
J. Fluid Mech. (2025), vol. 1009, A70, doi:10.1017/jfm.2025.259

Force balances in spherical shell rotating
convection

Souvik Naskar
1

, Chris Davies
1
, Jon Mound

1
and Andrew Clarke

1

1School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
Corresponding author: Souvik Naskar, s.naskar@leeds.ac.uk

(Received 12 August 2024; revised 19 December 2024; accepted 19 February 2025)

Significant progress has been made in understanding planetary core dynamics using
numerical models of rotating convection (RC) in spherical shell geometry. However, the
behaviour of forces in these models within various dynamic regimes of RC remains largely
unknown. Directional anisotropy, scale dependence and the role of dynamically irrelevant
gradient contributions in incompressible flows complicate the representation of dynamical
balances in spherical shell RC. In this study, we systematically compare integrated and
scale-dependent representations of mean and fluctuation forces and curled forces
(which contain no gradient contributions) separately for the three components (r̂ , θ̂ , φ̂).
The analysis is performed with simulations in a range of convective supercriticality
RaT /Rac

T = 1.2−297 where RaT and Rac
T are the Rayleigh and critical Rayleigh

numbers, respectively and Ekman number E = 10−3−10−6, with fixed Prandtl number
Pr = 1, along with no-slip and fixed flux boundaries. We have excluded regions from
each boundary of the spherical shell, with a thickness equivalent to ten velocity boundary
layers, which provides a consistent representation of the bulk dynamics between the
volume-averaged force and curled force balance in the parameter space studied. Radial,
azimuthal and co-latitudinal components exhibit distinct force and curled force balances.
The total magnitudes of the mean forces and mean curled forces exhibit a primary thermal
wind balance; the corresponding fluctuating forces are in a quasi-geostrophic primary
balance, while the fluctuating curled forces transition from a Viscous–Archimedean–
Coriolis balance to an Inertia–Viscous–Archimedean–Coriolis balance with increasing
RaT /Rac

T . The curled force balances are more weakly scale-dependent compared to the
forces, and do not show clear cross-over length scales. The fluctuating force and curled
force balances are broadly consistent with three regimes of RC (weakly nonlinear, rapidly
rotating and weakly rotating), but do not exhibit sharp changes with RaT /Rac

T , which
inhibits the identification of precise regime boundaries from these balances.
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1. Introduction
Buoyancy-driven convection in a rotating spherical shell is a classical framework for
studying the dynamics and magnetic field generation in the cores of planets and stars.
However, despite significant progress (Gastine et al. 2016; Schaeffer et al. 2017; Long et al.
2020; Schwaiger et al. 2020; Gastine & Aurnou 2023), state-of-the-art direct numerical
simulations cannot reach the parameter values that are representative of the astrophysical
bodies, and are unlikely to do so in the near future (Davies et al. 2011; Roberts & King
2013). Therefore, extensive work has focused on developing scaling relations between
the governing input parameters and global output diagnostic quantities of numerical
simulations, which can be used to extrapolate to the conditions of planetary cores, and
facilitate comparisons with available observations. These scaling relations rely on the
balance of forces that determine the system dynamics (e.g. Christensen et al. 2010; King
& Buffett 2013; Aubert et al. 2017), so it is crucial to quantify dynamical balances in
numerical simulations accurately.

The dynamics in rotating non-magnetic convection are governed by the Ekman number
E , a measure of the ratio of viscous to Coriolis forces, the Prandtl number Pr , the
ratio of viscous to thermal diffusivities, and the Rayleigh number RaT , measuring the
buoyancy force driving convection. Theoretical considerations suggest that the convecting
system exhibits at least three distinct dynamical regimes (e.g. Aubert et al. 2001;
King & Buffett 2013; King et al. 2013; Gastine et al. 2016; Aurnou et al. 2020; Long
et al. 2020; Kunnen 2021). At fixed E and Pr , raising the thermal forcing to just above the
onset of convection (i.e. RaT � Rac

T , where Rac
T ∝ E4/3 is the critical Rayleigh number

at the onset of convection) leads to weakly nonlinear (WN) convection. In this regime, the
primary dynamics is expected to be a quasi-geostrophic (QG) balance between Coriolis
and pressure forces, while the residual (i.e. the ageostrophic Coriolis force) is balanced
by buoyancy and viscous forces forming a secondary Viscous–Archimedean (buoyancy)–
Coriolis (ageostrophic) or VAC balance. Increasing the thermal forcing increases the role
of inertia, which leads to a turbulent rapidly rotating (RR) flow regime where strong
nonlinearity and rotational constraint coexist. In this regime, both viscosity and inertial
forces are expected to be small relative to the Coriolis force in the primary QG balance,
with an Inertia–Archimedian–Coriolis (ageostrophic) or IAC balance generally assumed
among the secondary forces. Further increase in thermal forcing leads to the weakly
rotating (WR) regime where the primary QG balance is gradually broken, eventually
resulting in non-rotating behaviour at sufficiently high RaT . Among these three regimes,
the RR regime is thought to be more relevant for investigating planetary core convection,
as compared to the other regimes (Kunnen 2021).

Depending on the dynamical balance, global and local flow diagnostic quantities
(e.g. average velocity, length scale, heat transport, boundary layer thickness) may exhibit
distinct scaling with the governing input parameters. Scaling regimes in rotating spherical
shell convection have been studied extensively by Gastine et al. (2016) and Long et al.
(2020) (henceforth referred to as L20). The conformity of the simulation diagnostics
with theoretical scaling laws was utilized to demarcate boundaries between the dynamical
regimes (i.e. WN, RR, WR). For example, Gastine et al. (2016) and L20 defined
the WN regime based on the theoretical expectation that at low supercriticality, the
Nusselt number Nu, representing the ratio of the total average heat flux from the
shell to the conductive flux, scales as Nu − 1 ∝ RaT /Rac

T − 1 (Gillet & Jones 2006).
They found that this heat transfer behaviour is consistent with the dimensionless flow
length scale scaling � ∼ E1/3 and Reynolds number scaling Re ∼ B1/2 E1/3 (where B
is the convective power), as expected from a VAC balance. For higher supercriticality,
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a length scale scaling � ∼ Ro1/2 (where Ro, the Rossby number, is a measure of the
ratio of inertia and Coriolis forces) and a Reynolds number scaling Re ∼ B2/5 E1/5 are
approached, indicating an IAC balance. The asymptotically reduced models of Guervilly
et al. (2019) also found a ‘diffusion-free’ � ∼ Ro1/2 scaling. An asymptotically reduced
plane layer model of convection (Oliver et al. 2023) found the scaling of Nu and Re
consistent with IAC predictions, while the length scale remained viscously controlled (i.e.
� ∼ E1/3). A rotating cylinder experiment (Abbate & Aurnou 2023), however, was unable
to distinguish between a viscously controlled regime and a ‘diffusion-free’ regime from
the scaling of the length scale. These comparisons relied on assumed force balances;
however, the quantitative behaviour of forces in numerical simulations of spherical shell
rotating convection (RC) remains largely unexplored. A few studies have explored force
balances in plane layer geometries (Guzmán et al. 2020; Naskar & Pal 2022a,b), which
may represent the dynamics in the tangent cylinder region of a spherical shell (Gastine &
Aurnou 2023), while Schwaiger et al. (2020), Teed & Dormy (2023) and Nicoski et al.
(2024) have computed force balances in a limited number of spherical shell RC runs.
Hence the primary objective of our study is to investigate the dynamical balances that
emerge in numerical simulations of spherical shell RC.

