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Highlights

A review & critique of optimal fail-safe structural design

Edward A. Whiteside, Helen E. Fairclough, Samuel E. Rigby

• The areas of structural optimization and fail-safe/robust design have generally

been independent research themes, operating separately.

• ’Fail-safe optimization’ has sought to reconcile fundamental differences in ap-

proach between these two fields.

• A review of fail-safe optimization is presented, critiquing the unification of the

two parent themes.

• Fail-safe optimization works are found to miss important considerations well-

known in the fail-safe/robust design community.

• To advance the state-of-the-art, structural optimization and fail-safe design must

be addressed concurrently, with both aspects implemented in a fair proportion.
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Abstract

Structural material optimization holds great promise for reducing the embodied carbon

in future infrastructure. However, optimized solutions typically lack robustness and

may be susceptible to disproportionate collapse under damaging events such as blasts,

collisions, or material corrosion. Fail-safe optimization offers a solution by balancing

material efficiency with the ability to meet design requirements after a defined dam-

age event. This paper reviews the state-of-the-art in fail-safe optimization, identifying

current knowledge gaps and evaluating methodologies against existing guidelines for

fail-safe design. A brief overview of fail-safe and collapse-resistant design is included

to contextualize the comprehensive summary of the current literature. Key findings

highlight the need for further investigation into buckling failure, allowing partial col-

lapse, buildability aspects and the role of bending within fail-safe frame optimization.

Additionally, a significant gap is identified between the types of analysis recommended

in fail-safe design guidelines and those used in optimization tools, with the latter often

neglecting non-linear and dynamic effects. To address this disconnect, the paper dis-

cusses optimization algorithms and techniques through the lens of incorporating more

advanced analysis. This review aims to advance the development of fail-safe optimiza-

tion, guiding improvements in current tools to enhance structural efficiency and safety

against life-threatening events.
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Robustness, Accidental actions, Review
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1. Introduction

1.1. Context

Global challenges such as the climate emergency, the reduction of available raw

materials, and the pursuit of economic gain have significantly increased interest in the

research area of structural material optimization. This practice seeks to unify design

and analysis within an automated process, enabling the identification of the best feasi-

ble design more efficiently. By defining the design requirements (e.g., global equilib-

rium, stress and deflection limits), specifying what constitutes a good structure (e.g.,

minimum structural volume), and determining the means of evaluating a solution’s

validity (e.g., analysis type), algorithms can be employed to explore potential design

solutions and guide the process toward the optimal structure. Structural optimization

can thus be viewed as an approach to engineering design from an inverse problem

perspective [1].

However, structural safety remains paramount, and damage-resistant properties are

essential for designs to be confidently used in practice. Structures identified through

typical optimization formulations often lack these characteristics as minimizing mate-

rial usage inherently reduces redundancy, making them more susceptible to abnormal

loading or damaging events [2]. The design of material-efficient structures that en-

sure safety after a destructive event is known as fail-safe optimization [3]. This type

of structural optimization aims to balance material efficiency and redundancy, finding

the minimum volume solution that provides a desired level of structural robustness,

typically defined by the extent of damage a structure can withstand.

This literature review investigates current fail-safe optimization research, assess-

ing the tools against contemporary recommended fail-safe design methodologies and

identifying current knowledge gaps.

1.2. Definitions

Within the field of fail-safe design, many researchers have commented on the gen-

eral lack of consensus on terminology [4, 5, 6], with Starossek & Haberland [5] sug-

gesting the lack of agreement has inhibited the development of procedures and design
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standards. Here, a set of definitions is given based on the curated literature in an at-

tempt to provide clarity for this paper without exacerbating the inconsistency of the

current terminology.

Structural Damage: An unplanned and abnormal variation or change of a struc-

ture’s properties, which entails weakening and negative consequences. Damage in-

cludes impacts on material properties and/or geometry of a structure. This may occur

at any point during the structure’s life cycle [7, 8, 9]. Note that statistical variation of

certain system parameters, e.g. the natural uncertainty of material properties such as

yield stress values, are not considered structural damage in this review.

Redundancy: The ability of a structural system, post damage, to redistribute forces

- which were once taken by the damaged elements - among its undamaged members

and connections through alternative load paths or multiple load-transfer mechanisms.

[10, 6]

Robustness: The ability of a structure to avoid consequences disproportionate to

an event which causes damage. It is a matter of residual capacity to maintain function

after a change in the structure or its environment. It, therefore, must be defined on a

case-by-case basis, in line with specific design or analysis investigation goals. [4, 11]

(Note the term ‘robustness’ in the context of optimization is commonly used to de-

scribe a type of optimization problem where the design parameters possess some degree

of uncertainty and ensuring the resulting structure is insensitive to such uncertainties

[12]. Therefore, in this article, the term ‘structural robustness’ is used to denote the

former to avoid confusion with the latter.)

Disproportionate Collapse: Refers to an event where damage to a relatively small

part of a structure results in damage or collapse over a much larger area. Dispropor-

tionate collapse relates to the final size of the damaged region compared to the initial

amount of damage without describing the structural behaviour occurring during the

event or the triggering circumstances. Whether a resulting end damage is dispropor-

tionate is potentially subjective and thus requires careful definition for a given struc-

ture. [4, 11]

Progressive Collapse/Failure: A description of the response of a structure during

a damaging event where local structural damage propagates through a chain reaction
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mechanism leading to further failure within the structure. Progressive collapse can be

a mechanism that creates a disproportionate collapse event; however, the mechanism

does not guarantee that a large disproportion of damage will always occur. [4, 13]

Key Element: An element which can cause disproportionate collapse if subject to

a substantial reduction in capacity due to a structural damage event.

Critical Element: An element which, if damaged, will significantly reduce the

performance of the entire structure.

Fail-safe Structure: A structure which is capable of fulfilling the relevant design

requirements after a certain portion of the structure has been subjected to structural

damage. [14, 15]

Fail-Safe
Design

Structural
Optimization

Dynamic/ Nonlinear
Analysis

Section 3

Section 4Section 2

Figure 1: Paper organisation, with the solid purple centre representing the ideal state of optimal fail-safe

structural design tools.

1.3. Study scope and structure

It is now possible to define the scope of this study. Here, the focus is specifically

on the optimization of fail-safe structures. Fail-safe structures offer one strategy to

produce robust structures which are not susceptible to disproportionate collapse; the
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key difference from more general risk-based approaches is ‘the acceptance that fail-

ures will occur for one reason or another despite all precautions taken against them’

[14, p. 363]. For this reason fail-safe design is a popular approach across various

industries from aerospace to civil engineering (albeit under varying terminologies).

Relatively mature analysis methods and design guidelines are available. However, the

rise of optimization-driven approaches has been in large part separated from this body

of knowledge. The aim of this paper is therefore to bridge that gap by identifying dis-

crepancies between the two fields, and providing a common base from which work can

progress towards more realistic models for fail-safe optimization.

The organisation of this paper is illustrated in Fig. 1. First, in Sect. 2, a summary of

modern fail-safe design methodologies are presented to provide context to research on

fail-safe optimization. The state-of-the-art in fail-safe optimization is then presented in

Sect. 3, incorporating a critique of the work against contemporary design practice and

highlighting key knowledge gaps. A significant mismatch between current optimiza-

tion tools and recommended design guidelines is observed in the analysis methods

employed. Hence, in Sect. 4 potential optimization techniques are assessed through

the lens of their potential for incorporating the advanced analysis methods demanded

by current best practices in fail-safe design. Overall, it is hoped that this work will

aid in the development of practical fail-safe optimization design, reducing the material

consumption of our structures whilst improving safety.

2. Fail-Safe Design & Analysis

2.1. Section Motivation & Aims

Throughout a structure’s lifespan, it may be subject to some form of damage which

negatively influences its performance and ability to provide its design requirement.

This damage can come in many forms, including material degradation, fire, earthquake,

vehicle collisions, blasts, or natural storms. Due to the rise of climate change and esca-

lation of geopolitical tensions, global infrastructure is becoming increasingly exposed

to such severe events [16]. It is imperative that performance after the occurrence of

damage can be guaranteed to ensure the safety of the people who occupy and use these
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structures and to reduce economic loss [4]. The area of fail-safe design and progressive

collapse has thus received growing attention over the last few decades.

This section reviews modern aspects of the collapse-resistance design and structure

analysis to provide context to fail-safe optimization. Sect. 2.2 provides an overview

of principal contemporary methodologies employed in this field. The most relevant

approaches and considerations for optimization-driven design are then explored: crit-

ical member identification (Sect. 2.3) and dynamic response after a damage event

(Sect. 2.4). Here, the focus is on providing the required context for the topic of fail-safe

optimization, and readers are referred to Elkandy et al. [16], Adam et al. [4], and Ki-

akojouri et al. [17] for comprehensive reviews of the current research on the progressive

collapse of structures.

2.2. Design & Analysis Methodologies

Like for many design problems, structural engineers often refer to codes and guide-

lines to aid their design of fail-safe structures (e.g. GSA 2003 [18], UFC 4-023-03 [19],

and Eurocode 1 [20]). In literature, Ellingwood [13], Byfield et al. [21], and Russell

et al. [22] present the use of design codes from a historical perspective, highlighting

the importance of progressive collapse events such as Ronan Point (London, 1968),

the A.P. Murrah Federal Building (Oklahoma, 1995) and the World Trade Center (New

York, 2001) have had on the development of design codes and guidelines. Byfield et

al. [21] highlight the main ways modern codes recommend designing against progres-

sive collapse, including techniques such as member-tying, designing for local resis-

tance of key members, and alternative load path design. The latter methodology will

be the primary technique focused on in this review due to its applicability in fail-safe

optimization. Fang and Fan [6] identify four main design features to create redundant

structures: structural form, material property, member ductility, and continuity. They

look to define which parts of the design stages, construction, and maintenance should

these main features be addressed. Starossek [5] proposes a framework for designing

a collapse-resistant structure, placing design requirements and objectives into different

classification levels, leading the designer to consider incorporating different degrees of

structural robustness into their structures. Alternatively, López [23] considers the im-
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portance of recording cases of disproportionate collapse, outlining a general method-

ology for establishing a database and taxonomy and suggesting methods in which to

accurately describe the damaging event and the mechanism of damage propagation for

comprehensive logging which can enable engineers to learn from previous failures.

