imized: for an agent i with V
g
i ≤ 0 the cost share is determined by π

g
i = V

g
i /Cg for Cg > 0

so u
g
i = V

g
i −π

g
i Cg = 0. For costs and values (C,V ), let Od(C,V ) ⊂ O be the set of desir-

able outcomes, and let Od
0 (C,V ) ⊂ Od(C,V ) the set of MS-desirable outcomes. Note that

Od
0 (C,V ) is non-empty since all agents have non-negative utility of any network and the

outcome is welfare maximizing.

A solution Γ : C×V → O is a correspondence from costs and values to outcomes. We

consider two solutions: the desirable solution Γd mapping costs and values to sets of all

desirable outcomes Γd(C,V ) = Od(C,V ); and, the MS-desirable solution Γd
0 mapping costs

and values to sets of all MS-desirable outcomes Γd
0(C,V ) = Od

0 (C,V ).

Desirable outcomes are appealing because they are efficient and individually rational.

The networks are WMNs, their costs are exactly covered, and nobody pays more than their

value (willingness to pay). In terms of fairness, individual rationality can be seen as a mini-

mum requirement, at least nobody gets punished by realizing a desirable outcome. Adding

MS to desirable outcomes ensures that every agent with positive value weakly contributes
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and every agent with V
g
i ≤ 0 is compensated. Yet, this does not ensure that everybody strictly

benefits from desirable outcomes.

Comments

A particular instance of our model, where agents are characterized by connection demands in

the form of two locations they want connected and a willingness to pay for that connection,

relates to the standard cost allocation model in connection networks (see e.g., Bergantinos

and Vidal-Puga, 2007; Anschelevich et al., 2008; Bogomolnaia et al., 2010; Bogomolnaia

and Moulin, 2010; Trudeau, 2012; Moulin, 2014; Hougaard and Tvede, 2015). As shown in

Panova (2023) adding willingnesses to pay, might seem like a minor variation, but it funda-

mentally changes the standard model. In particular, it introduces the basic design question of

which connection demands to satisfy. In contrast to the standard framework, where all con-

nection demands have to be satisfied, we can now compare the cost of satisfying an agent’s

demand with their willingness to pay. Thus, we are able to address the optimal size of the

network by aiming at social welfare maximization, in contrast to the cost minimization of

the standard models. Consider the example below.

Example: Consider three locations L = {1,2,3} with additive connection costs, where

c12 = 3 and c13 = c23 = 2 as illustrated below. Suppose one agent, Titika, has value VT

✉ ✉

✉

1

23

c13 = 2 c12 = 3

c23 = 2

if locations 1 and 2 are connected and zero otherwise. Another agent, Yi, has value VY if

locations 1 and 3 are connected and zero otherwise. If both agents have to have their pairs

of locations connected, then the cost minimizing network is clearly g = {13,23} with a total

cost of 4. The remaining problem is to determine how the total cost should be allocated

between the two agents. However, if the valuations of the agents are taken into account,
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then the problem becomes radically different in that both the locations to be connected and

the allocation of total cost have to be determined. Indeed: if VT ≥ 3 and VY ≤ 1, then it is

welfare maximizing to not satisfy Yi and build gT = {12}; if VT ≤ 2 and VY ≥ 2, then it is

welfare maximizing to not satisfy Titika and build gY = {13}; and, if VT ≤ 3, VY ≤ 2 and

VT+VY ≤ 4, then it is welfare maximizing to not satisfy any of the two agents and build no

network.

The model induces a cooperative game (M ,v), where the value v(S) of every coalition

S ⊂ M , is naturally defined as the maximum total welfare obtainable by agents in S. As

demonstrated by examples in Tamir (1991) and Hougaard and Tvede (2022) the core of

such games can be empty. Consequently, decentralized mechanisms cannot be expected to

work.