Quantifying dynamical balances in RC is an intricate issue. The force representation in
incompressible flows is complicated by the existence of the gradient portions of forces,
which are balanced by the pressure gradient term, but are not directly relevant to the
dynamics (Hughes & Cattaneo 2019). A simple way to remove the gradient contributions is
to curl the force balance (Dormy 2016), though the derivative operation can enhance small-
scale contributions to the individual terms (Teed & Dormy 2023). Differences between
the dynamics predicted by force and curled balances are important since some theoretical
predictions consider the asymptotic behaviour of forces (Nicoski et al. 2024), whereas
others are based on curled forces (e.g. VAC and IAC in L20). Teed & Dormy (2023)
found that forces and their curls predicted different dynamical balances in a single
simulation of rotating spherical shell convection. Here, we investigate the consistency
between force and curled depictions of RC dynamics across a broad range of parameters
(RaT /Rac

T = 1.2−297, E = 10−3−10−6 and Pr = 1).
When calculating forces or curls, it is crucial to distinguish dynamics in the boundary

layers and the convective bulk. Integrating forces over the entire spherical shell may
overestimate the role of viscosity in the bulk dynamics (Soderlund et al. 2012; Yadav
et al. 2016). Most studies of force calculations remove a region corresponding to
one velocity boundary layer (VBL) thickness at the top and bottom of the domain
(e.g. Schwaiger et al. 2020; Teed & Dormy 2023; Nicoski et al. 2024) in order to isolate
the bulk dynamics. However, we are unaware of previous systematic studies that have
established the thickness of the layer near the boundaries that should be excluded from the
volume-averaged forces/curls to obtain a robust estimate of the bulk dynamics.

In rotating spherical shell convection, the balance in the axisymmetric part of forces
(corresponding to spherical harmonic order m = 0) can be different from the balance
in their non-axisymmetric counterparts. Nicoski et al. (2024) partitioned the forces into
azimuthally averaged and corresponding fluctuating parts, and analysed the scaling be-
haviour of the fluctuating radial forces as a function of E and RaT in RC with strong zonal
flows, finding a primary QG balance across a broad range of parameters. In contrast to the
QG force balance in the small-scale (i.e. m �= 0) convective motions (Nicoski et al. 2024),
Aubert (2005) focused on the large-scale dynamics and used curls to identify a horizontal
thermal wind (TW) balance in the large-scale azimuthal (m = 0) motions for RC
simulations operating in the RR regime. Here, we systematically compare mean and
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fluctuating components of forces and their curls across different dynamical regimes of
spherical shell RC.

In a spherical shell geometry, an additional difficulty in representing the system
dynamics arises due to the dependence of each force and curl component (r̂ , θ̂ , φ̂)
on the spatio-temporal coordinates (r, θ, φ, t) and scale (spherical harmonic degree l
and order m), as well as the governing parameters (RaT , E , Pr ). Since the buoyancy
force is radial while the system rotates about a vertical axis, different dynamical balances
may be expected in the three orthogonal directions. Directional anisotropy of the force
balance has been considered rarely in spherical shell models (for an exception, see Calkins
et al. 2021), and forces are usually represented by their total magnitudes (Soderlund et al.
2012; Guzmán et al. 2021; Orvedahl et al. 2021). Studies of azimuthally averaged forces
(Calkins et al. 2021) and curls (Aubert 2005) in dynamo simulations have indeed revealed
a TW balance in the meridional plane with a Coriolis–Lorentz balance in the azimuthal
direction. We complement these works by considering the balance of individual (r̂ , θ̂ , φ̂)
force components in rotating spherical shell convection.

The scale-dependence of the force balance in RC spherical shell simulations has been
investigated by considering the force contributions from each spherical harmonic degree l.
Schwaiger et al. (2020) found a secondary balance between ageostrophic Coriolis and
buoyancy forces at low l, and a cross-over to Coriolis–Inertia balance at higher l. They
argued that the length scale at which inertia and buoyancy forces cross over is related to
energetic scales of the flow, as estimated from the peak of the poloidal kinetic energy
spectra. However, the scale-dependent representation of curled forces may not exhibit
such a dynamically relevant cross-over scale (Teed & Dormy 2023). Furthermore, some
simulations show that the small-scale curled balance differs markedly compared to the
force balance (Teed & Dormy 2023). It is therefore useful to systematically compare the
scale-dependent nature of force and curled balances in different dynamical regimes of RC.

In summary, previous studies have investigated various aspects of dynamical balances
(e.g. forces versus curls, mean versus fluctuating balances, components versus combined
terms, scale-dependence) in spherical shell RC. However, to our knowledge, no study
systematically compares the different depictions of dynamical balances in different
regimes of spherical shell RC. A recent related study by Nicoski et al. (2024)
investigated the behaviour of fluctuating radial forces in spherical shell RC with
fixed temperature and free-slip boundaries for E = 5 × 10−4−5 × 10−7, Pr = 1 and
the convective supercriticality range RaT /Rac

T = 3−161. They found a primary QG
balance in the radial fluctuating forces at all parameters considered. At low convective
supercriticalities, they obtained a secondary balance between buoyancy and ageostrophic
Coriolis forces, while inertia and viscosity enter the balance at higher thermal forcing. In
this paper, we systematically compare integrated and scale-dependent representations of
mean and fluctuating forces and curled balances in the large suite of rotating spherical
shell convection simulations from Mound & Davies (2017) and L20, supplemented by
three new simulations. In contrast to Nicoski et al. (2024), our simulations use no-slip,
fixed heat flux boundaries.

This paper is organized as follows. We present the mathematical model in § 2.1, the
numerical details in § 2.2, and the force calculation method in § 2.3. Results are presented
in § 3, beginning in § 3.1 with an analysis of the boundary region that must be excluded to
ensure a robust representation of the bulk dynamics. In §§ 3.2 and 3.3, we investigate mean
and fluctuating bulk-integrated force and curl balances, respectively. The total magnitude
of the forces and their scale dependence are discussed in § 3.4. In § 4, we compare
transitions in the computed force and curled balanced to the regime diagram obtained
by L20. We discuss our observations and summarize the findings in § 5.
1009 A70-4
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2. Method

2.1. Mathematical model
We employ a numerical model of convection of a Boussinesq fluid in a rotating spherical
shell. The relevant physical properties of the fluid are the kinematic viscosity ν, thermal
expansivity α, and thermal diffusivity κ , defined as κ = k/ρ0cp, where k is the thermal
conductivity, ρ0 is the reference density, and cp is the specific heat capacity. A spherical
coordinate system (r, θ, φ) is used to represent the domain bounded by the inner and outer
boundaries, ri and ro, respectively. The system rotates with a constant angular velocity
Ω = Ω ẑ, about the vertical, and gravity g varies linearly with radius, with g = go at the
outer radius. The governing equations are cast in non-dimensional form using the shell
gap h as the length scale, the viscous diffusion time h2/ν as the time scale, and β/h as
the temperature scale, giving

∇ · u = 0, (2.1)
∂u
∂t

+ (u · ∇)u + 1
E

(
ẑ × u

) = −∇ P̃ +
(

Ra

Pr

)
T r + ∇2u, (2.2)

∂T

∂t
+ (u · ∇)(T + Tc) = 1

Pr
∇2(T + Tc), (2.3)

where T is the temperature fluctuation relative to the conductive state Tc, given by
∂Tc/∂r = −β/r2. The parameter β is related to the fixed heat flow through the boundaries
as Q = 4πβk. No-slip velocity conditions and fixed heat flux temperature conditions have
been used at both boundaries.