Many authors have proposed different metrics for quantifying fail-safe structures’

redundancy and other desirable qualities. Refs. [24, 25, 26, 8] have looked to define

indexes based on different structural characteristics as a means of placing numerical

quantification to the impact of a damage case and the redundancy/structural robustness

of a structure. Whilst most studies have established indexes for frame and truss-based

structures, Kranz et al. [27] established a methodology to measure fail-safe qualities

for continuum structures, measuring different load paths through an image processing

method.

Others have viewed the problem of fail-safe design from a probability and risk anal-

ysis perspective. Pretlove et al. [28] applied the natural variation of material properties

into the fail-safe assessment of a simple structure, yielding a probability of failure for a

given damage case and system parameter definitions. Frangopol [24] undertook stud-

ies on probabilistic measures, establishing a reliability index based on the variability

of certain design variables. Likewise, Baker et al. [29] established a framework to

assess system structural robustness when subject to structural damage, founding the

methodology through risk analysis, allowing for the consideration of indirect conse-

quences of damage. Similarly, Mousavi & Gardoni [30] propose an integrity index

based on the difference between the maximum and minimum failure probabilities of

the structural components of a system. Ellingwood [13] introduced some basic princi-

ples of risk-informed decision-making for assessing and mitigating risks and proposed

a mathematical framework for quantifying the probability of disproportionate damage

occurring. Beck et al. [31] looked to compare the structural robustness indexes of [29]

and [32], assessing them on their suitability for measuring strengthening via a codi-

fied alternative load path method and their applicability for describing solutions from

risk-based optimization.

McKay et al. [33], and Byfield et al.[21] reviewed the different structural analysis

methods from various codes and guidelines for the prevention of disproportionate col-
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lapse, with McKay et al. [33] highlighting some of the inconsistencies with the applica-

tion of dynamic load factors used in static analysis and their general overly conservative

nature. Many of these codes and guidelines recommend the use of dynamic analysis for

most structural and damage types. The importance of dynamic effects and their conse-

quences on design is discussed in greater detail in Sect. 2.4. Kiakojouri et al. [17] and

Elkady et al. [16] reviewed numerical modelling techniques, highlighting the strengths

and weaknesses of the finite element method, the applied element method [34], and

the discrete element method [35] for their accuracy in simulating different levels and

forms of damage. Kiakojouri et al. [17] criticised the use of the finite element method,

claiming that it cannot easily predict the collapse mechanism and sequence, although

this has occasionally been achieved (e.g. Smith [36, 37]). Supervised machine learning

approaches have also been applied for the dynamic assessment of progressive collapse

[38].

(b)

(a)
Damaged 

member

Figure 2: Illustration of all possible damage cases for a 4 bar cantilever truss structure. (a) Single element

damage cases. (b) Two element damage cases.

2.3. Critical member identification

Within the built environment, structures are typically formed of multiple elements

– thus introducing multiple potential failure points. As a result, analysing the impact

of member damage for every possible damage scenario can become highly laborious

and time-consuming. This is particularly true for truss-like structures or in the case

of continuum structures as considered in Sect. 3.2, where the effect of damaging any

given member is hard to quantify through engineering intuition. For a structure with
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n number of members and each damage case is defined by the damage of k number

of members, the total number of unique damage conditions which can be analysed is

given by the binomial coefficient, as shown in equation 1:

Total Unique Damage Conditions =

(

n

k

)

=
n!

k!(n − k)!
. (1)

A 4-bar example is shown in Fig. 2, illustrating all the potential damage cases for

k = 1 and k = 2. Consider a truss composed of 20 members (n = 20), where each

damage case is defined by the damage of two members (k = 2). There exist 190 unique

damage cases that would require analysis. If an engineer employs the recommended

non-linear dynamic analysis approach, assessing all possible damage cases would nat-

urally incur significant computational costs and time. In response to this, a significant

amount of research has looked into the identification of critical members.

Energy-based methodologies for critical member identification have been a popular

approach for many researchers. Smith [36] presented a systematic search procedure,

quantifying the criticality of a damage case by comparing the change in strain energies

of the remaining members to their rupture energies. Smith develops this methodology

in [37], allegorising the collapse of a building to fast fracture in metals to find the se-

quence of damaged members that requires the least amount of damage effort yet results

in structural collapse. Similarly, Feng [39] utilises a strain energy-based methodology

by employing a change in total strain energy robustness definition to identify critical

members.

Other researchers have approached the problem by looking to establish coefficients

of importance for given members based on the structure’s load capacity or stiffness in-

formation to identify their damage impact. Frangopol and Curley [24] used their limit-

state-based redundancy definition to identify critical members. Likewise, the identifi-

cation of worst-case damage scenarios, measured through the reduction of limit analy-

sis load factors, was formulated as an optimization problem by Kanno [40] and solved

as a mixed integer linear programming problem. To find regions within a standard

power transmission tower sensitive to member damage, Eslamlou et al. [41] utilised

non-linear dynamic analysis to determine impact factors from damage cases assigned
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at different locations in the structure. Feng et al. [42] presented a methodology centred

on information from a system’s stiffness, applying an element importance coefficient

by comparing the determinant of the damaged and undamaged tangent stiffness matri-

ces. Similarly, Fang [43] presents a plastic importance coefficient based on the change

in the ultimate plastic bearing capacity of the damaged structure and the elastic bear-

ing capacity of the undamaged structure. Furthermore, quantifying the importance of

members for a given loading event based on failure probabilities has also been inves-

tigated. By considering a systematic reliability-based methodology, Felipe et al. [44]

ranked elements based on their combined probability of initiating failure progression

(structural importance) and their probability of being damaged (vulnerability).

2.4. Dynamic Action & Effects After Damaging Events

There is a consensus among researchers and guidelines that using dynamic analy-

sis for measuring the effects of sudden damage events is recommended over any static

analysis. The short study by Pretlove [45] acts as a good demonstration of the impor-

tance of dynamic action. Pretlove [45] remarks that a structure will undergo a complex

transient dynamic response after sudden damage as the system’s kinetic energy is grad-

ually removed through damping and thus approaches a new static equilibrium. How-

ever, during the dynamic phase, the system’s displacement will overshoot concerning

its final static position, thus converting its kinetic energy to strain energy, leading to

heightened element stresses. By using this energy conversion and considering a simple

1-D parallel spring system (see Fig. 3a), Pretlove [45] demonstrated analytically the

non-conservative nature of static analysis. It was shown that when certain conditions

are met, the dynamic analysis will infer that a progressive collapse mechanism will

be triggered whilst a static analysis does not, as shown by the black region in Fig. 3b.

These results were later verified numerically by Whiteside et al. [46]. However, the

extent of the dynamic influence is generally case-dependent and entails complex be-

haviours which provide challenges to model. The rest of this subsection focuses on the

dynamic action of trusses due to the typologies prevalent in fail-safe optimization.

Many researchers have looked to undertake physical testing on truss structures sub-

ject to sudden damage to measure the dynamic effects and overall collapse-resistant
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Figure 3: Pretlove [45] static/dynamic comparison study. (a) 1-D parallel spring system that experiences an

instantaneous spring removal. (b) A plot of system parameters and the result of the structure’s safety based

on the type of analysis used. The black zone is the numerical replication by Whiteside et al. [46].
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mechanisms [28, 47, 48, 49, 50]. However, due to the difficulties of such experiments

and the limitations of the number of damage cases which can be applied, numerical

modelling, most commonly employing the finite element method, is used to perform

fail-safe analysis [51, 41, 48, 52, 53, 50, 46].

Rapid damage events induce other complex dynamic events in the structure, such

as acoustic stress wave propagation. Several studies have modelled stress wave prop-

agation through truss structures [54, 55, 56]. However, its consideration in fail-safe

analysis has been sparse. Jiang & Chen [51] and Goto et al. [57] claim that the con-

siderations of stress waves can be neglected, as their magnitude will generally be less

than the stress developed by the form redistribution; however, additional investigation

into the importance of stress wave propagation is required across a broader range of

structure types.

The rupture time of an element during a damage event can significantly affect the

dynamic effects experienced by a structure. Studies by Mozos & Aparicio [58] and

Whiteside et al. [46] have investigated this, with their findings indicating that an in-

crease in removal time decreases the dynamic response, the magnitude of which being

linked to the modal time periods of the damaged structure. This characteristic is illus-

trated in Fig. 4.

Figure 4: Plot of the generalised coordinate ratio of the maximum modal response to the static response over

the ratio of element rupture time to the modal time period, showing the general influence of the rupture time

on the dynamic response of a structure. Findings from Mozos & Aparicio [58].
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Due to some of the challenges in performing dynamic analysis for the process

of fail-safe design, it is common to utilise a static analysis approach in conjunction

with amplification factors to compensate for the increased stresses due to dynamic ac-

tion. McKay et al. [33] reviewed guideline suggestions for amplification factors, noting

several inconsistencies and the over-conservative nature of using the standard values.

Kang et al. [59] also criticised the general use of load factors for dynamic problems

due to their inability to capture the multi-directional nature of the structural responses.

Based on these shortcomings, researchers have proposed ways to approximate more

accurate dynamic amplification values for truss structures in certain situations [57, 60].

For problems such as sudden column removal in frame buildings, pseudo-static analy-

sis methodologies have been developed, such as the energy balance method proposed

by Izzuddin et al. [61], with its application being demonstrated in [62].