3 Implementation

A planner aims at implementing desirable or MS-desirable outcomes and designs a game

that agents play. The equilibria of the game have to be the desirable or MS-desirable out-

comes that the planner aims to implement. We assume that the planner is uninformed, but

the agents know the costs and values (C,V ). By restricting outcomes to be desirable, we

restrict outcomes to be welfare maximizing and individually rational in that no agent pays

more than her value of the network.

A mechanism F = ((Si)i, f ) consists of a strategy set for every agent, Si, and a map from

lists of individual strategies to outcomes, f : ×iSi →O . A list of individual strategies (s̄i)i is

a Nash equilibrium provided there is no agent j and strategy s j, such that u j( f (s j,(s̄i)i6= j))>

u j( f ((s̄i)i)). A list of individual strategies (s̄i)i is a strong Nash equilibrium provided there

is no group of agents T ⊂ M , and list of individual strategies for agents in T , (s j) j∈T , such

that u j( f ((s j) j∈T ,(s̄k)k∈T ∁)) > u j( f ((s̄i)i)) for every j ∈ T . A solution Γ : C×V → O is

implementable in (strong) Nash equilibrium provided there exists a mechanism F such that

for all costs and values (C,V ), the set of (strong) Nash equilibria for F is Γ(C,V ).

Let L
g
i (C,V,πg) = {(h,πh) ∈ O} | uh

i (C,V,πh) ≤ u
g
i (C,V,πg)} be the set of outcomes

(h,πh) that are weakly worse than (g,πg) for agent i. A solution Γ is monotonic provided

that for all outcomes (g,πg) ∈ O and all pairs of costs and values (C,V ),(C′,V ′) ∈ C×V ,

(g,πg) ∈ Γ(C,V ) and L
g
i (C,V,πg)⊂ L

g
i (C

′,V ′,πg) for every i imply (g,πg) ∈ Γ(C′,V ′).
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Implementation in Nash equilibrium

The desirable and the MS-desirable solutions are appealing in that they maximize welfare

and respect individual rationality. Two less appealing features of these solutions are that

they are “big” and that they can be perceived as unfair. Indeed the MS-desirable solution

maps problems to all pairs of WMNs and cost allocations, where individual cost shares are

bounded from below by zero and from above by values. Specifically, in case two agents have

identical values it is possible that one agent pays their value and gets utility zero and the other

agent pays zero and gets utility equal to their value. Solutions that for all pairs of problems

and WMNs have a unique cost allocation are much “smaller” and can be more fair in the

sense that costs are allocated using a specific allocation rule, which may possess certain

desirable fairness properties. However, these solutions are not Nash implementable, even

if the planner knows the costs. In particular, single-valued solutions based on cooperative

games, such as the Shapley value, are not Nash implementable.

Theorem 1 Assume the planner knows the costs C. Suppose a solution Γ : V → O has the

following properties:

• For all V and every g, there is either a unique or no πg such that (g,πg) ∈ Γ(V ).

• For all V , Γ(V )⊂ Γd(V ).

Then Γ is not Nash implementable.

Proof: To show there is no solution with the imposed properties a simple counterexample

is presented. Suppose there are three locations L = {1,2,3} and costs C are additive with

c13 > c12, c23 and c12+c23 = 1. Furthermore, suppose the m agents can be split into two

groups T and T ∁, where agents in T have total value VT > 0 of every graph in which locations

1 and 2 are connected and value zero otherwise and agents in T ∁ have total value V
T ∁ > 0 of

every graph in which locations 1 and 3 are connected and zero otherwise.