The non-dimensional numbers appearing in these equations are the Ekman number (E),
Rayleigh number (Ra), and Prandtl number (Pr ), which are defined as

E = ν

2Ωh2 , Ra = goαβh3

νκr∗
o

, Pr = ν

κ
. (2.4)

Here, r∗
o = 1/(1 − η) is the non-dimensional outer radius, where η = ri/ro is the radius

ratio fixed at η = 0.35.

2.2. Numerical details
The velocity field is represented by toroidal and poloidal scalar fields, which are
expressed as radially varying Schmidt-normalized spherical harmonics. Radial variations
are expressed using second-order finite differences on the zeros of Chebyshev polynomials.
A predictor–corrector scheme is used for time stepping in spectral space that treats the
diffusion terms implicitly. Further numerical details can be found in previous studies that
use the same solver (Willis et al. 2007; Davies et al. 2011; Matsui et al. 2016).

We consider all the simulations reported in Mound & Davies (2017) for E = 10−4, 10−5

and 10−6, that impose homogeneous heat flux at the outer boundary. The simulations
performed by L20 at E = 10−3, E = 3 × 10−4 and E = 3 × 10−5 are also included. It
should be noted here that the flux Rayleigh number in this study relates to the modified
flux Rayleigh number defined by Mound & Davies (2017) and L20 as R̃a = Ra E . To
complement the database, we have run three more simulations at E = 10−6, for R̃a =
350, 550, 30 000. The details of these simulations are given in Appendix A. The Prandtl
number is fixed at Pr = 1 for all runs. The fixed temperature Rayleigh number (RaT ) is
related to the fixed flux Rayleigh number (Ra) as
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RaT = Ra

Nu

(1 − η)2

η
. (2.5)

The reduced fixed-temperature Rayleigh number used in § 3 is defined as R̃aT =
RaT E4/3. The critical values for the three definitions of Rayleigh numbers (R̃a

c, Rac
T

and R̃a
c
T ) at the onset of thermal convection are provided in Appendix B, based on the

analysis of L20.

2.3. Force calculation
We refer to the terms from left to right in (2.2) as time derivative (TD), inertia (I),
Coriolis (C), pressure gradient (P), thermal buoyancy (or Archimedean, A) and viscous
(V) forces. Additionally, the ageostrophic Coriolis force (1/E)( ẑ × u) + ∇ P̃ is denoted
as Cag . Henceforth, we use these abbreviations to refer to the balance in the simulations.
For example, a balance between inertia, Archimedean (i.e. thermal buoyancy) and Coriolis
forces will be referred to as an IAC balance. Also, a TW balance refers to an ACP force
balance or an AC balance of curled forces. Similarly, a QG balance refers to a CP balance
of forces.

We partition dependent variables into their azimuthally averaged mean and
corresponding fluctuating parts as

f (r, θ, φ, t) = f (r, θ, t) + f ′(r, θ, φ, t),

f (r, θ, t) = 1
2π

∫ 2π

0
f (r, θ, φ, t) dφ. (2.6)

In spectral representation, this is equivalent to partitioning into the azimuthally symmetric
harmonics of order m = 0 (mean) and the corresponding part with order m �= 0.
Azimuthally averaging (2.2) leads to

∂u
∂t︸︷︷︸
T D

+ (u · ∇)u︸ ︷︷ ︸
I mm

+ (u′ · ∇)u′︸ ︷︷ ︸
I f f

+ 1
E

(
ẑ × u

)
︸ ︷︷ ︸

C

= −∇P︸ ︷︷ ︸
P

+ Ra

Pr
T︸ ︷︷ ︸

A

r + ∇2u︸︷︷︸
V

, (2.7)

where partitioning the mean inertial force term I = (u · ∇)u as I = I mm + I f f leads to
the mean–mean inertia term I mm = (u · ∇)u and the Reynolds stress I f f = (u′ · ∇)u′.
Subtracting the mean momentum equation (2.7) from (2.2) leads to the corresponding
fluctuating part of the momentum equation:

∂u′

∂t︸︷︷︸
T D′

+ (u · ∇)u′︸ ︷︷ ︸
I m f

+ (u′ · ∇)u︸ ︷︷ ︸
I f m

+ (u′ · ∇)u′︸ ︷︷ ︸
I f f

− (u′ · ∇)u′︸ ︷︷ ︸
I f f

+ 1
E

(
ẑ × u′)︸ ︷︷ ︸
C ′

= −∇P ′︸ ︷︷ ︸
P ′

+ Ra

Pr
T ′︸ ︷︷ ︸

A′

r + ∇2u′︸︷︷︸
V ′

, (2.8)

where the fluctuating inertial term I ′ has four parts, I ′ = I m f + I f m + I f f − I f f ,
signifying the mean–fluctuating, fluctuating–mean, fluctuating–fluctuating inertial terms
and the Reynolds stress. Among the fluctuating inertial terms in (2.8), the fluctuating–
fluctuating term (I f f ) always dominates in our simulations. Therefore, we have discussed
only the sum of the four terms I ′, for presentational convenience. The spherical harmonic
degree l = 0 of the mean radial forces and I f f are balanced by the hydrostatic part of
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the pressure gradient, which is irrelevant to the convective dynamics (Calkins et al. 2021;
Nicoski et al. 2024). Therefore, we remove the degree l = 0 from the radial component
of I f f from (2.8), and from all the radial mean forces in (2.7). In our calculations, the
temporally averaged values of TD terms in (2.7) and (2.8) remain small compared to all
the other terms, though they may be significant for simulations with free-slip boundaries
(Nicoski et al. 2024). Therefore, this term is not discussed in the next section, and
the nonlinear advection terms are referred to as inertia throughout the text. Also, the
abbreviations of mean (fluctuating) forces are mentioned explicitly rather than using an
overbar (or prime). For example, a VAC balance in the fluctuating curled forces will be
referred to as a curled fluctuating VAC balance, rather than a V′A′C′ balance of curled
forces.

The total force magnitude can be calculated from the vector components as

ftot = | f | =
√

f 2
r + f 2

θ + f 2
φ , (2.9)

where fr , fθ and fφ are the components in the r̂ , θ̂ and φ̂ directions, respectively. Further,
the force components (or the total force magnitude) are represented by their root mean
square (r.m.s.) values, where the ‘mean’ refers to a volume average performed by first
averaging over a spherical surface and then averaging in the radial direction excluding
regions near the boundary:

〈 f j 〉S = 1
4πr2

∫ π

0

∫ 2π

0
f j (r, θ, φ, t) r2 sin θ dφ dθ, (2.10a)

〈 f j 〉V = 1
h − rexδi

v − rexδo
v

∫ ro−rex δo
v

ri +rex δi
v

〈 f j 〉S dr, (2.10b)

where j = r, θ, φ or tot. In (2.10b), rex represents the multiple of the VBL thicknesses
at the inner and the outer boundaries, δi

v and δo
v , respectively, that we exclude from the

volume average to ensure the representation of bulk dynamics. There are two common
methods of estimating the thickness of the VBL from the radial profile of horizontal
velocity (L20). One is the ‘local maxima method’ (L20), where the distance of the nearest
maximum in this profile from the respective boundaries is defined as the VBL thickness,
whereas the distance of the intersection of the tangent to the profile at the wall and the
tangent at the nearest maximum near the wall is used as VBL thickness in the ‘linear
intersection method’ (Gastine et al. 2016). In our study, VBL thickness is estimated using
the linear intersection method, which has been reported as a better estimate than the local
maxima method (Gastine et al. 2015). The value of rex is determined in § 3.1.