3. Fail-safe optimization

3.1. Brief Introduction to Optimization & Section Aims

Investigations into the limit of material efficiency to transmit a given set of loads

to a set of supports were first investigated by Michell [63], developing on the work of

Maxwell [64]. Since the establishment of the theory, numerical methods for finding ap-

proximate solutions to these problems have become an extensive engineering research

area. The research topics can be roughly split into continuum optimization and truss

optimization based on the structural model employed. For either of these, three opti-

mization problems can be addressed: size, shape, and topology [65]. Size optimization

refers to the identification of element dimensions, shape optimization refers to alter-

ations of the structure’s geometry, and topology refers to the connectivity of elements.

Such characteristics are thus used to minimise or maximise a design objective (usually

structural volume or compliance) whilst ensuring the structure meets design require-

ments. Structural optimization problems may also be categorized as deterministic or

probabilistic depending on the degree of certainty of the system parameters, such as

the material properties and applied load.
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Fail-safe optimization introduces the requirement to resist defined damage events,

thus ensuring that design requirements are met after such an event and that the structure

maximises the given objective, e.g. material efficiency. For deterministic problems, the

degree and nature of damage events are usually predefined, typically through either

damage regions/zones or explicit damage to defined elements. Their occurrence is

guaranteed, and so satisfactory behaviour must be obtained for every case. Guaranteed

damage models may also be applied to probabilistic optimization problems, with the

uncertainties arising elsewhere. Alternatively, probabilistic frameworks may consider

models where damage cases have associated probabilities < 1. It is reiterated here that

behaviour after damage has occurred is a fundamental part of fail-safe design, and so

consideration of aleatory uncertainties alone does not make a problem one of fail-safe

design. Furthermore, due to the high number of possible damage cases of any given

structure, as highlighted in Sect. 2.3, creating optimum structures which meet fail-

safe design requirements poses computational challenges. However, with the recent

increase in computing power and the importance of collapse-resistant characteristics,

fail-safe optimization has become an area of growing interest.

This section looks to review the state-of-the-art in fail-safe optimization research.

Its application to continuum structures is presented first, followed by trusses and other

structure typologies. A critique of the literature is then presented, identifying some

disconnects between the current fail-safe optimization tools and the recommended fail-

safe design methodologies, along with general areas which have yet to be extensively

explored.

3.2. Continuum Structures

3.2.1. General Method

The optimization of solid continuum structures revolves around assigning material

at any location within a design domain to meet the design requirements while simul-

taneously minimising or maximising an objective function [66]. The design domain is

typically discretized into a finite number of elements which can be removed or main-

tained to establish a solid structure. This general process is shown in Fig 5. To accom-

plish this complex task, the current leading approach is the Solid Isotropic Material
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with Penalisation method, where the density of the finite elements is allowed to vary

continuously between 0 (void) and 1 (material present) but are penalised when non-

binary values are taken [67]. Another popular approach is the Evolutionary Structural

Optimization method [68], where the material within the design domain is iteratively

removed from under-utilised regions. For both methods, a structure’s response for

some given design variables is determined through finite element analysis.

Design Space

(a) (c)(b)

Figure 5: General process for topology optimization of continuum structures. (a) Defining boundary con-

ditions and the design domain. (b) The design domain is discretized into a mesh of finite elements. (c)

The optimization problem is solved by removing and adding material in the design domain to produce an

optimum structure. Optimized structure produced using Interactive 2D TopOpt App [69].

3.2.2. Initial Studies

The first introduction of fail-safe design in continuum optimization was by Jansen

et al. [70], who introduced a failure-patch approach, where a structural damage case is

modelled by a void zone in which no material can exist. Square-shaped patches were

applied at every finite element grid individually, leading to a high number of damage

cases for a given problem and thus leading to significant computational cost.

The method was developed by Zhou & Fleury [15], extending the formulation to

solve 3-dimensional problems, where cube damage volumes replaced square damage

patches. The number of damage cases was also reduced by applying the damage zones

to a grid size equal to the size of the patches, thus ensuring no damage cases overlap.

For both studies, including damage cases in the optimization showed that the resulting

optimised structures possess increased levels of complexity over their nominal cases

(see Fig. 6). Since these studies, continuum fail-safe optimization has received signifi-

cant attention from researchers, extending the basic approach in various ways.
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(a)

(b)

(c)

Figure 6: Continuum fail-safe optimization solutions using a failure patch approach on a cantilever problem

within increasingly large damage cases, adapted from Zhou & Fleury [15]. The hatched zone is excluded

from damage. (a) Nominal non-fail-safe solution. (b) Fail-safe solution using small damage patches. (c)

Fail-safe solution using large damage patches.

3.2.3. Improving Computational Efficiency

Many studies have looked to improve the computational efficiency of the method by

reducing the necessary damage cases which need to be considered, employing meth-

ods similar to those discussed for critical member identification in Sect. 2.3. Am-

brozkiewicz & Kriegesmann [71] introduced an active-set method, reducing damage

cases by identifying the active constraints within the optimization problem. Wang et

al. [72] employed the use of von Mises stresses to dictate the position of damage cases

for each iteration of the optimization process. Others have reduced the number of dam-

age cases by using search strategies to locate critical damage regions. Hederberg &

Thore [73] proposed the use of ‘moving morphable components’ to allow the damage

patches to move to the locations of critical failure. Alternatively, Zhang et al. [74] pro-

pose a framework for placing local damage patches using a stochastic sampling strategy

to locate regions of critical damage for each iteration quickly. Although Herrero-Pérez
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& Picó-Vicente [75] do not directly reduce the number of damage cases, computation

effort is reduced by employing a hierarchical parallelization scheme and thus allows

the optimization to be applied to high-resolution structures. By establishing a method-

ology for assessing fail-safe qualities of continuum structures, Kranz et al. [27] looked

to investigate the influence of failure patch sizes and shapes for solutions using a max

stress minimisation objective function. Dense and computationally expensive damage

patch sets were considered unnecessary for creating good fail-safe solutions. Further-

more, non-fail-safe solutions using local volume constraints [76] to establish additional

load paths were tested but were considered less favourable due to their dependence on

more heuristic parameter tuning.

3.2.4. Additional Design Considerations

Other researchers have looked to introduce additional factors into the fail-safe op-

timization problem. Viewing the problem from a probabilistic ‘robust’ optimization

approach, Long et al. [77] looked to consider uncertainties in the system’s loading

concerning both the force’s direction and magnitude. Addressing the problem of un-

certainty in damage cases, Martínez-Frutos & Ortigosa [78] attribute probabilities to

pre-defined damage locations, along with uncertainties to their size. In addition, they

introduce the minimisation of the standard deviation of structural compliance, thus

helping to ensure that each damage case inflicts a similar level of structural capac-

ity loss. Cui et al. [79] considered a reliability-based topology optimization problem,

integrating the uncertainty of design parameters within a problem and thus looked to

integrate reliability-based topology optimization into a fail-safe formulation. Similarly,

da Silva & Emmendoerfer Jr [80] introduced the considerations of imperfections due

to manufacturing error, where eroded and dilated topologies represent extreme manu-

facturing error [81].

da Silva et al. [82] looked to address the problem of designing against failure in-

duced by overloading whilst ensuring predictable points of failure, a requirement for

designing large landing gear systems. By utilising a stress-constrained formulation and

defining a predefined ‘damage zone’, the resulting optimized solutions were shown to

experience excessive stresses in the defined region during overloading situations, thus
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providing a predictable point of failure, and were capable of redistribution of the loads

after the material in the over-stressed region had been removed.

Peng and Sui [83] considered incorporating deflection-based constraints into a vol-

ume minimization problem with traditional failure patches. The effects on optimum

topologies considering different failure patch shapes and sizes were also investigated.

Zhao et al. [84] looked to introduce fatigue considerations into the optimization

problem, subjecting their structures to cyclic loading conditions and employing equal

life curves for material failure evaluation. The resulting optimised structures were

found to be sensitive to the applied cyclic load conditions.

3.2.5. Multiscale Structures

While most continuum fail-safe optimization looks to alter the macro-structure,

others have investigated the optimization of cellular micro-structures and their contri-

bution to structural robustness (also known as two-scale topology optimization). The

methodology involves the replacement of the solid continuum finite elements with sub-

structures that have been optimized to resist the local stress states, as shown in Fig. 7.

See Wu et al. [85] for a comprehensive review of this optimization type applied to

non-fail-safe problems.

A study by Qiu et al. [86] optimised continuum structures subject to standard load-

ing and no damage cases using a set of predefined micro-structures. Applying the

methodology to an example case, Qiu et al. [86] tested the resulting structure’s ro-

bustness against a typical solid continuum optimised structure, modelled damage by

a triangular void domain. Due to the larger member sizes of the micro-structure opti-

mised solution, lower strain energy increases were found, suggesting improved struc-

tural robustness. Similarly, Do Quang et al. [88] investigated using Voronoi tessellation

for infill optimization, comparing the structural robustness properties of the resulting

structure to that of other structures optimised using alternative tessellation strategies.

Damage was inflicted on the structures through small regular failure patches at a de-

fined location within the sub-structure. Recently, work by Yang et al. [89] looked to

incorporate cellular micro-structures into continuum fail-safe optimization fully, con-

sidering lattice structures of fixed topology. It was found that structures optimised using
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Figure 7: Example of a non-fail-safe continuum optimization solution using micro-structures for a cantilever

problem. Adapted from Ferrer et al. [87]

micro-structures could be more structurally robust than those optimised using solid ma-

terial. However, the performance is strongly related to the configuration of the lattice

micro-structure. Similarly, Huang et al. [90] considered a two-parameter-based lattice

microstructure, thus allowing greater cell topology change without the need to adjust

predefined unit cell configurations. Whilst lattice approaches provide computational

benefits, the structural performance is still constrained by the predefined cell topology.

Addressing this, Ding et al. [91] recently proposed a multiscale concurrent topology

fail-safe optimization formulation, allowing both the macro and cell topologies to be

optimized in parallel. As a consequence, the influences of the initial microstructure

were negligible.