The network g = (12,23) is the unique WMN provided















VT +V
T ∁ > 1 (g is strictly better than no network)

V
T ∁ > c23 (g is strictly better than g′ = (12))

VT > 1−c13 (g is strictly better than g′′ = (13))

The cost allocation for the two groups is π = (πT ,πT ∁) with πT + π
T ∁ = 1. Furthermore,

(g,π) ∈ Γd(V ) implies πT ∈ [1−V
T ∁ ,VT ] and π

T ∁ ∈ [1−VT ,VT ∁ ].
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Let VT = c12+δT and V
T ∁ = c23+δ

T ∁ . Then the inequalities ensuring g is the unique

WMN are satisfied if and only if















δT +δ
T ∁ > 0

δ
T ∁ > 0

δT > c23 − c13

so δT can be negative because c23 < c13. Since (g,πg) ∈ Γd(V ), the cost allocation has to

satisfy






πT ∈ [c12−δ
T ∁ ,c12+δT ]

πT ∁

∈ [c23−δT ,c23+δ
T ∁ ].

Suppose (δT ,δT ∁) and (δ ′
T ,δ

′
T ∁
) satisfy the three inequalities with δT < −δ ′

T ∁
. If (g,π) ∈

Γ(δT ,δT ∁) and (g,π ′) ∈ Γ(δ ′
T ,δ

′
T ∁
), then πT < π ′

T and π
T ∁ > π ′

T ∁
.

Suppose Γ is a Nash implementable solution. Then Γ is monotonic according to Theo-

rem 1 in Maskin and Sjöström (2002). Therefore, for all (δ ′′
T ,δ

′′
T ∁
) satisfying the three in-

equalities as well as δ ′′
T ≥max{δT ,δ

′
T} and δ ′′

T ∁
≥max{δ

T ∁ ,δ
′
T ∁
}, (g,π),(g,π ′)∈Γ(δ ′′

T ,δ
′′
T ∁
)

contradicting there is either a unique or no πg such that (g,πg) ∈ Γ(δ ′′
T ,δ

′′
T ∁
). ✷

Fortunately, it turns out both desirable solutions are Nash implementable. According to

Theorem 2 in Maskin (1999), if a solution satisfies monotonicity and no veto power, then the

solution is Nash implementable. A solution satisfies no veto power provided that if an out-

come is top ranked by m−1, then it is in the solution. However, no outcome is top ranked by

any agent. Indeed, since there is h with Ch > 0, for all (g,πg) if πh
i < (V g

i −π
g
i Cg−V h

i )/Ch,

then V h
i −πh

i Ch >V
g
i −π

g
i Cg. Hence, from Theorems 2 and 3 in Maskin (1999) it follows that

solutions in our setting are implementable if and only if they are monotonic. Consequently,

we simply show that both desirable solutions are monotonic. Moreover, by Proposition 1 in

Jackson et al. (1994), solutions in our setting are implementable by bounded mechanisms.

Theorem 2 The desirable and the MS-desirable solutions are Nash implementable.

Proof: Our setting fits the setting in Maskin and Sjöström (2002) with costs and values being

states. Therefore, Theorem 2 in Maskin and Sjöström can be applied to show that Γd and

Γd
0 are Nash implementable.

To show that Γd or Γd
0 is monotonic, suppose there are a pair of costs and values

(C,V ) and (C′,V ′) and an outcome (g,πg) with (g,πg) ∈ Γd(C,V ) and (g,πg) /∈ Γd(C′,V ′)

or (g,πg) ∈ Γd
0(C,V ) and (g,πg) /∈ Γd

0(C
′,V ′). Then for (C′,V ′) either (g,πg) is max-

imizing social welfare or (g,πg) is not maximizing social welfare. If (g,πg) is maxi-

mizing social welfare for (C′,V ′), then there is an agent i such that u
g
i (C

′,V ′,πg) < 0.