We evaluate the scale dependence of the forces as a function of spherical harmonic
degree following Aubert et al. (2017). The volume-averaged r.m.s. forces are averaged in
time over at least a hundred advective time units after the simulations reach a statistically
stationary state (Mound & Davies 2017; Long et al. 2020). The calculation of forces
follows the methodology reported by Calkins et al. (2021) and Nicoski et al. (2024), and
a couple of cases from Nicoski et al. (2024) have been reproduced to validate our force
calculation.

3. Results
In this section, we investigate the force balances in the thermally driven RC simulations
at E = 10−5 reported in Mound & Davies (2017) and L20. We start, in § 3.1, with a
systematic study to assess the thickness of the region near the boundaries that should
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be excluded to ensure the representation of bulk dynamics. We explore the mean and
fluctuating parts of each component of forces in § 3.2, and their curl in § 3.3. The scale
dependence of the forces is investigated in § 3.4, whereas the role of inertia in the force
balance in various regimes of RC is considered in § 4. The thermal forcings at which
transitions occur from WN to RR to WR behaviours have been predicted previously based
on theoretical scaling laws (L20) and are marked by vertical lines in the volume-averaged
balances presented in the next section. We use representative cases from each of these
regimes at R̃a = 90 (WN), R̃a = 1200 (RR) and R̃a = 13000 (WR) to establish the
required boundary layer exclusion in § 3.1 and to demonstrate the scale dependence of
the balances in § 3.4. The force balances at E = 10−4 and E = 10−6 are presented in
supplementary figures S1 and S2, respectively, for comparison.

3.1. Boundary layer exclusion
We begin by assessing the variation of the fluctuating forces (figures 1c,e,g) and their curls
(figures 1d, f ,h) as a function of rex , which represents the number of VBLs excluded near
each boundary from the volume average. Mean quantities exhibit similar behaviour, so we
focus on fluctuating quantities in this subsection. A common practice (e.g. Yadav et al.
2016; Aubert et al. 2017) is to exclude a single VBL before calculating the volume average
(figures 1a,b), which corresponds to rex = 1. We demonstrate the impact of changing
rex in our representative cases from the WN (figures 1c,d), RR (figures 1e, f ) and WR
(figures 1g,h) regimes. Since viscous forces are strongest near the no-slip boundaries in
our simulations, that force term changes most significantly as boundary layers are excluded
(figures 1c,e,g). The viscous force term decreases with increasing rex and converges to its
bulk values for rex � 5 for all cases. The curled viscous force requires more exclusion than
the uncurled force to converge to its bulk values (e.g. compare figures 1c,d), probably due
to the presence of an extra spatial gradient that inflates sharp changes near the boundaries.

Crucially, excluding only a single VBL to calculate the forces is generally insufficient
to properly capture bulk dynamics in our simulations. In the WN regime, the viscous
force is larger than inertia for rex = 1 (figure 1c), while it falls below inertia for rex > 2.
Overestimation of the viscous term in the bulk with rex = 1 is particularly problematic
when considering curled forces, where it can result in a more than an order of magnitude
overestimate (e.g. figure 1d). In the curled forces, a VC balance is obtained for the
WN cases using rex = 1, whereas an AC (or TW) balance can be observed for rex = 10
(figure 1d). In the RR regime (figure 1f ), the curled force balance changes from VC to
IVAC with increasing exclusion. For the WR case (figure 1h), the IVC balance obtained
for rex = 1 becomes an IVAC balance with increasing rex . Figure 1 also shows that the
ordering of terms in the force and curled balances can differ significantly at low rex , but
show better agreement for large rex .

To test the appropriate value of rex across the entire suite of runs, we plot the ratio
of volume-averaged fluctuating viscous to Coriolis terms as a function of rex in figure 2.
This ratio is generally largest for low rex , and decreases with increasing rex . The value of
rex required to obtain converged results (i.e. that do not change upon a further increase
in rex ) varies somewhat with the parameters, but is always larger for the curled terms
than the forces. Across our suite of simulations, a converged bulk force balance is always
obtained with rex � 5. The curled force ratio (figure 2b) exhibits slower convergence to
the bulk values than the uncurled forces, and can require rex � 10. Following the analysis
in figure 2, we exclude ten VBLs (i.e. rex = 10) in all volume averages. This corresponds
to 2−4 VBLs if the local maxima method is used instead of a linear intersection method,
as the former leads to thicker estimates of the VBL (Gastine et al. 2015). For the thickest
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Figure 1. Variation of volume-averaged r.m.s. fluctuating forces (left-hand column) and their curls (right-hand
column) at E = 10−5 with thermal forcing R̃aT where only single boundary layer thicknesses are excluded
(rex = 1) in (a,b), and with boundary layer exclusion factor (rex ) in (c–h) for the annotated cases in (a,b). The
representative cases from WN, RR and WR regimes correspond to (c,d) R̃a = 150, (e,f ) R̃a = 1200 and (g,h)
R̃a = 13 000.
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Figure 2. Variation of fluctuating viscous to Coriolis (a) force and (b) curled force ratios, with the thickness
of the excluded layers as a multiple (rex ) of VBL thickness. The representative cases from WN (circles),
RR (diamonds) and WR (stars) regimes for three Ekman numbers correspond to R̃a = 30, 900, 13 000 for
E = 10−4 (blue), R̃a = 90, 1200, 13 000 (red) for E = 10−5 and R̃a = 150, 2000, 18 000 for E = 10−6

(green).

boundary layers at R̃a = 30 and E = 10−4, approximately 34−38 % of the gap is excluded
from the radial extent of the domain at rex = 10. For the majority of simulations, the total
excluded region amounts to less than 20 % of the gap width.

3.2. Force balance
The volume-averaged mean and fluctuating forces as functions of thermal forcing R̃aT are
shown in figures 3(a,c,e) and 3(b,d, f ), respectively. Because buoyancy acts only radially,
and the Coriolis force is horizontal, there will be a directional anisotropy in the force
balances, therefore we consider the radial (r̂ , figures 3a,b), co-latitudinal (θ̂ , figures 3c,d),
and azimuthal (φ̂, figures 3e, f ) force components separately.

In the radial direction (figure 3a), we find a primary TW balance between the mean
Coriolis, pressure and buoyancy forces, with the buoyancy force gradually becoming
subdominant at the highest values of R̃aT considered. In the θ direction (figure 3c), the
primary balance in the mean forces is QG (i.e. between Coriolis and pressure forces) for
all R̃aT . These mean balances in r̂ and θ̂ are the same as the balances reported in recent
dynamo simulations (Calkins et al. 2021). The residuals of the primary TW balance in
r̂ and the primary QG balance in θ̂ are balanced by the Reynolds stress (I f f ), which
dominates the two components of the total mean advection term (I = I mm + I f f ) until the
largest forcings considered. In the mean r̂ and θ̂ balances, viscosity is always subdominant,
as found by Calkins et al. (2021). The primary mean forces in the azimuthal direction
(figure 3e) have similar magnitude with the secondary forces in the r̂ and θ̂directions.
Owing to our choice of averaging, there is no mean pressure gradient or buoyancy force
in the azimuthal direction. Therefore, the Coriolis force is balanced by inertia and viscous
forces at low R̃aT (IVC balance), whereas an IC balance dominates at high R̃aT .