Concerning optimising structures subject to impact loading, Shen et al. [92] looked

to undertake a supervised machine-learning approach for the inverse design and opti-

mization of auxetic honeycomb structures with gradient structural properties, looking

to maximise specific energy absorption. Such auxetic honeycomb structures are known

for their unique negative Poisson’s ratio effect, which consequently can result in supe-

rior impact resistance [93].
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3.3. Pin-jointed Truss Structures

3.3.1. General Method

Although many methodologies for finding optimum structural topologies of truss

structures exist (e.g. [94]), the most popular approach is the ground structure method

[95]. This method’s most straightforward approach creates a dense structure of poten-

tial members from which a size optimization problem can be solved. The member’s

cross-sectional areas can take a range of continuous values from zero to infinity. It

is common for most members to take a zero cross-section value, effectively removing

them from the structure and establishing a new topology. This process is illustrated

in Fig. 8 for a simple cantilever problem. Truss optimization problems involving the

transfer of a single static load case (without consideration of damage or manufacturing

tolerances) commonly result in statically determinate structures. Due to these charac-

teristics, the structure possesses low structural robustness to resist abnormal loading

and damaging events.

Design Space

(a) (b) (c) (d)

Figure 8: Ground structure method for topology/ size optimization of pin-jointed truss structures. (a) Define

boundary conditions and design domain. (b) The design domain is discretized with a grid of nodes. (c) The

ground structure is constructed by connecting every node to every other node, establishing every possible

member. (d) The optimization problem is solved, sizing and removing bars from the ground structure to give

an optimum solution.

In the context of fail-safe optimization, two general types of constraints exist to

resist disproportionate and progressive collapse. The typical method, which follows

from non-fail-safe optimization problems, uses element-based constraints such that no

further elements will fail after a damaging event (e.g. stress constraints). Alternatively,

system-level constraints may be considered, where the condition of the entire structure

is integrated, such as progressive collapse failure. The latter method is less popular and

is primarily considered in probabilistic studies discussed in Sec. 3.3.4.
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3.3.2. Initial Studies

The first attempt to address the lack of structural robustness of standard optimised

trusses through the incorporation of fail-safe design considerations was by Sun et

al. [3], where the complete removal of members defined the damage cases, and op-

timization was achieved through sizing the elements. Due to the necessity to evaluate

the structure for all prescribed damage and load cases, the optimization problem sizes

increase rapidly, and consequently [3] considered only relatively small structures with

a limited number of damage cases (up to 72 bars, 5 damage cases).

Arora et al. [96] considered a slightly larger problem (108 bars, 6 damage cases),

grouping members to take the same cross-sectional areas and thus reducing the size

of the optimization problem. This was later developed by Nguyen & Arora [97], who

incorporated the division of a given truss structure into several smaller substructures to

reduce computational work associated with alterations to the system’s stiffness matrix

due to the member removal damage cases.

Furthermore, [97] introduced a ‘worst violated constraint’ method to reduce the

number of constraints the program needs to consider, further improving computational

efficiency. A more general damage definition was introduced by Achtziger et al. [98],

where a damage case is defined by an elastic modulus degradation field acting over the

design domain. This general damage model was then applied to the fail-safe optimiza-

tion of truss structures by Achtziger & Bendsøe [99].

Shechter [100] incorporated an elastoplastic material model into the fail-safe opti-

mization formulation; however, it only considered a very simple 3-bar problem. Con-

sidering the problem from a more classical engineering perspective, Feng & Moses

[2] used the different load paths activated due to the failure to size the truss members,

employing a ‘fully stressed design’ approach. Feng & Moses [2] also highlighted the

importance of considering brittle elastic and plastic material models and their impact

on determining optimum structural volumes.

3.3.3. Recent Developments - Deterministic Optimization

This section explores the recent developments towards optimum fail-safe truss de-

sign utilizing deterministic optimization formulations, where known constants define
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system parameters. Structural damage is defined as certain events (unconditional prob-

ability of 1) and are known before solving the optimization problem.

Kanno [101] presented a widely applicable fail-safe optimization formulation where

the objective function is minimized to the worst-case damage scenario. Although the

formulation is generalizable to multiple structural typologies, the study predominantly

concerns truss structures for illustration. The formulation considers all possible dam-

age scenarios for various damaged elements (e.g. Fig. 2). The problems are gener-

ally classified as mixed interior linear programming problems; however, the objec-

tive function may not be differentiable due to introducing the worst-case constraint.

Thus, a derivative-free algorithm was developed and employed based on the sequential

quadratic programming method and simplex gradients.

Stolpe proposed a working-set-based approach [105] to reduce the number of re-

quired damage conditions, formulating the problem into a classic minimum compli-

ance problem with volume constraints, thus guaranteeing global optimality. Complete

member removal and partial member damage definitions were considered and applied

to diagonal ground structures up to 272 members in size. Stolpe [105] considered each

damage case of 1 and 2 bars, thus considering up to
(

272
2

)

= 36856 total damage cases,

requiring a computational time of around 13151s. It was found that high levels of par-

tial damage (i.e. where an element is almost but not quite completely damaged) gave

almost identical results to complete removal of the element. However, later work by

Dou & Stolpe [102] showed that the introduction of stress constraints into an equivalent

volume or compliance-based fail-safe truss optimization problem with variable partial

damage removes the continuity of the objective function as the damage definition tends

from partial (99% cross-section reduction) to complete (complete member removal), as

shown in Fig. 9.

This results from the elements experiencing elevated stress when subject to near

complete damage, thus demanding enlarged member sizes. This characteristic is simi-

lar to the ‘singular optimum’ issue seen in stress-constrained truss topology optimiza-

tion, where the transfer from near-zero to zero cross-sectional area of a member results

in a sudden jump in improvement of the objective function [106, 107]. A similar phe-

nomenon was seen in the fail-safe frame optimization work by Dou & Stolpe [108]
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Figure 9: Singularity characteristic of the objective function (structural volume) for a 3-bar stress-constrained

fail-safe truss optimization problem. (a) A 3-bar problem, where each bar is subject to a degree of damage,

defined by α. (b) Plot of the objective function over the degree of damage. (adapted from Dou & Stolpe

[102]).

(see Sect. 3.4).

Kirby et al. [103] investigated some of the characteristics of fail-safe optimal struc-

tures subject to single and multiple-member damage scenarios. A simple 3-bar can-

tilever problem was considered to demonstrate some of the geometric and topologi-

cal differences between fail-safe and nominal designs. Furthermore, by considering

the same boundary conditions but with an infinite number of bars, Kirby et al. [103]
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Figure 10: Findings from simple cantilever fail-safe truss optimization studies by Kirby et al. [103], and

Fairclough et al. [104]. (a) Three bar topology with single member damage cases. (b) Infinite bar topology

with finite member damage cases.

showed that provided the number of elements being removed for each damage case

remains finite, the solution will tend towards the nominal solution. Similar conclusions

were found in a study by Fairclough et al. [104]. The findings from [103] are illustrated

in Fig. 10.

Using the findings from the infinite bar case, Kirby et al. [103] proposed that the-

oretical optimum fail-safe structures will naturally tend towards the nominal cases,

where instead of solid members, the bars will be composed of bundles of near parallel

elements. However, this theoretical optimal is a consequence of the structural damage

definition (as shown in Fig. 2) of a single member. This may be an adequate reflection

of damage caused by certain material issues, such as crack propagation, but it does

not necessarily reflect realistic damage events where damage may act over a zone as

opposed to individual bars, such as that implied by accidental loading (impact/blast

etc.) or environmental factors such as fire or corrosion. The limitations of this damage

definition are addressed by Fairclough et al. [104], who defined damage cases using
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a damage patch method, similar to the method commonly used in continuum fail-safe

optimization, where all elements within a given zone are said to have zero capacity, as

shown in Fig. 11).

Furthermore, the previously mentioned fail-safe optimization studies have mainly

employed a standard linear elastic material model in which the elements cannot exceed

a limiting strain. However, as stressed by Frangopol & Curley [24], the considering

of plasticity behaviour of materials can be of great importance for fail-safe design.

Fairclough et al. [104] addresses this by considering a rigid-plastic material model,

thus better approximating a structure’s ultimate limit state. Computational costs were

reduced through a member-adding formulation [109] and a damage-case-adding for-

mulation, thus allowing large-scale problems to be tackled of up to 16,290 potential

members (e.g. see Fig. 11).

When considering design methodologies which involve deterministic modelling

and optimization, such as the studies mentioned in this section, design guidelines, in-

cluding Eurocodes [110], compensate for certain system uncertainties with the inclu-

sion of partial safety factors. Such factors in the Eurocodes have been derived from

probabilistic theory and calibrated to historic engineering practice [111]. Furthermore,

deterministic studies require that the occurrence of the damage events to be certain,

yet in reality, such events are commonly considered through a probability of occurring.

System uncertainties and probabilistic damage may be addressed more directly through

probabilistic optimization approaches.

3.3.4. Recent Developments - Probabilistic Optimization

This section looks at the recent development made in applying probabilistic opti-

mization to fail-safe truss design. Unlike deterministic optimization, the problems are

constrained through failure/constraint violation probabilities, which must be less than

a target value. Typically, such problems consider system parameter uncertainties such

as material properties and design loads, which are often assigned probability distribu-

tions. However, in the context of fail-safe optimization, system parameters can also

include probabilities of structural damage.

Mohr et al. [112] looked to incorporate aleatory uncertainty of design parameters
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Figure 11: Multi-spanning optimum fail-safe truss structure (Adapted from Fairclough et al. [104]). (a)

Problem definition (b)-(e) Optimised structure with the different damage cases along with the load paths of

the structure. Other load paths/ damage cases are excluded for brevity.