9



Therefore ( /0,(0, . . . ,0)) ∈ L
g
i (C,V,πg) and ( /0,(0, . . . ,0)) /∈ L

g
i (C

′,V ′,πg), so L
g
i (C,V,πg) 6⊂

L
g
i (C

′,V ′,πg). If (g,πg
i ) is not maximizing social welfare for (C′,V ′), then there is an out-

come (h,πh) such that ∑i uh
i (C

′,V ′,πh) > ∑i u
g
i (C

′,V ′,πg). Hence, there is an outcome

(h,π ′h) such that uh
i (C

′,V ′,π ′h)> u
g
i (C

′,V ′,πg) for every i. Since ∑i uh
i (C,V,π ′h)≤∑i u

g
i (C,V,πg),

there is an agent i such that uh
i (C,V,π ′h) ≤ u

g
i (C,V,πg). Hence (h,π ′h) ∈ L

g
i (C,V,πg) and

(h,π ′h) /∈ L
g
i (C

′,V ′,πg), so L
g
i (C,V,πg) 6⊂ L

g
i (C

′,V ′,πg). To sum up, Γd and Γd
0 are mono-

tonic and consequently Nash implementable. ✷

Both solutions Γd and Γd
0 can be implemented by a bounded mechanism designed as in

the proof of Theorem 1 in Jackson et al., (1994) (see also Proposition 1).

Minimal Nash implementable solutions

The desirable and the MS-desirable solutions are correspondences and they are “big”. In-

deed, they map costs and values (C,V ) to sets containing all outcomes where individual

cost shares are bounded from below by zero and from above by the individual values of

the network. Solutions that map all (C,V ) to a single cost allocation for every WMN are

“small”, but not Nash implementable as shown in Theorem 1. Therefore, obvious questions

are whether there are minimal Nash implementable solutions and if so, what they look like.

A Nash implementable solution Γ is minimal provided there is no other Nash imple-

mentable solution Φ such that Φ(C,V ) ⊂ Γ(C,V ) for all (C,V ) and Φ(C,V ) 6= Γ(C,V ) for

some (C,V ). The following Theorem shows that there is no minimal solution in the full set

of Nash implementable solutions.

Theorem 3 Assume that the planner knows the costs C, but not the values V . Then there is

no minimal Nash implementable solution with Γ(V )⊂ Γd(V ) for all V .

Proof: To show there is no minimal Nash implementable solution with Γ(V ) ⊂ Γd(V ) for

all V , a simple counterexample is presented. There are two locations L = {1,2} with cost

c12 = 1 and m agents that want to have locations 1 and 2 connected. Then g = /0 is an WMN

provided ∑iVi ≤ 1 and g = {12} is an WMN provided ∑iVi ≥ 1. Suppose Γ : V → O is a

Nash implementable solution. Then Γ is monotonic according to Theorem 1 in Maskin and

Sjöström (2002).

There is Ṽ with Ṽi < 1 for every i and ∑i Ṽi > 1. For (g̃, π̃g) ∈ Γ(Ṽ ) let another corre-

spondence Φ : V → O be defined by Φ(Ṽ ) = Γ(Ṽ )\{(g̃, π̃ g̃)} for all V so Φ(V ) ⊂ Γ(V )

for all V and Φ(Ṽ ) 6= Γ(Ṽ ). Furthermore, Φ is monotonic because Γ is monotonic. There

is V with Vi < V ′
i for every i, ∑iVi > 1 and Vi < π̃

g̃
i for some i. Since Vi < V ′

i for ev-

ery i, and ∑iV
{12}
i > 1, Γ(V ) ⊂ Γ(Ṽ ) because Γ is monotonic. Since Vi < π̃

g̃
i for some

10



i, (g̃, π̃ g̃) /∈ Γ(V ). Hence, Φ(V ) 6= /0 for all V with ∑iVi > 1. For all V with ∑iVi < 1,

Γ(V ) = ( /0,(0, . . . ,0)) so ( /0,(0, . . . ,0)) ∈ Γ(V ′) for all V ′ with ∑iV
′
i ≤ 1 because Γ is mono-

tonic. Hence Φ(V ) 6= /0 for all V so Φ is a solution implying Γ is not minimal. ✷

The set of Nash implementable solutions contains less appealing solutions such as the

one constructed in the proof of Theorem 3. Thus, it seems natural to require additional prop-

erties of solutions. In terms of robustness, continuity is an appealing property of solutions.

However, solutions mapping problems to WMNs and cost allocations are not continuous.