In the fluctuating forces in figures 3(b,d, f ), the QG balance between Coriolis and
pressure forces dominates in all directions. At low R̃aT in the radial direction, there is a
secondary ACag balance between ageostrophic Coriolis force and buoyancy, with viscosity
approximately an order of magnitude weaker. At high R̃aT in the radial direction, there
is a secondary IACag balance, with viscosity still subdominant but less than an order of
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Figure 3. Volume-averaged r.m.s. mean (left-hand column) and fluctuating (right-hand column) force
components in (a,b) r̂ , (c,d) θ̂ and (e,f ) φ̂ for E = 10−5.

magnitude weaker. In the θ and φ directions, the ageostrophic Coriolis force is balanced by
both viscous and inertial forces for low R̃aT (IVCag balance), with the relative importance
of viscosity weakening as R̃aT increases.

The behaviour of the fluctuating radial forces can be compared with the free-slip and
fixed temperature simulations of Nicoski et al. (2024) (see figure 16(b) in their paper). For
both studies, the primary radial balance is QG, while the secondary balance is ACag at low
thermal forcings, and IACag with a weakly subdominant viscous contribution at higher
thermal forcings. Though the viscous force can be higher than inertia for the lowest R̃aT
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values considered here (figure 3b), it is the smallest force in both studies when the same
range of R̃aT is considered. However, the two studies find different dominant contributions
to the inertia force. Figure 3(b) shows that I ′ is dominated by I f f , which balances Cag and
A′

r for large R̃aT . In contrast, Nicoski et al. (2024) found that the mean-fluctuating inertia
(I m f ) dominates the nonlinear advection terms, which, combined with the TD, balances
Cag and A′

r for large R̃aT . This difference probably arises from the strong mean zonal
flows in the simulations of Nicoski et al. (2024), owing to the use of free-slip conditions.

The partitioning into mean (m = 0) and fluctuating (m �= 0) forces brings out distinct
balances (comparing the left-hand and right-hand plots of figure 3). For example, the radial
force balance exhibits a primary mean TW balance and a primary fluctuating QG balance.
The unpartitioned (i.e. mean + fluctuating) radial force balance has a primary QG balance
that exceeds a subdominant ACag balance by a factor 2−3, essentially averaging the large-
and small-scale dynamics.

The azimuthal component of azimuthally averaged forces has been considered in
previous studies (Sheyko et al. 2018; Menu et al. 2020) since it removes the pressure
gradient, although there is no buoyancy force in this direction. Our analysis indicates
that this representation (see figure 3(e) for an example) does not reflect the balance of
mean forces in the r̂ and θ̂ directions, and also does not correspond to the balances of the
fluctuating part of the forces.

3.3. Curled force balance
Though the force balance provides useful insights into the dynamics, all forces in (2.2)
are non-solenoidal and therefore will have gradient portions. These gradient portions
of the forces are balanced by the pressure gradient term, which plays no role in the
dynamics (Hughes & Cattaneo 2019; Teed & Dormy 2023). Our approach to removing
these gradients is to take the curl of the momentum equation. We partition the curled
forces into mean (figures 4a,c,e) and fluctuating (figures 4b,d, f ) parts, and separately
consider the radial (figures 4a,b), co-latitudinal (figures 4c,d), and azimuthal (figures 4e, f )
components. Since the buoyancy force is radial, its curl acts only in the angular directions
(θ and φ), making the curled balance inherently anisotropic.

In the r̂ and θ̂ directions, we find a primary mean balance between the Coriolis, inertial
and viscous terms (IVC balance), with the viscous contribution weakening at the highest
values of R̃aT considered. In the φ̂ direction, the mean balance is a TW, except at the
highest values of R̃aT considered, where the mean curled inertia also enters this primary
balance. A TW arises only in the mean azimuthal component because our choice of
averaging causes the θ -component of the mean curled buoyancy force to vanish (since
∂T /∂φ = 0). Aubert (2005) also found a TW balance in the azimuthally averaged curled
force balance for non-magnetic simulations at E = 10−4−10−5.

The curled fluctuating forces in θ̂ and φ̂ exhibit a primary balance between Coriolis,
buoyancy and viscous terms (VAC balance) at low R̃aT , while the inertial force gradually
enters this balance with increasing R̃aT . A similar trend is observed in the radial balance,
except for the omission of the buoyancy term. We note here that the radial curled force
balance, as reported by Dormy (2016), may not represent the curled force balance in the
other directions.

As with the forces, partitioning curled terms into mean and fluctuating components
brings out distinct balances that would be obscured if only the unpartitioned curled terms
were considered. In particular, because the fluctuating curled quantities have much higher
amplitude than the mean curled quantities, an unpartitioned (i.e. mean + fluctuation)
curled force representation would simply show the fluctuating small-scale balance.
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Figure 4. Volume-averaged r.m.s. mean (left-hand column) and fluctuating (right-hand column) curled force
components in (a,b) r̂ , (c,d) θ̂ and (e, f ) φ̂ for E = 10−5.

The balance obtained from the total magnitude of the three mean curled components
follows the balance in the φ̂ direction shown in figure 4(e), while the balance obtained
from the total magnitude of the three fluctuating curled components reflects the balances
in the θ̂ and φ̂ directions shown in figures 4(d) and 4(f ).

3.4. Scale-dependent force balance
In figure 5, we compare the scale dependence of the total magnitude of the fluctuating
forces (left-hand column) and their curls (right-hand column) with the corresponding
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scale-integrated representation (figures 5a,b). For brevity, we again select one case from
each of the WN (figures 5c,d), RR (figures 5e, f ), and WR (figures 5g,h) regimes,
corresponding to R̃a = 90, 1200, 13 000, respectively (these cases are highlighted in
figures 5a,b). The regime boundaries are shown using dashed and solid vertical lines,
following the analysis of L20, as described in detail in the next subsection. Although the
mean forces are also dependent on the spherical harmonic (SH) degree, we focus on the
fluctuating forces because of their more direct correspondence with the convective motions
and the heat transfer behaviour.

Based on the scale-integrated fluctuating forces, all simulations have a QG primary
balance (figure 5a). This primary force balance holds across all scales in the WN and RR
regimes (figures 5c,e), while inertia enters the primary balance at the small scales (i.e.
large l) in the WR regime (figure 5g). The secondary force balance in the WN and RR
regimes is characterized by an ACag balance between buoyancy and ageostrophic Coriolis
at large scales, with inertia entering at small scales (figure 5e). In the WR regime, there is
a secondary IACag balance with a significant inertial contribution at all scales. The scale
dependence of forces in the RR regime (figure 5e) is similar to the force spectra reported
in Schwaiger et al. (2020) (see figure 7(a) in their paper) and is often referred to as a
QG–IACag balance.

Previous studies have attempted to relate crossings of scale-dependent forces (such
as the crossing of buoyancy and inertia forces at l ∼ 22 in figure 5e) to dynamically
relevant length scales (e.g. Schwaiger et al. 2020). However, for high R̃aT in the WR
regime (figure 5g), the observed crossings occur at l ∼ 3, which is much smaller than the
dominant wavenumber of the flow (l ∼ 15, based on the peak of the kinetic energy spectra).
Therefore, it may not always be possible to relate crossings of scale-dependent forces to
dynamically significant length scales.