(such as the applied loads) into a ‘robust’ optimization formulation. Structural redun-

dancy is achieved by combining multiple complete structures for a given load case

to create a single complete structure. As such, the resulting fail-safe structures are

resistant to the loss of complete substructures and are likely to be over-conservative

compared to the single-member damage case formulations. Similarly, Cid Bengoa

et al. [113] also considered statistical uncertainty of problem parameters, creating a

reliability-based design optimization formulation, but modelled damage through pre-

defined removal of members to form a more classic material minimisation fail-safe

optimization problem. Consequently, they incorporated a multi-model optimization

technique whilst considering load uncertainties.
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The consideration of structural damage through subjective system uncertainties

through events such as abnormal loading or human error in design and construction,

also known as epistemic uncertainties, and aleatory uncertainties on reliability-based

design optimization and risk optimization for collapse-resistant design, was investi-

gated by Beck [114]. Epistemic uncertainties were introduced through ‘latent failure

probabilities’ [115], formed from risked topology analysis and could be applied to each

element independently. The problem is formed considering system-level progressive

collapse failure constraints. By considering a simple two-parallel-element structural

system, it was illustrated that considering the subjective uncertainties has significant

consequences on the optimum structural configuration, such that to cope with epis-

temic uncertainty, the structure must possess redundancy. The application of latent

failure probabilities to system reliability and risk-based optimization problems was ex-

tended by da Silva et al. [116] to consider larger truss-based problems, confirming the

findings of [114]. It was observed that an increase in the epistemic system uncertain-

ties led to a change of structural topologies, going from simple statically determinate

solutions when such uncertainties were small to indeterminate and redundant solutions

when large, as illustrated in Fig. 12. The risk-based optimization formulations are of

particular interest due to their cost-consequence objective function, where, in addition

to material costs, expected costs of failure are included (calculated as a cost coefficient

multiplied by the probability of the failure mode). Refs. [114, 116] differentiated be-

tween progressive collapse and instantaneous failure modes, with the latter incurring

higher costs. It was found in [116] that when certain latent probabilities were applied,

producing a non-redundant indeterminate structure was most economical, thus provid-

ing a fuse-like element whose failure would serve as warning for the evacuation of the

structure.

It should be noted that some of the mentioned collapse probability formulations

used in [116] are highly non-linear, non-convex, and non-continuous. Consequently,

the functions are not differentiable; thus, mathematical gradient-based optimization

methods could not be applied, and meta-heuristic optimizers were used to handle the

challenging properties. Considering a slightly different problem, with sequential fail-

ure being induced by fatigue damage, Biton et al. [117] proposed a system-reliability-
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PL = 0  ;  1.00Ct  ; 1.00Cconst

PL = 0.001  ;  1.18Ct  ; 1.02Cconst

(a)

(b)

(c)

PL = 0.1  ;  15.36Ct  ; 3.77Cconst

Figure 12: Optimum structures illustrated using data from da Silva et al.’s [116] risk-based topology opti-

mization (table 9). PL is the ‘latent failure probability’ used to measure the structural system’s subjective

(epistemic) uncertainty. Ct and Cconst are the total cost and construction cost of the non-epistemic results

shown in (a), respectively, taking values of 108.29 and 105.85. (a) PL = 0. (b) PL = 0.001. (c) PL = 0.1.

based design optimization framework solvable through a sequential gradient method-

ology. The gradient calculations are semi-analytical, employing a modified sequential

compounding method [118] and the Chun-Song-Paulino method [119] to determine

the sensitivity information. The method was compared against a typical meta-heuristic

optimizer, showing improved computational efficiency. However, limitations in its ap-
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plication to large problems were noted, with the error of the method increasing with

the number of elements.

The introduction of probabilistic failure paths induces high computation cost and

generally results in only small-scale problems (in terms of the number of design vari-

ables compared to the studies using deterministic optimization methodologies) being

addressed.

3.4. Other Structure Typologies

Whilst most fail-safe optimization research has focused on continuum and pinned

truss typologies, few studies have been conducted on alternatives.

Lüdeker & Kriegesmann [120] looked to incorporate beam elements into elastic

volume minimisation, where stress constraints were measured through Euler-Bernoulli

beam analysis and damage cases were defined by the removal of single beam elements.

An intuitive engineering approach was first used, where, for a given topology, a size

optimization was solved for each damage case, creating multiple structures that were

then combined. It was found that such a method could not guarantee the fail-safe

criteria since the indeterminate nature of the topology would result in an alternative

load redistribution to what the structure was optimised for, thus causing some elements

to fail after a damage event. A holistic approach was then taken, introducing p-norm

and constraint reduction methods to reduce computational demand.

Similarly, Dou & Stolpe [108] presented a study on the fail-safe sizing optimization

of tubular frame structures within the context of offshore wind turbines, incorporating

member thickness degradation and partial removal of a member as damage models.

The beam elements were divided into multiple sub-elements to allow damage to only

parts of the whole bar. Stress and modal eigenvalue constraints were considered. Due

to the partial damage definition and the consideration of stress constraints, the singular-

ity phenomenon, as discussed in [102], occurred. Recent work by Lan et al. [121] has

also looked to address the problem of offshore wind turbine structures, using a contin-

uum topology optimization approach to establish the layout of a structural jacket that

could then be translated into a beam-element type FEA model to allow for more rigour

assessment.
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Furthermore, Esfandiari & Urgessa [122] investigated the fail-safe optimization of

reinforced concrete frame structures employing meta-heuristic optimization techniques

by using a modified version of the particle swarm optimization algorithm [123] and ma-

chine learning as a decision maker. Similarly, da Rosa Ribeiro et al. [124] looked to

perform a risk-based optimization of reinforced concrete beams when a frame struc-

ture possesses probabilities of experiencing column removal, optimizing the average

dimension properties of the beams. Moreover, risk-based two-variable optimization

problems looking to optimize column and beam strengthening factors of frame struc-

tures subject to sudden column removal and abnormal blast loading were presented by

Beck et al. [125] and Beck & Stewart [126].

Considering the fail-safe optimization of cable-stayed bridges, Soto et al. [127]

explored the impact of accidental cable breakage on the material optimization of the

cable system. The formulation enables the alteration of the cable’s cross sections, their

anchorage position on the deck and their pre-tensioning force. Qasi-static analysis, as

highlighted in [128], accounted for the dynamic behaviour of cable rupture, where the

broken cable’s axial force is statically applied at the deck and the pylon.

3.5. Critique

The above review has demonstrated that a significant amount of high-quality fail-

safe optimization research has been conducted. However, when viewing the working

through the lens of current fail-safe design methodologies and findings (as presented in

Sect. 2), several disconnects can be identified. This subsection critiques the reviewed

fail-safe optimization literature through this context and identifies other gaps within the

current knowledge.

3.5.1. Critique Against Fail-safe Design Methodologies

A characteristic common to all current fail-safe optimization tools is their utilisa-

tion of static analysis. As noted by Refs. [33, 21], contemporary guidelines promote

dynamic structural analysis, and whilst these guidelines are curated towards the ap-

plication of frame-type structures, their principles hold for continuum structures. The

response after fast-acting damage is naturally a dynamic event [28], resulting in height-
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ened stresses compared to static analysis [45], as highlighted in Sect. 2.4. Although

some researchers have noted the importance of dynamics within their work and recog-

nised their static analysis assumptions as a limitation, in the event of sudden damage,

current fail-safe optimised structures are potentially unsafe or, if amplification factors

are used, overly conservative [33]. Thus, a significant gap exists in extensively ex-

ploring the effects of dynamics on fail-safe optimum design and its integration into

efficient problem formulations. It remains an open research question whether simpler

dynamic approaches e.g. modal analysis will be sufficient to incorporate these effects

or whether full dynamic analysis is required. Furthermore the influence on the re-

sulting optimum solutions remains to be investigated, along with the impact on the

geometric and gradient characteristics of the optimisation problem. Furthermore, from

a risk-based optimization perspective, authors (e.g. [114]) have looked to distinguish

between progressive and instantaneous failure and their probability consequence costs,

noting the former collapse mechanism to be more desirable due to its temporal nature

and allowing for human reaction. However, the rate of the collapse should naturally

influence its desirability, and so quantifying consequence costs for such a collapse

mechanism may benefit from the integration of dynamics.

Amongst similar lines, researchers such as Frangopol & Curley [24] have stressed

the importance of considering plasticity in the design of collapse-resistant structures.

Some recent researchers (e.g. [104]) have considered plasticity through rigid and bi-

linear plastic material models; however, the vast majority have placed focus on a purely

elastic analysis. The consideration of analysis non-linearity may not only help to un-

lock additional capacity concerning a material’s ductile properties but also through its

geometric effects. Investigations into the structural robustness of typical truss and stan-

dard frame designs highlight the importance of certain non-linear mechanisms, such as

the catenary effect. The non-linear response of the bending elements enables an alter-

ation to their load redistribution method, transitioning from bending to axial loading.

Although it is unclear whether the inclusion of such a method into fail-safe optimiza-

tion would yield improved optimality, it is interesting to consider how the nature of

certain elements might change as a consequence of excessive deformation and how

non-linear effects may be leveraged to improve optimal designs.
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Although not unique to fail-safe design, buckling effects remain important. Re-

sults from experiments [48] and numerical modelling of planar trusses [51, 129] have

illustrated the criticality of local buckling during progressive collapse. Such a fail-

ure mechanism has yet to be integrated into a topology-based fail-safe optimization.

Although local element buckling considerations are common within typical structural

design, their integration into mathematical optimization problems causes difficulties

[130]. Most local buckling constraints can be described as ‘conditional constraints’

or ‘topology-dependent constraints’ since they are only valid when their associated

element geometry variable (typically cross-sectional area) is non-zero, thus introduc-

ing the singularity phenomenon [131]. However, its implementation into non-fail-

safe optimization has been successful for both continuum-based topology optimization

(e.g. [132]) and truss-based optimization (e.g. [131]).

Moreover, although global buckling failure is not a common mechanism experi-

enced in standard structures that undergo disproportionate collapse, the lack of its con-

sideration in an optimization problem creates potential vulnerability. Its importance in

non-fail-safe optimization has been illustrated for problems with certain boundary con-

ditions [133, 134], and thus is therefore likely to be critical for similar fail-safe related

problems.