The set of WMNs varies discontinuously with problems and cost allocations vary discontin-

uously with WMNs. The second best in terms of robustness is upper hemi-continuity. Recall

that a solution Γ is upper hemi-continuous if at all (C,V ), all (g,πg) ∈ Γ(C,V ) and all se-

quences (Cn,Vn)n converging to (C,V ) there is a sequence (gn,π
g
n )n with (gn,π

g
n )∈Γ(Cn,Vn)

for every n converging to (g,πg). Trivially, the desirable and the MS-desirable solutions

are upper hemi-continuous. Moreover, there are minimal solutions in sets of upper hemi-

continuous and Nash implementable solutions with their graphs being contained in the graph

of the MS-desirable solution.

To formalize the notion of sizes of solutions, let Ω be a set of solutions. A solution Γ∈Ω

is Ω-minimal provided that all solutions Φ ∈ Ω, Φ(C,V ) ⊂ Γ(C,V ) for all (C,V ) implies

Φ(C,V ) = Γ(C,V ) for all (C,V ).

Theorem 4 There are minimal upper hemi-continuous solutions Γ with Γ(C,V )⊂ Γd
0(C,V )

for all (C,V ).

Proof: First, an upper hemi-continuous and Nash implementable solution Γ is constructed.

Second, it is shown that Γ is minimal in the set of upper hemi-continuous and Nash imple-

mentable solutions.

For every graph g let the set Ag ⊂ C×V be the set of costs and values for which g is

a WMN. Then the set Ag is convex, closed and non-empty. Trivially, (Ag)g is a cover of

C×V . Let (Ag)g∈H be a minimal cover of C×V : (Ag)g∈H is a cover of C×V ; and, for

every h ∈ H , (Ag)g∈H \{h} is not a cover of C×V .

Fix a graph g and costs C. For Ag(C) ⊂ V being the set of valuations V such that

(C,V ) ∈ Ag, Ag(C) = {V ∈ V | (C,V ) ∈ Ag }, let Lg(C) ⊂ Ag(C) be the set of minimal

valuations in Ag(C),

Lg(C) = {V ∈ Ag(C) | ∀V ′ ∈ Ag(C) : max
i

V
g
i −V

′g
i > 0 ⇒ min

k
V

g
k −V

′g
k < 0}.

First, for V
g+
i = max{V

g
i ,0} and V

g−
i = min{V

g
i ,0} let the function λ g(C, ·) : Lg(C)→ R

m

11



be defined by: in case g = /0 so Cg = 0, λ
g
i (C,V ) = 1/m; and, in case g 6= /0 so Cg > 0,

λ
g
i (C,V ) =



















V
g−
i

Cg
for V

g
i ≤ 0

V
g+
i

∑kV
g+
k

Cg−∑kV
g−
k

Cg
forV

g
i ≥ 0.

Then V
g
i ≤ 0 implies u

g
i (C,V,λ g(C,V )) =V

g
i −λ

g
i (C,V )Cg = 0 and V

g
i ≥ 0 implies

u
g
i (C,V,λ g(C,V )) = V

g
i −λ

g
i (C,V )Cg =

V
g
i

∑kV
g+
k

(∑kV
g
k −Cg) ≥ 0.

Moreover,

∑
i

λ
g
i (C,V ) = ∑

i

V
g−
i

Cg
+∑

i

V
g+
i

∑kV
g+
k

Cg−∑kV
g−
k

Cg
=

∑iV
g−
i +Cg−∑iV

g−
i

Cg
= 1.

Second, let the function Γg(C, ·) : Lg(C)→O be defined by Γg(C,V ) = (g,λ g(C,V )). Third,

extend the function Γ(C, ·) : Lg(C)→ O to a correspondence Γg(C, ·) : Ag(C)→ O defined

by

Γg(C,V ) = {(g,πg) | ∃Ṽ ∈ Lg(C) : Ṽ g−V g ∈ −R
m
+ and πg = λ g(C,Ṽ )}.