Compared to the scale-dependent forces, the scale-dependent curled balances do not
produce a clear separation of balances (i.e. primary/secondary/tertiary). In the WN regime
(figure 5d), an AC balance is evident at large scales, while viscous and inertia forces enter
the balance at small scales. The curled force magnitudes in the RR regime (figure 5f ) are
comparable at all scales, leading to an IVAC balance in the scale-integrated representation
(figure 5b). In the WR regime (figure 5h), an IC balance is observed at large scales, while
the inertia dominates the balance at small scales.

Figure 5 compares scale-integrated and scale-dependent representations of dynamical
balances in our simulations. Integrated forces can not capture cross-over scales where
they exist, or the general decrease of the buoyancy force and increase of the inertial
force with increasing l (e.g. figure 5e). Furthermore, integrated quantities generally do not
reflect the force balance at the smallest scales of the solution. Nevertheless, the integrated
representation quantitatively captures the overall ordering of forces in a single measure
that can be easily compared across a large suite of simulations. In comparison, the curled
balances are comparatively less scale-dependent, exhibiting neither a clear ordering of
the forces nor any distinct cross-over scales (see also Teed & Dormy 2023). Therefore, a
scale-integrated analysis (figure 5b) is sufficient to represent the curled forces.

3.5. Ekman number dependence
We can now consider the general trend in the balance of forces with increasing R̃aT and
decreasing E . The total magnitude of the fluctuating forces and their curls for E = 10−4

and E = 10−6 increases with R̃aT (figure 6), exhibiting a similar dependence to their
counterparts at E = 10−5 (figures 3 and 4). The Coriolis and pressure forces in the primary
QG balance become increasingly separated from the secondary forces as E is reduced
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Figure 6. Volume-averaged r.m.s. fluctuating forces (left-hand column) and their curls (right-hand column) at
(a,b) E = 10−4 and (c,d) E = 10−6. The dashed vertical line represents the thermal forcing where a transition
from WN to WR regimes happens according to the scaling predictions of Long et al. (2020). Their analysis
does not predict the existence of the RR regime for E � 10−4.

(compare figures 6a,c). Although the separation between viscous and Coriolis forces
increases with decreasing E , the viscous force magnitude remains similar to the other
secondary forces. According to asymptotic predictions (Nicoski et al. 2024), although the
viscous force should decrease compared to Coriolis with decreasing E , the ratio of the
viscous force to buoyancy and inertia should remain invariant, which is consistent with
our results. The viscous force in the curled balance (figures 6b,d) also has a magnitude
comparable to other curled forces over the investigated range of R̃aT and E . In summary,
we see broadly similar primary and secondary balances in the forces and curled forces at
different E , including transitions between dynamic regimes as R̃aT varies.

4. Summary of dynamical balances and comparison to regimes of L20
Table 1 presents a qualitative summary of the different balances that we found within
our suite of simulations depending on whether we considered forces or curled forces,
total magnitudes or individual vector components, or partitioning into azimuthally mean
and fluctuating contributions. We reiterate here that our analysis reflects bulk dynamics,
with the volume averages obtained after removing ten VBLs from each boundary of the
domain. Balances similar to those described in detail above for E = 10−5 are also found at
E = 10−4 and E = 10−6; the main difference is that the separation between the primary
and secondary balances, denoted by a dash (−) in the table, increases with decreasing
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Forces Curled forces
Component Mean Fluctuating Mean Fluctuating

r T W − I (T W )res QG − (ACag → I ACag) I V C V C → I V C
θ QG − I Cag QG − (I V Cag → I Cag) I V C V AC → I V AC
φ I V C → I C QG − (I V Cag → I Cag) T W − I V (T W )res → I AC V AC → I V AC
tot T W − I (T W )res QG − (ACag → I ACag) T W − I V (T W )res → I V AC V AC → I V AC

Table 1. Summary of force and curled force balances in our simulations. The ACP balance of forces (or the AC
balance of curled forces) is referred to as a TW balance, while the residual of these forces is designated here
as (TW)res . Similarly, the primary balance between Coriolis and pressure gradient forces is denoted as a QG
balance. Primary and secondary force balances are separated by a dash (−), while the changes in the balance
with increasing thermal forcing (R̃aT ) are designated with a right arrow (→).

Ekman number (e.g. compare figure 5 in this text with figure 3 in supplementary materials
S1 and S2). We have tried to denote ‘balances’ that are groupings of two or more terms
that are separated by an order of magnitude in amplitude from other terms; however, such a
large separation is not always present. Changes in the balances with R̃aT are indicated by
a right arrow (→), which indicates the general trends with increased thermal forcing but
not the specific values at which the balances change. Therefore, table 1 is only a general
description of the complex variations in force balances amongst our suite of simulations.
In general, increased thermal forcing results in an increase in the relative importance of
inertial terms in the balances.

We now compare transitions in the force and curled force balances to previous
predictions of regime transitions based on scaling laws (L20). We put emphasis on the
E � 10−5 cases as they are more appropriate for comparing with the asymptotic scaling
theories used by L20. They defined the WN–RR regime transition (dashed vertical lines
in figures 3–5) as RaT = 8Rac

T based on the observed gradual departure from the linear
Nu − 1 ∝ RaT /Rac

T − 1 scaling expected just above onset. In the WN regime, they found
that the simulated flow length scale � and convective Reynolds number Rec follow the
predictions of VAC theory. L20 defined the RR–WR transition (solid vertical lines in
figures 3–5) based on the condition RaT E8/5 ∼ O(1) of Julien et al. (2012a) above which
the thermal boundary layers lose geostrophic balance. They found scalings for � and Rec
close to but statistically different from the predictions of IAC theory.

Figures 3 and 4 show that mean forces exhibit no changes in primary or secondary
balances over the range of R̃aT considered, hence do not conform to the regime transitions
found by L20. This is expected, since L20 defined transitions based on quantities that
depend strongly on convective fluctuations such as Nu, � and Rec. In the fluctuating forces,
the WN–RR transition correlates with viscous and inertial terms coming into approximate
balance with the ageostrophic and buoyancy terms that comprise the secondary balance
(figure 5a), while in the fluctuating curled forces, this transition arises when the magnitude
of the nonlinear advection term becomes comparable to the Coriolis, buoyancy and viscous
terms (figure 5b). In the fluctuating forces, the RR–WR transition broadly correlates with
the amplitude of the viscous term falling below that of the secondary balance, while in the
fluctuating curls, this transition appears to correlate with the amplitude of the inertial term
rising above the remaining terms. However, the total fluctuating forces and curled forces do
not suggest an exact value of R̃aT where regime transitions occur. Indeed, these quantities
exhibit gradual changes with R̃aT and E (e.g. figures 5(a,b) and figures 3(a,b) in both S1
and S2), hence any transition inferred from them is necessarily broad rather than abrupt.
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Forces Curled forces
Regime Mean Fluctuating Mean Fluctuating

WN T W − I (T W )res QG − ACag T W − I V (T W )res V AC → I V AC
RR T W − I (T W )res QG − I ACag T W − I V (T W )res → I V AC I V AC
WR T W − I (T W )res QG − I ACag I V AC I V AC

Table 2. Summary of force and curled force balances in the regimes of RC simulations as predicted by L20.
The balances in total force magnitudes (2.9) have been used here. The abbreviations used here are the same as
described in table 1. Primary and secondary force balances are separated by a dash (−), while the changes in
the balance with increasing thermal forcing (R̃aT ) are designated with a right arrow (→).