The presented literature also showed a bias towards simple load redistribution as

the primary mechanism against disproportionate collapse. The non-probabilistic opti-

mization constraints dictate that no other elements within the undamaged part of the

structure (or the damaged elements if they are subject to only partial damage) may fail

after the initial damaging event. This is likely due to many fail-safe optimization for-

mulations being adaptations from the common non-fail-safe problems. Consequently,

current work in fail-safe optimization, especially from a deterministic perspective, has

not adequately considered the true concept of disproportionate collapse and how fail-

ure to a proportion of the structure does not necessarily lead to complete structural

failure. In particular, the singularities observed by [135] (Fig. 9) imply that this may

lead to over-conservative results. Considerations of leveraging standard disproportion-

ate collapse prevention conceptions such as compartmentalization and structural fuses

have yet to receive implementation or consideration. Hence, it would seem that there is
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scope to consider optimization formulations that permit partial collapse of the structure

to prevent failure propagation, even within deterministic frameworks.

Finally, the importance of bending behaviour within fail-safe truss optimization

still requires greater investigation. Numerical modelling and experimental studies of

current truss designs (see Sect. 2.4) suggest that bending is often one of the main mech-

anisms of trusses to prevent progressive collapse (e.g. see Zhao et al. [48]), and the use

of continuity (i.e. avoiding pinned joints) is a very common practical strategy for im-

proving structural robustness. The works by Lüdeker & Kriegesmann [120] and Dou

& Stolpe [108] have begun investigations into the use of frame structures, but further

work looking to compare its material efficiency over axial structures and its role in

creating more rationalised solutions is still required.

3.5.2. General Areas Requiring Further Investigation

Recent studies have proven that modern computing technology and techniques have

enabled large multi-variable and multi-constraint-based problems with dense ground

structures/design space resolution to be addressed. Consequently, the resulting opti-

mal structures have become increasingly complex, which naturally presents difficulties

for construction. Simplifying such truss structures through applying joint-costs [136]

and other rationalisation methods [137] into the formulation may be of interest for

producing more practical designs. Shape feature control [138] or moving morphable

component approaches [139] are example methods for rationalization of continuum

structures.

Furthermore, most truss and frame typologies studies have purely considered a size

optimization problem. Very little consideration has been given to optimizing the posi-

tions of the nodal joints (geometry optimization). This is likely due to the nonlinear and

nonconvex nature of geometry optimization problems, which exacerbates their already

computationally demanding nature. However, applying such a technique may enhance

simplified structures without drastically impacting constructability.
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4. Future Development in Fail-Safe Optimization: Incorporating Advanced Anal-

ysis Methods

4.1. Section Motivation and Aims

The review and critique above have highlighted several discrepancies relating to

recommended fail-safe design methodologies. Many related to the analysis methods

utilised in the optimization formulation/methodology. Although buckling and bending

analysis themes were identified to require further development, these problem types

have already been extensively investigated in the literature for non-fail-safe optimiza-

tion problems. However, the themes of dynamic and non-linear analysis are arguably

more complex and thus are given further attention within this section.

The consensus from researchers and design guides for collapse-resistant design ad-

vocates using advanced dynamic and non-linear methods capable of capturing the tem-

poral natures of load redistribution, along with material and geometric non-linearity.

However, the majority of fail-safe optimization tools have employed linear static meth-

ods. Thus, a natural progression is for the optimization tools to incorporate these more

advanced analysis methodologies. The following section discusses the feasibility of

such, reviewing optimization methodologies and some of the challenges which may

be faced. Table 1 presents the generalised findings from this review. The subsequent

subsections highlight these methods and their characteristics in greater detail. Where

available, examples of the application of these approaches in structural problems bear-

ing some relevance to the fail-safe problems targetted by this paper, such as in the

optimization of structures subject to time-varying loads, are given.

4.2. Flexibility and Efficiency of Optimization Algorithms

When looking to solve structural optimization problems, researchers and engineers

must utilise a set of algorithms and methodologies. However, the properties of the

optimization problem hold a bearing on what algorithms may be used and thus influ-

ence the computational efficiency of solving said problem. For example, using the

interior point method, whilst highly computationally efficient and capable of handling

many problem constraints and variables, requires formulating optimisation problems to
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Optimization

Method

Advanced Analysis

Integration

Speed Accuracy General Ease of

Implementation

Mathematical

Programming

Difficult Fast /Moderate High Difficult

Meta-heuristic

Algorithms

Easy Slow Low Easy

Machine Learning

Methods

Easy /Moderate Moderate Low /Moderate Difficult

Nelder Mead with

Meta-heuristic

Easy Slow Moderate Moderate

Table 1: Authors interpretation of the relative performance of different optimization methods for incorporat-

ing more advanced structural analysis procedures.

possess convex geometries. Problems that cannot be formulated to conform to certain

geometric qualities or simply lack any clear mathematical formulation must then utilise

algorithms or other optimization methodologies that do not rely on the problem’s ge-

ometrical properties. From a more general perspective, one can consider Wolpert &

Macready’s ‘No Free Lunch’ theorem [140], which suggests that for any algorithm,

both deterministic and stochastic, performance improvement over one problem class is

offset by performance in another, insinuating that for an algorithm to gain applicability

to a wide range of problems, it must sacrifice computational efficiency. Thus, engi-

neers are challenged to determine clever formulations that may leverage the efficiency

and accuracy of first-order solvers whilst ensuring the desired optimization aims are

still met. Alternatively, they may consider more general problems that do not possess

the necessary characteristics for such solvers and, thus, must be solved through less

computationally efficient and accurate means (e.g. zero order methods). As more com-

plex analysis and modelling methods are considered, the difficulty in formulating the
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problems to fix certain geometric qualities will naturally increase and, as a result, may

require consideration of more flexible optimization approaches. However, it is worth

noting that developments in first-order algorithms and methodologies may allow for a

greater range of problem properties in the future, as historically shown with the interior

point method, which was originally exclusive for linear problems.

4.3. Mathematical Programming Optimization

Mathematical programming generally looks to solve an optimization problem where

the objective function and constraints are all clearly defined through mathematical re-

lations, such as the general example problem given as such:

min
x

f0(x)

s.t. fi(x) ≥ bi, i = 1, ...,m
(2)

where x is a vector containing the optimization variables, the function f0(x) is the

objective function, fi(x) are constraint functions and bi is the bound for the constraint

i, and m is the total number of constraints. Structural optimization problems can be

formed into these mathematical problems, where the objective function will typically

be a structure’s total volume or compliance, and the constraints will account for the

design requirements, such as global equilibrium, material failure and deflection limits,

and load and state cases. As discussed in Sec. 4.2, the formulations must possess

certain geometric and gradient qualities to apply first-order algorithms but will solve

the problems efficiently and accurately. Consequently, mathematical programming is

the preferred method by many researchers for solving structural optimization problems.

A review of structural optimization problems with transient loads solved through

mathematical programming methods is given by Kang et al. [141]. Dynamic response

optimization for continuum structures are commonly formulated so sequential gradient-

based algorithms may be employed. However, Kang et al. [59] note the high difficulty

and computational inefficiency of such gradient-based methods due to the requirement

of large-scale numerical integration computations, thus making them unsuitable for

large-scale problems. Furthermore, such methods have yet to be applied to multiple
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load cases/ multiple structural states due to their difficulty and computational demand,

thus limiting the method’s application to dynamic response fail-safe optimization.

As a consequence of such computational expense, equivalent static load meth-

ods have been a popular alternative, where sets of static loads which replicate the

dynamic/ nonlinear response at critical periods are applied to a standard static opti-

mization problem [142, 59, 143, 144]. Another approximate approach is the response

surface method, where a polynomial curve surrogate model of the structure’s non-linear

dynamic response is formed from statistical data. The curve can then be used to gain

the sensitivity information required for first-order algorithms. The method is com-

monly used in the area of crashworthiness [145].

Mathematical programming has also been applied to minimum frequency con-

straint problems, where the structure’s modal frequencies are limited to defined values.

Such a constraint causes the problem to become non-linear, although still convex, with

Refs. [146, 147, 148] using semi-definite programming to solve the problem.

Although challenging, the above methods suggest a possible feasibility for inte-

grating dynamic and non-linear analysis into a mathematical fail-safe optimization for-

mulation. However, due to the difficulties and potential limitations, the subsequent

subsections explore optimisation algorithms that do not require such precisely formu-

lated mathematical constraints.

4.4. Meta-heuristic Optimization Algorithms

Meta-heuristic algorithms employ basic heuristic methods to search a domain for

an optimal solution [149]. The optimization problems are typically formulated into an

unconstrained problem using penalty functions [150], where the entire problem can be

expressed through a single equation often known as the fitness function. To determine

if a structural solution violates the problem’s constraints, the solution is typically sim-

ulated through numerical modelling, retrieving information which can then be directly

compared against the problem constraint values. Azad & Hasançebi [151] suggest that

the processes of these algorithms have three main strengths: (i) Independent of gradient

information; (ii) inherently capable of dealing with continuous and discrete variables;

(iii) applicable to highly complex problems.
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Many different meta-heuristic algorithms have been derived and applied to the

problem of structural optimization, with the literature mapping by Renkavieski &

Parpinelli [152] finding 71 different algorithms from 179 articles. Some popular exam-

ples include genetic algorithms [153, 154], particle swarm algorithms [123, 155, 35],

the big bang-big crunch algorithm [156, 157, 158], and differential evolution [159,

152]. In addition, researchers have sought to create hybrid algorithms, combining the

methodology of two or more approaches to exploit the beneficial characteristics of

each [160, 161, 162]. Researchers such as Charalampakis [163] have looked to com-

pare these algorithms in their performance of size optimization for truss structures.

However, there is no consensus on a superior algorithm for structural optimization.

A review by Stolpe [135] notes that most of their applications rarely utilise the algo-

rithms’ strengths, often solving non-noisy and differentiable problems.

In general, the algorithms are reliable in locating the local area of an optimum;

however, they struggle to refine the exact position. Hence, although such algorithms are

great at dealing with poorly defined problems, making them suitable for incorporating

more advanced analysis methods, their utilisation will exacerbate the computational

demand of fail-safe optimization problems.