Then by construction Γg is a non-empty, continuous and monotonic correspondence on

Ag(C). Finally, let the solution Γ : C×V → O be defined by Γ(C,V ) = ∪g∈H Γg(C,V ).

Then Γ(C, ·) : V → O is upper hemi-continuous and monotonic.

To show Γ is a minimal upper hemi-continuous solution, consider another upper hemi-

continuous and monotonic correspondence Φ : C×V → O with Φ(C,V ) ⊂ Γ(C,V ) for

all (C,V ). Assume (g,π) ∈ Γ(C,Ṽ ). By construction of Γ there is (C,V ) ∈ Lg(C) such

that λ (C,V ) = πg and Ṽ g−V g ∈ −Rm
+. Consider a sequence (Cn,Vn)n∈N converging to

(C,Ṽ ) with g being the unique WMN for every n. If (g,πg
n ) ∈ Γ(Cn,Vn) for every n,

then limn→∞ π
g
n = πg because Γ is upper hemi-continuous. For all sequences (hn,π

h
n )n∈N

with (hn,π
h
n ) ∈ Φ(Cn,Vn) for every n, hn = g for every n, because g is the unique WMN

for every n, and limn→∞ π
g
n = πg, because Φ(Cn,Vn) ⊂ Γ(Cn,Vn) for every n. Therefore,

(g,πg) ∈ Φ(C,V ). Since Φ is monotonic, (g,πg) ∈ Φ(C,Ṽ ) so Γ(C,Ṽ )⊂ Φ(C,Ṽ ). ✷

Remark: The solution constructed in the proof of Theorem 4 is not necessarily unique.

Indeed, non-uniqueness could be caused by multiplicity of minimal covers of C×V and

multiplicity of possible cost shares at (C,V ) ∈ Lg.

Example (continued): To illustrate Theorems 3 and 4, we use the example with three

locations and two agents. Costs are c12 = 3 and c13 = c23 = 2 and for the two agents, Titika

12



VT

VY

1

1

/0

AgT

AgY

Ag

✲

✻

has valuation VT if and only if locations 1 and 2 are connected and Yi has valuation VY if and

only if locations 1 and 3 are connected. The possible WMNs depending on the valuations

are /0, gT = {12}, gY = {13} and g = {13,23}. The graph g′ = {12,13} is not an WMN for

any valuations because c12 > c23. The combinations of valuations and WMNs are illustrated

in the figure.

In the proof of Theorem 4, valuations on the line between (2,2) and (3,1) are used

to construct cost shares for all valuations in Ag. Indeed, for any valuation (VT ,VY ) ∈ Ag,

valuations smaller than those and on the line are used to construct cost shares. Thereby, for

all valuations in Ag the relevant cost shares are subsets of the line between (1/2,1/2) and

(3/4,1/4) so more extreme cost shares are excluded even though they can be individually

rational.

In the proof of Theorem 3, for all valuations in the interior of Ag the graph g is the

unique WMN. The solution correspondence being monotonic implies that for a pair valua-

tions (VT ,VY ) and (V ′
Y ,V

′
Y ) in the interior of Ag, if, VT ≥ V ′

T and VY ≥ V ′
Y , then cost shares

for (V ′
T ,V

′
Y ) must be cost shares for (VT ,VY ) too because of monotonicity. Therefore, con-

sider a dense set of points on the line between (2,2) and (3,1) and use them to construct

cost shares for valuations in the interior of Ag. Next, consider the dense set of points on

the line except one point and use it to construct cost shares in the interior of Ag. Then the

graph of correspondence constructed without the point is a strict subset of the graph of the

correspondence constructed with the point. There is no smallest dense set of points on the

line, so the process can continue.