Table 2 summarizes the general character of the balances in the regimes defined by L20,
calculated using the total magnitude of the mean (supplementary material S3) and fluctu-
ating forces and curled forces. L20 inferred a VAC balance in the WN regime, and an IAC
balance in the RR regime, using scaling theory based on the curled force balance. In the
WN regime, the calculated fluctuating curled force balance is VAC at low R̃aT , transition-
ing to an IVAC balance as R̃aT increases (figure 5b). This behaviour is broadly consistent
with the assumptions of L20. In the section of the RR regime accessed by our simulations,
the calculated fluctuating curled force balance is IVAC rather than the IAC balance
assumed by L20. The viscous force is also significant in the force balance (figure 5a),
though it remains smaller than the other forces in the RR regime. Similar behaviour of the
viscous force can also be observed at E = 10−4 and E = 10−6 (see figures 3(a,b) in both
S1 and S2). Reconciling the calculated dynamical balances in the RR regime with other
flow diagnostics such as �, Nu and Re must await a scaling theory for the IVAC regime.

In summary, the fluctuating force and curled force balances exhibit smooth variations
over the range of R̃aT and E considered, reflecting gradual rather than abrupt changes in
the dynamics. Broadly speaking, it appears that the RR regime as defined by L20 corre-
sponds to a range of R̃aT where inertial effects enter the primary fluctuating curled force
balance (or the secondary fluctuating force balance). This observation motivated us to seek
a single parameter to characterize the changing dynamics with R̃aT . However, it is difficult
to find a single quantity that adequately represents the transitions in heat transport and
flow behaviour identified by L20. This is perhaps unsurprising given that even the simple
VAC scaling laws used by L20 are defined by at least two parameters, while the dominant
dynamical balances identified in table 2 involve at least three terms. We therefore classify
these balances by introducing two parameters based on our calculated dynamical balances.

Figure 7 shows a quantitative comparison of our dynamical balances with the regime
diagram of L20 (their figure 14). To classify the balance in the E−RaT /Rac

T parameter
space, we are motivated by the observation that inertia varies most strongly with R̃aT in
our simulations (figure 5). We therefore introduce two new measures based on the total
magnitude of the fluctuating forces and the curled forces (figure 5a,b) that assess the role
of inertia in the force balance.

To measure the degree of geostrophy in the balance we define a force ratio

FI/C = I ′

C ′ . (4.1)

We find that the value FI/C = 0.1 can be used to demarcate the simulations belonging
to the WR regime as demonstrated in figure 7. Here, FI/C > 0.1 (open symbols) can
describe almost all simulations that fall in the WR regime, as compared to the simulations
in the range FI/C � 0.1 (filled symbols) that mostly fall inside the WN and RR regimes.
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Figure 7. Regime diagram with predicted regime boundaries from the analysis of L20. The primary force
balance is classified as QG when FI/C � 0.1 (filled symbols), and non-QG when FI/C > 0.1 (open symbols).
The markers are coloured by log10(CF I/C ). L20 found that the WN–RR regime transition corresponded to the
condition RaT /Rac

T = 8, and the RR–WR transition corresponded to the condition RaT = 0.6E−8/5 of Julien
et al. (2012b).

A comparison can be made between the force ratio FI/C and the Rossby number Ro =
2 Re E (where Re is the Reynolds number defined in Appendix A), which is often used to
represent the ratio of the two forces. We find that the agreement between the magnitudes
of FI/C and Ro worsens as E decreases, and at our lowest E , Ro underestimates FI/C by
approximately a factor of ten.

To measure the role of inertia in the curled balance, we further define a curled force
ratio

CF I/C = ∇ × I ′

∇ × C ′ . (4.2)

The symbols in figure 7 are coloured by log10(CF I/C ). We emphasize again that the
roles of all terms, including inertia, in the dynamical balances change gradually, hence
values of FI/C and CF I/C that reflect regime transitions must be chosen arbitrarily.
Nevertheless, the RR regime can be characterized by the combination of FI/C � 0.1 and
log10(CF I/C ) ≈ 0 (i.e. CF I/C ≈ 1), which reflects the primary QG balance in the fluctu-
ating forces and the IVAC balance in the fluctuating curled forces, respectively (table 2).

5. Discussion and conclusions
We have analysed different representations of dynamical balances in simulations of
spherical shell RC. The radial, co-latitudinal and azimuthal components of the forces have
been considered separately to demonstrate the anisotropic nature of dynamical balances.
We also partition the forces into azimuthally averaged mean and corresponding fluctuating
parts that exhibit distinct balances. Furthermore, the curled force components are also
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analysed to investigate the solenoidal force balance. The utility of a scale-dependent
representation of curled and uncurled forces has been addressed. Our main findings are
presented in figures 3–5 and table 1, and can be summarized as follows.

(i) The bulk curled force balance depends critically on the number of VBLs that are
removed near the upper and lower boundaries. We find that removing ten VBLs from
each boundary provides a robust estimate of the curled force balance that is broadly
consistent with the balance obtained from calculating forces.

(ii) Mean and fluctuating forces and curled forces exhibit distinct balances, consistent
with the results of Calkins et al. (2021) and Nicoski et al. (2024). In particular, the
primary mean force and curled force balances are thermal wind (TW), while the
primary fluctuating force and curled force balances are quasi-geostrophic (QG) and
Inertia–Viscous–Archimedian–Coriolis (IVAC), respectively.

(iii) Radial, co-latitudinal and azimuthal forces exhibit distinct balances as found by
Calkins et al. (2021) and Aubert (2005) for dynamo simulations. For example, mean
forces exhibit a primary TW balance in the radial direction, QG balance in the
latitudinal direction, and Inertial–Viscous–Coriolis (IVC) balance in the longitudinal
direction. A total force magnitude representation underestimates the role of buoyancy
compared to the radial balance.

(iv) In the scale-dependent balances, the separation of magnitude between the forces
decreases when a curl operation is performed. Cross-over scales are observed in some
but not all force balances, and are not observed in curled force balances, consistent
with the results of Teed & Dormy (2023). The curled forces are only weakly
scale-dependent and therefore suitably represented by scale-integrated quantities.

(v) Transitions in fluctuating force and curled force balances are broadly consistent
with the three regimes of RC obtained by Long et al. (2020). However, the relative
importance of forces (and their curls) varies gradually with thermal forcing rather
than exhibiting any abrupt changes, and therefore does not define precise values of
transition parameters.

(vi) The rapidly rotating (RR) regime broadly corresponds to a range of thermal forcing
where inertia is of comparable magnitude to the other terms in the primary curled
force balance. We find an IVAC rather than an IAC balance in the fluctuating curled
forces in the RR regime for the investigated parameter regime (see table 1). Also, the
viscous force increases with increasing thermal forcing, and remains significant in
the secondary force balance even if E is lowered. These observations are consistent
with the predictions of Nicoski et al. (2024).

The dynamical balances in table 1 can be compared to results obtained in previous
studies. The mean force balance in the dynamo simulations of Calkins et al. (2021)
with no-slip boundary conditions is TW in the r̂ direction and QG in the θ̂ direction,
consistent with our results. The mean curled forces in a dynamo simulation with no-slip
conditions (Aubert 2005) is also in a TW balance in the azimuthal direction as in our
non-magnetic simulations (figure 4a). This indicates that the primary mean balance in r̂
and θ̂ is consistent between non-magnetic and dynamo simulations, hence is relatively
unaffected by the presence of a magnetic field.