4.5. Machine Learning

The application of machine learning for structural optimization is relatively new;

however, current results suggest it is a potential alternative to evolutionary-based algo-

rithms. A review of machine learning techniques can be found in Ramu et al. [164].

Machine learning approaches can be divided roughly into three categories: supervised,

unsupervised, and reinforcement.

Concerning the application of supervised machine learning that looks to determine

connections and correlations between input data to predict an output, Sun & Ma [165]

have applied a generative design approach to the topology optimization of continuum

structures, allowing multiple possible solutions to a given problem to be generated

quickly. Alternatively, Mai et al. [166] combined a machine-learning approach with

a differential evolution algorithm for the optimization of trusses with geometrically

non-linear behaviour, using the surrogate model to predict the non-linear static analy-
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sis results which inform the meta-heuristic algorithm. However, Mai et al. [167] later

critiques the use of surrogate-based machine learning to solve structural optimization

problems, noting issues with estimating suitable training data sizes and that the accu-

racy and reliability of the model are highly dependent on the quality and quantity of

data.

Concerning the application of unsupervised machine learning, which looks to de-

termine connections and patterns within the data input without using any provided

output data, Mai et al. [167] looked to use a deep neural network framework for the

size optimization of trusses. The findings indicated a significant reduction in the num-

ber of FEA evaluations from differential evolution. This was later developed by Mai

et al. [168] to incorporate Bayesian optimization for self-tuning the model’s hyperpa-

rameters. The method was applied to trusses with geometrically non-linear behaviour,

finding substantial gains in convergence rate and overall computational time.

Finally, concerning the application of reinforcement learning, which looks to train

an agent (model) to accomplish a task within a dynamic environment using a reward-

based system, Hayashi & Ohsaki [169] applied the methodology to binary topology

truss optimization. The study found that the method could substantially reduce com-

putational load, however, in some cases missed the global optimums.

Based on the findings from these researchers, machine learning shows promise

as an alternative methodology to meta-heuristic optimization algorithms, indicating a

substantial reduction in computational demand. Their functionality with poorly defined

optimization problems makes them a potential candidate for incorporating dynamics.

However, such methods are substantially more complex to implement and don’t avoid

the computational constraints set by the ‘No Free Lunch’ theorem [140].

4.6. Approximate Gradient-based Methods

Although introducing advanced analysis methods makes obtaining gradient infor-

mation more challenging, certain methods can approximate local gradient information

and thus inform the movement of potential solutions. One such method employed in

structural optimization is the Nelder-Mead method [170, 171], which samples the local

environment of the search space around a current solution. Due to their focus on local
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search, the Nelder-Mead method is frequently used in conjunction with meta-heuristic

algorithms to improve the overall exploration. The introduction of the Nelder-Mead

method also tackles the solution refinement issue of meta-heuristic algorithms. Ra-

hami et al. [172] and Assimi & Jamali [173] present hybridisation of the Nelder-Mead

method and a genetic algorithm for truss optimization. Improvements in accuracy and

convergence were found.

5. Summary & Outlook

This paper reviewed historic and state-of-the-art literature on fail-safe optimization

– the process of optimising a structure while allowing for some form of defined damage.

A brief overview of general fail-safe design was also given to provide context to the

work of fail-safe optimization, focusing on critical member identification and dynamic

response of truss structure due to their importance within fail-safe optimization.

The research area has been developed extensively for continuum and truss-based

structural typologies, alongside a few studies concerning frame, cable-stayed bridge,

and reinforced concrete design. Recent studies have shown that large, multi-variable

and multi-constraint-based problems can be tackled without excessive computational

cost, illustrating the development of the research field over the years. Beyond improv-

ing computational efficiency, researchers have innovated the field through the imple-

mentation of additional design considerations, including, but not limited to, uncertain-

ties of system parameters, risk-based costing, fatigue from cyclic loading, and effects

on modal vibration frequencies. Intending to gain a fuller understanding of the un-

derlying characteristics of fail-safe optimization, other recent studies have investigated

different methods of modelling damage and their influence on the optimized solution.

The summation of all the mentioned work results in a great development in designing

efficient collapse-resistant structures.

The reviewed work was also subject to a critique against the recommended guide-

lines of fail-safe design, looking to identify where areas may be developed to improve

coherence. In addition, general requirements for further investigation were identified.

The main outcomes of this critique are summarised below:
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• Current tools rely upon a static-based analysis method, contrasting the recom-

mendation of a dynamic analysis by design guidelines.

• Considerations of plasticity and geometric non-linearities have been shown to

improve the capacity of the damaged structures, meaning the current tool’s de-

pendency on linear analysis potentially limits their gains in material efficiency.

• Considerations of local and/or global buckling failure have yet to be imple-

mented.

• The nature of typical fail-safe optimization failure constraints makes simple load

redistribution the sole method for disproportionate collapse avoidance, meaning

scope exists to consider partial collapse-based constraints by considering alter-

native methods such as compartmentalisation or structural fuses.

• The role of bending as a mechanism against collapse in truss-based structures

still requires additional investigation.

• Qualities such as constructibility have yet to be considered, creating scope for

implementing structural rationalization methods into optimization formulations.

For example, consideration of geometry optimization for truss typologies may

be beneficial.

Since a significant number of the current shortcomings of fail-safe optimization

tools relate to their analysis methods, the authors have suggested that a natural pro-

gression to merge fail-safe design and structural optimization practices is to incorpo-

rate more advanced analysis methods considering dynamic and non-linear effects, as

shown in Fig. 1. As a means of a preliminary feasibility study for achieving this, a

short critique of the available optimization methods was undertaken, reviewing the al-

gorithms and methodologies through the lens of incorporating advanced analysis meth-

ods. Implementation of first-order optimization algorithms will likely be challenging;

however, due to their computational efficiency, solution accuracy, and capabilities of

handling many variables and constraints, efforts should be made to use these. Contrast-

ing this, algorithms that deal with poorly defined problems enable more straightforward

41



implementation. However, such algorithms are inherently inefficient, thus potentially

creating a problem of high computational load. Yet, developments in zero-order meth-

ods, particularly in the area of machine learning, show promise in tackling the problem

of computational demand.

This review and its identification of current knowledge gaps and shortcomings

should aid in developing fail-safe optimization, allowing future structures to be ma-

terial efficient and providing us safety against the uncertainties and hazards of the real

world.
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[134] M. Kočvara, On the modelling and solving of the truss design problem with

global stability constraints, Structural and multidisciplinary optimization 23

(2002) 189–203. ❞♦✐✿✶✵✳✶✵✵✼✴s✵✵✶✺✽✲✵✵✷✲✵✶✼✼✲✸.

[135] M. Stolpe, Truss optimization with discrete design variables: a critical review,

Structural and Multidisciplinary Optimization 53 (2016) 349–374. ❞♦✐✿✶✵✳

✶✵✵✼✴s✵✵✶✺✽✲✵✶✺✲✶✸✸✸✲①.

[136] E. Parkes, Joints in optimum frameworks, International Journal of Solids and

Structures 11 (9) (1975) 1017–1022. ❞♦✐✿✶✵✳✶✵✶✻✴✵✵✷✵✲✼✻✽✸✭✼✺✮✾✵✵✹✹✲❳.

58



[137] L. He, M. Gilbert, Rationalization of trusses generated via layout optimization,

Structural and Multidisciplinary Optimization 52 (2015) 677–694. ❞♦✐✿✶✵✳

✶✵✵✼✴s✵✵✶✺✽✲✵✶✺✲✶✷✻✵✲①.

[138] S. Chen, M. Y. Wang, A. Q. Liu, Shape feature control in structural topology

optimization, Computer-Aided Design 40 (9) (2008) 951–962. ❞♦✐✿✶✵✳✶✵✶✻✴

❥✳❝❛❞✳✷✵✵✽✳✵✼✳✵✵✹.

[139] W. Zhang, J. Zhou, Y. Zhu, X. Guo, Structural complexity control in topol-

ogy optimization via moving morphable component (mmc) approach, Struc-

tural and Multidisciplinary Optimization 56 (2017) 535–552. ❞♦✐✿✶✵✳✶✵✵✼✴

s✵✵✶✺✽✲✵✶✼✲✶✼✸✻✲②.

[140] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE

transactions on evolutionary computation 1 (1) (1997) 67–82. ❞♦✐✿✶✵✳✶✶✵✾✴

✹✷✸✺✳✺✽✺✽✾✸.

[141] B.-S. Kang, G.-J. Park, J. S. Arora, A review of optimization of structures

subjected to transient loads, Structural and Multidisciplinary Optimization 31

(2006) 81–95. ❞♦✐✿✶✵✳✶✵✵✼✴s✵✵✶✺✽✲✵✵✺✲✵✺✼✺✲✹.

[142] H.-A. Lee, G.-J. Park, Nonlinear dynamic response topology optimization using

the equivalent static loads method, Computer Methods in Applied Mechanics

and Engineering 283 (2015) 956–970. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳❝♠❛✳✷✵✶✹✳✶✵✳✵✶✺.

[143] G.-J. Park, Technical overview of the equivalent static loads method for non-

linear static response structural optimization, Structural and Multidisciplinary

Optimization 43 (2011) 319–337. ❞♦✐✿✶✵✳✶✵✵✼✴s✵✵✶✺✽✲✵✶✵✲✵✺✸✵✲①.

[144] Y.-I. Kim, G.-J. Park, Nonlinear dynamic response structural optimization using

equivalent static loads, Computer Methods in Applied Mechanics and Engineer-

ing 199 (9-12) (2010) 660–676. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳❝♠❛✳✷✵✵✾✳✶✵✳✵✶✹.

[145] J. Fang, G. Sun, N. Qiu, N. H. Kim, Q. Li, On design optimization for struc-

tural crashworthiness and its state of the art, Structural and Multidisciplinary

Optimization 55 (2017) 1091–1119. ❞♦✐✿✶✵✳✶✵✵✼✴s✵✵✶✺✽✲✵✶✻✲✶✺✼✾✲②.