Implementation in strong Nash equilibrium

Agents may be able to coordinate their actions. Therefore, implementation of solutions in

strong Nash equilibrium is considered. Using a modified, and informationally more effi-

cient, version of the mechanism in the proof of Theorem 3 in Maskin (1978) we show that

the desirable solution Γd is strong Nash implementable.
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Theorem 5 The desirable solution Γd is strong Nash implementable.

Proof: For the mechanism implementing Γd , let the strategy set of every agent be the set of

outcomes Si = O and the map from lists of individual strategies to outcomes f d : Sm → O

be

f d(s) =

{

(g,πg) if s1 = . . .= sm = (g,πg)

( /0,(0, . . . ,0)) otherwise.

Suppose every agent uses the strategy (g,πg). If (g,πg) is a desirable outcome for the true

state, then no coalition of agents has an incentive to change its strategy. If (g,πg) is not a

desirable outcome for the true state, then there is another strategy (h,πh) ∈ Od(C,V ) such

that uh
i (C,V,πh)> u

g
i (C,V,πg) for every i or there is some i such that u /0

i (C,V,(0, . . . ,0))>

u
g
i (C,V,πg). Therefore, the mechanism implements Γd . ✷

We note that the MS-desirable solution is only partially strong Nash implementable.

This will be further discussed in the next section.

4 Discussion

We have used that monotonicity of solutions is necessary and sufficient for Nash implemen-

tation by Maskin’s canonical mechanism (Maskin, 1977, 1999) or the bounded mechanism

in Jackson et al. (1994). Both mechanisms have large strategy sets. For applications, it can

be desirable to reduce strategy sets in order to make the mechanism more informationally

efficient.

A mechanism for Nash implementation

The strategy sets of the canonical mechanism can be reduced as already shown in Saijo

(1988). In both Saijo (1988) and Jackson et al. (1994), fundamentals are outcomes and

preferences instead of states. In Saijo (1988), every agent submits preferences for them-

selves and another agent, an outcome and a natural number. Since preferences in the present

setting depend on costs and values, every agent would have to submit costs, values for them-

selves and another agent, an outcome, and a natural number. In Jackson et al. (1994), every

agent submits an alternative, two sets of preferences, and an integer between −(m+3) and

m. In the present setting, every agent would have to submit costs and values for themselves

and another agent, an outcome and an integer between −(m+3) and m.

We show that in the present setting all Nash implementable solutions can be imple-

mented by use of mechanisms in which every agent submits a part of the costs, values for
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themselves and another agent and an outcome. This is less information than in both Saijo

(1988) and Jackson et al. (1994), but compared to Jackson et al. the mechanism is not

bounded.

Before the result can be stated, the part of costs every agent must submit has to be

specified. There are η = ∑
n−1
i=1 (n− i) connections between different pair of locations so

there are |G |= 2η possible graphs. For q ∈ N defined by

2|G |

m
≤ q <

2|G |

m
+1,

Let (Qi)i be a cover of the set of graphs G with |Qi| = q as well as Qi ⊂ Qi−1∪Qi+1 and

Qi ∩Qi+1 6= /0 for every i where i+1 = 1 for i = m.

Theorem 6 All Nash implementable solutions Γ can be implemented by a mechanism ((Si)i,F)

with Si = R
q
+×(R|G |)2×O for every i.

Proof: Consider an outcome (g,πg).

For a Nash implementable solution Γ let a mechanism ((Si)i,F) be described by Si =

R
q
+×(R|G |)2×O for every i and F : S → O defined as follows:

• In case there is (C,V,g,πg) ∈ C×V ×O with (g,πg) ∈ Γ(C,V ) such that for every i,

si = ((Cg)g∈Qi
,Vi,Vi+1,g,π

g), F(s) = (g,πg).

• In case there are j and (C,V,g,πg) ∈ C×V ×O with (g,πg) ∈ Γ(C,V ) such that si =

((Cg)g∈Qi
,Ci,Vi,Vi+1,g,π

g) for every i 6= j,

F(s) =







prO s j for prO s j ∈ L
g
j(C,V,πg)

(g,πg) for prO s j /∈ L
g
j(C,V,πg)

with prO s j being the outcome of agent j’s strategy.