The radial fluctuating force behaviour in our no-slip simulations is consistent with the
results of Nicoski et al. (2024), who observed a primary QG balance in simulations
with stress-free boundary conditions. This indicates that the fluctuating balance in
non-magnetic RC is not sensitive to the velocity boundary conditions. Notably, the
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fluctuating viscous force remains non-negligible within our suite of simulations, similar
to the findings of Nicoski et al. (2024). Indeed, in the fluctuating curled forces (figure 5b),
the viscous term is always part of the dominant balance, even at E = 10−6 (see figure 3(b)
in supplementary material S2).

Our scale-dependent force balance in the RR regime is consistent with the balance
reported in a previous non-magnetic simulation (Schwaiger et al. 2020). Although the
scale-dependent force balance does not always exhibit a clear cross-over between forces
in all regimes in RC, we find a cross-over between buoyancy and inertia forces in the
secondary balance in the RR regime (figures 5(e) and 3(e) in S1 and S2). However, as
observed previously by Teed & Dormy (2023), such cross-overs are not found in the scale-
dependent curled balance (figures 5(f ) and 3(f ) in S1 and S2). This can be attributed to
the separations among the terms, which reduce owing to the curl operation that removes
the dynamically irrelevant gradient part. Also, the viscous force, which is important only
in the small-scale force balance (figure 5e), is significant at all scales in the curled balance
(figure 5f ). This behaviour of the viscous force remains the same for a lower Ekman
number (E = 10−6; see figure 3(f ) in S2). Whether the asymptotic separation among
various forces, as demonstrated in the numerical simulations of Nicoski et al. (2024),
can also be demonstrated for curled forces, requires future simulations at lower Ekman
numbers (E < 10−6).

We choose to look into the force components in a spherical coordinate system (r̂ , θ̂ ,
φ̂), which matches the spherical shell geometry that we considered and takes advantage
of the spherical harmonic representation of our numerical implementation. In rotationally
constrained convection (i.e. WN and RR regimes), it can also be useful to study the forces
in a cylindrical coordinate system (ŝ,φ̂,ẑ), where ŝ = sin θ r̂ + cos θ θ̂ is the cylindrical
radius, and ẑ = cos θ r̂ − sin θ θ̂ is the vertical axis of rotation. In particular, strong rotation
causes the small-scale leading-order motion to be independent of the ẑ direction, known as
the Taylor–Proudman constraint (Proudman 1916; Taylor 1923). Asymptotically reduced
models enforcing this constraint predict the horizontal (i.e. φ̂) viscous force to be large
compared to the vertical component (ẑ). In the supplementary material, we plot the ẑ-
component of mean and fluctuating forces (S4, figure 1) and the curled forces (S4, figure 2)
for the three Ekman numbers E = 10−4 (a,b), E = 10−5 (c,d) and E = 10−6 (e, f ). The
mean vertical (i.e. ẑ) viscous force (S4, figure 1c) in the WN regime can be seen to
be approximately one order of magnitude smaller than the azimuthal (φ̂) viscous force
(figure 3e), which corresponds well with asymptotic theory (e.g. Sprague et al. 2006).
However, for higher R̃aT in the RR and WR regimes, we find that the viscous forces
have comparable magnitude in all directions. Also, the fluctuating viscous forces do not
exhibit any separation between vertical and horizontal directions. It is difficult to draw any
direct comparison with the multiscale asymptotic theory of Sprague et al. (2006) since
the definitions for mean and fluctuating quantities in the theory are different from our
partitioning of forces as defined in (2.6), and the Ekman number range in our study may
not be low enough to ensure clear separation at all scales.

Another issue related to the incompressibility condition is the vanishing of azimuthal
Coriolis force (Cφ) when averaged over geostrophic cylinders (i.e. over φ and z). This
leads to the zonal flow balance between Reynolds stress (I f f

z
) and viscous forces (V

z
). We

recover this balance when integrating over geostrophic cylinders that extend to the solid
boundaries. Since the incompressibility condition that enforces the vanishing of Coriolis
force requires a closed surface, this balance is not recovered for integration over cylinders
constrained to the bulk (i.e. excluding the boundary regions). Therefore, this balance is not
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recovered for the azimuthal forces in figure 3(e), which have been volume-integrated over
the bulk by excluding regions near the boundary.

Our analysis does not take into account the temporal variation of dynamical balances
(see e.g. Schaeffer et al. 2017), though previous studies suggest that these variations are
small (Aubert et al. 2017). We also do not consider dynamical balances in the boundary
layers since we aim to characterize the bulk dynamics that would ultimately be used
to extrapolate to the conditions of planetary interiors and can be compared to available
observations. Nevertheless, the calculated bulk dynamical balances form a basis for
comparison with different theoretical analyses of RC (e.g. Aubert et al. 2001; Calkins
et al. 2021; Nicoski et al. 2024). Similar force calculations can be useful to study various
dynamical regimes of convection with Pr �= 1 (Calkins et al. 2012; Guzmán et al. 2021),
double-diffusive convection (Tassin et al. 2021) or geodynamo simulations (Calkins et al.
2021; Mound & Davies 2023).
Supplementary materials. Supplementary materials are available at https://doi.org/10.1017/jfm.2025.259.
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Appendix A. Table of results
A summary of the characteristics of the three new simulations performed in this study is
reported in table 3. The model resolution, input parameters and selected output diagnostic
quantities complement table 5 of Appendix B of Mound & Davies (2017), and table 12 in
the appendix of L20. Here, N is the numerical resolution, which equals both the number
of radial points and the maximum spherical harmonic degree and order, and Nδi and
Nδo are the number of radial points within the VBLs at the inner and outer boundaries,
respectively, where the VBL thicknesses are estimated from the linear intersection method
as described in § 2.3. Definitions of the Ekman and modified Rayleigh numbers are given
in § 2.1. The Reynolds number is defined as Re = U∗h/ν = U = √

2 K E/Vs , where U
is the non-dimensional velocity (the asterisk indicates a dimensional quantity), Vs is the
shell volume, and K E = ∫∫∫

Vs
u · u dV is the kinetic energy integral. Here, Repol is found

by retaining only the poloidal velocity in the kinetic energy integral; Rezon is found by
retaining only the terms with spherical harmonic order m = 0, from the spherical harmonic
expansion of the toroidal velocity in the kinetic energy integral; P is the time average of
the buoyancy production throughout the shell; and εU is the time average of the viscous
dissipation throughout the shell.
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R̃a Nu Re Repol Rezon P εU N Nδi Nδo

350 1.65 165.1 96.4 43.0 1.67 × 109 1.67 × 109 144 9 7
550 1.78 229.9 113.9 62.2 2.80 × 109 2.80 × 109 160 10 7

30 000 17.06 2437.7 1211.0 1186.6 1.76 × 1010 1.22 × 1010 384 19 18

Table 3. Summary of the three new runs at E = 10−6.

E mc R̃a
c

Rac
T R̃a

c
T

1 × 10−3 1 6.61 7.98 × 103 0.798
3 × 10−4 1 8.43 3.39 × 104 0.681
1 × 10−4 5 16.4 1.98 × 105 0.919
3 × 10−5 8 20.1 8.09 × 105 0.754
1 × 10−5 12 24.7 2.98 × 106 0.642
1 × 10−6 25 41.0 4.95 × 107 0.495

Table 4. Critical values of Rayleigh numbers and the critical wavenumbers at various Ekman numbers.

Appendix B. Table of critical Rayleigh numbers
The critical values of Rayleigh numbers and wavenumber at the onset of thermal
convection at various Ekman numbers are listed in table 4. The critical values of Rayleigh
numbers are provided for all three definitions used in this paper as defined in § 2.2.
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