59



[146] W. Achtziger, M. Kočvara, On the maximization of the fundamental eigen-

value in topology optimization, Structural and Multidisciplinary Optimization

34 (2007) 181–195. ❞♦✐✿✶✵✳✶✵✵✼✴s✵✵✶✺✽✲✵✵✼✲✵✶✶✼✲✸.

[147] M. Aroztegui, J. Costa Jr, A. Canelas, J. Herskovits, Maximising the funda-

mental frequency of truss structures, in: Proceedings of the 21st International

Congress of Mechanical Engineering (COBEM 2011). Rio de Janeiro: Associ-

ação Brasileira de Engenharia e Ciências Mecânicas (ABCM), 2011.

[148] S. Salt, A. Weldeyesus, M. Gilbert, J. Gondzio, Layout optimization of pin-

jointed truss structures with minimum frequency constraints, Engineering Opti-

mization 55 (8) (2023) 1403–1421. ❞♦✐✿✶✵✳✶✵✽✵✴✵✸✵✺✷✶✺❳✳✷✵✷✷✳✷✵✽✻✺✸✾.

[149] E. Alba, Parallel metaheuristics: a new class of algorithms, John Wiley & Sons,

2005.

[150] C. A. C. Coello, Theoretical and numerical constraint-handling techniques used

with evolutionary algorithms: a survey of the state of the art, Computer methods

in applied mechanics and engineering 191 (11-12) (2002) 1245–1287. ❞♦✐✿

✶✵✳✶✵✶✻✴❙✵✵✹✺✲✼✽✷✺✭✵✶✮✵✵✸✷✸✲✶.

[151] S. K. Azad, O. Hasançebi, Optimum design of skeletal structures using meta-

heuristics: a survey of the state-of-the-art, International Journal of Engineering

and Applied Sciences 6 (3) (2014) 1–11. ❞♦✐✿✶✵✳✷✹✶✵✼✴✐❥❡❛s✳✷✺✶✷✷✾.

[152] C. Renkavieski, R. S. Parpinelli, Meta-heuristic algorithms to truss optimiza-

tion: Literature mapping and application, Expert Systems with Applications 182

(2021) 115197. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳❡s✇❛✳✷✵✷✶✳✶✶✺✶✾✼.

[153] D. E. Goldberg, M. P. Samtani, Engineering optimization via genetic algorithm,

in will, in: Proceedings of Conference on Electronic Computation, ASCE, 1986.

[154] A. Kaveh, V. Kalatjari, Genetic algorithm for discrete-sizing optimal design of

trusses using the force method, International Journal for Numerical Methods in

Engineering 55 (1) (2002) 55–72. ❞♦✐✿✶✵✳✶✵✵✷✴♥♠❡✳✹✽✸.

60



[155] P. Fourie, A. A. Groenwold, The particle swarm optimization algorithm in

size and shape optimization, Structural and Multidisciplinary Optimization 23

(2002) 259–267. ❞♦✐✿✶✵✳✶✵✵✼✴s✵✵✶✺✽✲✵✵✷✲✵✶✽✽✲✵.

[156] O. K. Erol, I. Eksin, A new optimization method: big bang–big crunch, Ad-

vances in engineering software 37 (2) (2006) 106–111. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳

❛❞✈❡♥❣s♦❢t✳✷✵✵✺✳✵✹✳✵✵✺.

[157] C. V. Camp, Design of space trusses using big bang–big crunch optimization,

Journal of Structural Engineering 133 (7) (2007) 999–1008. ❞♦✐✿✶✵✳✶✵✻✶✴

✭❆❙❈❊✮✵✼✸✸✲✾✹✹✺✭✷✵✵✼✮✶✸✸✿✼✭✾✾✾✮.

[158] S. K. Azad, M. Bybordiani, S. K. Azad, F. K. Jawad, Simultaneous size and

geometry optimization of steel trusses under dynamic excitations, Structural

and Multidisciplinary Optimization 58 (2018) 2545–2563. ❞♦✐✿✶✵✳✶✵✵✼✴

s✵✵✶✺✽✲✵✶✽✲✷✵✸✾✲✼.

[159] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for

global optimization over continuous spaces, Journal of global optimization 11

(1997) 341–359. ❞♦✐✿✶✵✳✶✵✷✸✴❆✿✶✵✵✽✷✵✷✽✷✶✸✷✽.

[160] M. R. Maheri, M. Askarian, S. Shojaee, Size and topology optimization of

trusses using hybrid genetic-particle swarm algorithms, Iranian Journal of Sci-

ence and Technology, Transactions of Civil Engineering 40 (2016) 179–193.

❞♦✐✿✶✵✳✶✵✵✼✴s✹✵✾✾✻✲✵✶✻✲✵✵✷✸✲✷.

[161] A. Kaveh, V. R. Mahdavi, A hybrid cbo–pso algorithm for optimal design of

truss structures with dynamic constraints, Applied Soft Computing 34 (2015)

260–273. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳❛s♦❝✳✷✵✶✺✳✵✺✳✵✶✵.

[162] E. Ficarella, L. Lamberti, S. Degertekin, Comparison of three novel hybrid meta-

heuristic algorithms for structural optimization problems, Computers & Struc-

tures 244 (2021) 106395. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳❝♦♠♣str✉❝✳✷✵✷✵✳✶✵✻✸✾✺.

61



[163] A. E. Charalampakis, Comparison of metaheuristic algorithms for size opti-

mization of trusses, in: de 11th HSTAM International Congress on Mechanics,

Greece, 2016.

[164] P. Ramu, P. Thananjayan, E. Acar, G. Bayrak, J. W. Park, I. Lee, A survey

of machine learning techniques in structural and multidisciplinary optimiza-

tion, Structural and Multidisciplinary Optimization 65 (9) (2022) 266. ❞♦✐✿

✶✵✳✶✵✵✼✴s✵✵✶✺✽✲✵✷✷✲✵✸✸✻✾✲✾.

[165] H. Sun, L. Ma, Generative design by using exploration approaches of reinforce-

ment learning in density-based structural topology optimization, Designs 4 (2)

(2020) 10. ❞♦✐✿✶✵✳✸✸✾✵✴❞❡s✐❣♥s✹✵✷✵✵✶✵.

[166] H. T. Mai, J. Kang, J. Lee, A machine learning-based surrogate model for op-

timization of truss structures with geometrically nonlinear behavior, Finite Ele-

ments in Analysis and Design 196 (2021) 103572.

[167] H. T. Mai, Q. X. Lieu, J. Kang, J. Lee, A novel deep unsupervised learning-

based framework for optimization of truss structures, Engineering with Com-

puters 39 (4) (2023) 2585–2608. ❞♦✐✿✶✵✳✶✵✵✼✴s✵✵✸✻✻✲✵✷✷✲✵✶✻✸✻✲✸.

[168] H. T. Mai, S. Lee, D. Kim, J. Lee, J. Kang, J. Lee, Optimum design of nonlin-

ear structures via deep neural network-based parameterization framework, Eu-

ropean Journal of Mechanics-A/Solids 98 (2023) 104869. ❞♦✐✿✶✵✳✶✵✶✻✴❥✳

❡✉r♦♠❡❝❤s♦❧✳✷✵✷✷✳✶✵✹✽✻✾.

[169] K. Hayashi, M. Ohsaki, Reinforcement learning and graph embedding for binary

truss topology optimization under stress and displacement constraints, Frontiers

in Built Environment 6 (2020) 59. ❞♦✐✿✶✵✳✸✸✽✾✴❢❜✉✐❧✳✷✵✷✵✳✵✵✵✺✾.

[170] W. Spendley, G. R. Hext, F. R. Himsworth, Sequential application of simplex

designs in optimisation and evolutionary operation, Technometrics 4 (4) (1962)

441–461. ❞♦✐✿✶✵✳✶✵✽✵✴✵✵✹✵✶✼✵✻✳✶✾✻✷✳✶✵✹✾✵✵✸✸.

[171] J. A. Nelder, R. Mead, A simplex method for function minimization, The com-

puter journal 7 (4) (1965) 308–313. ❞♦✐✿✶✵✳✶✵✾✸✴❝♦♠❥♥❧✴✼✳✹✳✸✵✽.

62



[172] H. Rahami, A. Kaveh, M. Aslani, R. N. Asl, A hybrid modified genetic-nelder

mead simplex algorithm for large-scale truss optimization, International Journal

of Optimization in Civil Engineering 1 (1) (2011) 29–46.

[173] H. Assimi, A. Jamali, A hybrid algorithm coupling genetic programming and

nelder–mead for topology and size optimization of trusses with static and dy-

namic constraints, Expert Systems with Applications 95 (2018) 127–141. ❞♦✐✿

✶✵✳✶✵✶✻✴❥✳❡s✇❛✳✷✵✶✼✳✶✶✳✵✸✺.

63


	Introduction
	Context
	Definitions
	Study scope and structure

	Fail-Safe Design & Analysis
	Section Motivation & Aims
	Design & Analysis Methodologies
	Critical member identification
	Dynamic Action & Effects After Damaging Events

	Fail-safe optimization
	Brief Introduction to Optimization & Section Aims
	Continuum Structures
	General Method
	Initial Studies
	Improving Computational Efficiency
	Additional Design Considerations
	Multiscale Structures

	Pin-jointed Truss Structures
	General Method
	Initial Studies
	Recent Developments - Deterministic Optimization
	Recent Developments - Probabilistic Optimization

	Other Structure Typologies
	Critique
	Critique Against Fail-safe Design Methodologies
	General Areas Requiring Further Investigation


	Future Development in Fail-Safe Optimization: Incorporating Advanced Analysis Methods
	Section Motivation and Aims
	Flexibility and Efficiency of Optimization Algorithms
	Mathematical Programming Optimization
	Meta-heuristic Optimization Algorithms
	Machine Learning
	Approximate Gradient-based Methods

	Summary & Outlook