• In all other cases, for C̃ defined by C̃g = maxi{C
g
i } and Ṽ by Ṽi = V i

i−1 for every i

(where V i
i−1 is what i− 1 reports is i’s valuation), let F(s) = (gi,π

gi) for i chosen at

random from the set

{ i | ∀ j : ∑k 6=iṼ
gi

k −C̃gi ≥ ∑ℓ 6= jṼ
g j

ℓ −C̃g j }

endowed with the uniform distribution.

Let NE : C×O → S be the Nash equilibrium correspondence.

First, it is shown that Γ(C,V ) ⊂ F◦NE(C,V ). Suppose si = ((Cg)g∈Qi
,Vi,Vi+1,g,π

g)

for every i and some (g,πg) ∈ Γ(C,V ). Then

F(Si,s−i) = L
g
i (C,V,πg).
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Therefore s ∈ NE(C,V ). Second it is shown that F◦NE(C,V ) ⊂ Γ(C,V ). In the first case,

where there is (C̄,V̄ ,g,πg)∈C×V ×O with (g,πg)∈Γ(C̄,V̄ ) such that si =((C̄g)g∈Qi
,V̄i,V̄i+1,g,π

g)

for every i, a deviating agent j is able to move into the second case. Therefore

F(Si,s−i) = L
g
i (C̄,V̄ ,πg).

If L
g
i (C̄,V̄ ,πg) 6⊂ L

g
i (C,V,πg) for some i, then s is not a Nash equilibrium. If L

g
i (C̄,V̄ ,πg)⊂

L
g
i (C,V,πg) for every i, then s is a Nash equilibrium. Since Γ is Nash implementable, it is

monotonic, so (g,πg) ∈ Γ(C,V ). In the second and the third cases, there is a deviating agent

i, who is able to move into the third case, so

F(Si,s−i) = O.

Hence, s is not a Nash equilibrium. ✷

As can be seen in the proof of Theorem 6, if agents submit different strategies, then the

values submitted by agent i are used to evaluate the outcome submitted by agent i. Thereby,

agent i is able to have any outcome selected. Since every agent can have all outcomes

selected, there will be no Nash equilibrium, where agents submit different strategies.

Partial Implementation

Partial implementation is a weaker notion of implementation where the set of Nash equilibria

includes the solution correspondence. Both the desirable and the MS-desirable solutions are

partially Nash and strong Nash implementable using the modified mechanism in the proof

of Theorem 5. The mechanism has strategy set Si = O for every agent and payoff function

f d : Sm → O defined by

f d((si)i) =

{

(g,πg) for s1 = . . .= sm = (g,πg)

( /0,(0, . . . ,0)) otherwise.

Indeed, the mechanism fully strong Nash implements the desirable solution as shown in

Theorem 5. It is straightforward to check that it partially implements the three other combi-

nations of solutions and forms of implementation. Therefore, the best equilibrium is welfare

maximizing making the price of stability equal to one for all four combinations.

However, since si =( /0,(0, . . . ,0)), for every i, is a Nash equilibrium, the price of anarchy

is unbounded for Nash implementation. If the utility is non-positive for some agent i, then

si = ( /0,(0, . . . ,0)), for every i, is a strong Nash equilibrium for the MS-desirable solution.

Indeed, agent i has to increase her utility by changing her strategy. However, to increase

the utility of agent i, her cost share must be negative. Consequently, the price of anarchy
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is unbounded. Obviously, the problem with the MS-desirable solution is that it may not be

possible to transfer welfare between agents.

To sum up: welfare maximization can be obtained in the best case Nash equilibrium

for all four combinations of desirable and MS-desirable solution versus partial and strong

Nash, while the worst case efficiency is unbounded, except for the combination covered in

Theorem 5; and, both the desirable and the MS-desirable solutions can be implemented in

Nash.
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