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Abstract
Heteroclinic cycles are sequences of equilibria along with trajectories that connect
them in a cyclic manner. We investigate a class of robust heteroclinic cycles that do
not satisfy the usual condition that all connections between equilibria lie in flow-
invariant subspaces of equal dimension. We refer to these as robust heteroclinic cycles
in pluridimensions. The stability of these cycles cannot be expressed in terms of ratios
of contracting and expanding eigenvalues in the usual way because, when the subspace
dimensions increase, the equilibria fail to have contracting eigenvalues. We develop
the stability theory for robust heteroclinic cycles in pluridimensions, allowing for
the absence of contracting eigenvalues. We present four new examples, each with four
equilibria and living in four dimensions, that illustrate the stability calculations. Poten-
tial applications include modelling the dynamics of evolving populations when there
are transitions between equilibria corresponding to mixed populations with different
numbers of species.

Keywords Heteroclinic cycles · Structural stability · Asymptotic stability

Mathematics Subject Classification 34C37 · 34D20 · 37C29 · 37C75

1 Introduction

There has been a long-standing interest in robust heteroclinic cycles (sequences of
equilibria and connecting trajectories between two consecutive equilibria in a cyclic
manner) dating back to dos Reis (1984) and Guckenheimer and Holmes (1988).
Robustness is achieved by ensuring that the connection between two saddle equilibria
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is of saddle–sink type in a lower-dimensional flow-invariant subspace. Flow-invariance
appears naturally in problemswith symmetry and in applications to population dynam-
ics and game theory. In the former, the flow-invariant subspaces are fixed-point
subspaces, that is, sets of points that are preserved under the action of a symme-
try subgroup. In the latter, extinction hyperplanes, where one or more variables is
equal to zero, and subspaces of points with non-negative coordinates, provide the
flow-invariance that leads to robust heteroclinic cycles.

A natural question to ask is whether or not robust heteroclinic cycles are stable,
that is, are trajectories that start close to a cycle attracted closer to that cycle. The
systematic investigation of this started with Krupa and Melbourne (1995, 2004), who
established necessary and sufficient conditions for stability of certain types of “sim-
ple” cycles. Their definition of simple (given below) includes the requirement that
the flow-invariant subspaces containing the heteroclinic connections are all of the
same dimension (and all of dimension two). The condition for stability is expressed
in terms of products and ratios of three types of eigenvalues of the Jacobian matrix
at each of the equilibria. The eigenvalues are called contracting, expanding and trans-
verse (defined below), and the theory relies on the presence of both contracting and
expanding eigenvalues, with transverse eigenvalues being optional.

There are a small number of published examples of heteroclinic cycles that do not
fit this standard view (Sikder and Roy 1994; Hawker and Ashwin 2005; Matthews
et al. 1996; Rucklidge and Matthews 1995). In these examples, there are equilibria in
the cycle where there are no contracting eigenvalues, and so the existing theory for
computing stability fails, although stability can be established in an ad hoc fashion.
The reason for the absence of contracting eigenvalues is that the dimensions of the
flow-invariant subspaces that contain the heteroclinic connections vary around the
cycle (see Theorem 1 below).

In this article, we describe heteroclinic cycles that have at least two of the hete-
roclinic connections contained in flow-invariant subspaces of different dimensions.
We call these robust heteroclinic cycles in pluridimensions. We focus on heteroclinic
cycles (rather than networks), soweworkwith equilibria that all have one-dimensional
unstable manifolds. We take the first steps towards developing a more general stability
theory, building on the work of Krupa andMelbourne (2004). We start by constructing
four examples of robust heteroclinic cycles in pluridimensions. Each of these examples
has four equilibria and lives inR4, and we show, with reasonable simplifying assump-
tions, that these are the four simplest examples. We develop new stability results for
these four examples, but we present the theory in a way that it can be readily applied
to heteroclinic cycles in higher dimensions. Furthermore, we envisage applications of
our new approach to (for instance) multi-species Lotka–Volterra systems (Hofbauer
and Sigmund 1998, Chapter 5) and heteroclinic networks, in particular, depth two
heteroclinic networks (Chawanya 1997).

Section 2 recalls existing concepts relevant to our study. Section 3 defines the object
of our study: robust heteroclinic cycles in pluridimensions. We show that having hete-
roclinic connections in flow-invariant subspaces with different dimensions around the
cycle implies the absence of contracting eigenvalues at at least one equilibrium point.
With some reasonable assumptions, we present the four simplest examples of robust
heteroclinic cycles in pluridimensions. In Section 4, we provide all the information
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required to calculate the return maps around these four examples and so determine
their stability. Although we present our results for these specific examples in R

4, we
do so in a general way that can be extended to other examples in higher dimensions.
Section 5 presents numerical examples of each of the four robust heteroclinic cycles
in pluridimensions given in Section 3, illustrating the dynamics for parameter values
on both sides of the stability boundary. We summarise and present ideas for future
work in Section 6.

2 Preliminaries

Given an ordinary differential equation (ODE)

ẋ = f (x),

where x ∈ R
n and f ∈ C∞, we say that there is a heteroclinic cycle if there exist

finitely many equilibria and trajectories connecting them in a unique cyclic way.
Although saddle–saddle heteroclinic connections are in general not robust, when the
ODE has flow-invariant subspaces, connections within these subspaces can occur as
saddle–sink connections and are then robust.

Robust heteroclinic cycles have been classified as simple in at least two distinct
ways. The first is given in the context of symmetric dynamics, where the ODE is
equivariant under a group �, and the flow-invariant spaces containing the connections
are fixed-point subspaces of subgroups of �. The standard notation (Krupa and Mel-
bourne 2004) is to denote the invariant subspace containing the connection from an
equilibrium ξ j to an equilibrium ξ j+1, [ξ j → ξ j+1], by Pj = Fix(� j ), where � j is
an isotropy subgroup of �, and to define L j = Pj−1 ∩ Pj , so ξ j ∈ L j .

Definition 1 (Krupa and Melbourne 2004) A robust heteroclinic cycle X is simple if
dim Pj = 2 for all j and X intersects at most once each connected component of
L j\{0}.
The second definition of simple applies even when the flow-invariant subspaces do
not arise because of symmetry.

Definition 2 (Hofbauer and Sigmund 1998) A robust heteroclinic cycle X is simple if
the unstable manifold of every equilibrium ξ j ∈ X , W u(ξ j ), has dimension 1.

These two definitions are disjoint. A heteroclinic cycle can satisfy Definition 1 but not
Definition 2 if the connections are contained in two-dimensional fixed-point spaces
but there is more than one positive eigenvalue at an equilibrium. On the other hand,
examples of cycles that satisfy Definition 2 but not Definition 1 can be found in R

3

in Hawker and Ashwin (2005) and in R
4 in Sikder and Roy (1994). In the example

from Hawker and Ashwin (2005), the heteroclinic connections are contained in coor-
dinate axes (dim Pj = 1) and in coordinate planes, and in the example from Sikder
and Roy (1994), the connections are contained in planes and in three-dimensional
spaces (dim Pj = 3).
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Following the notation of Krupa and Melbourne (2004), we represent by Pj the
smallest possible flow-invariant subspace containing the trajectory connecting ξ j to
ξ j+1 and use L j = Pj−1 ∩ Pj as above. Note that this differs from the definition
inKrupa andMelbourne (2004), where Pj is defined as a subspace fixed by a symmetry
subgroup.

We classify the eigenvalues of the Jacobian matrix at an equilibrium ξ j as in Krupa
and Melbourne (2004), that is, an eigenvalue is

• radial (r ) if the corresponding eigenvector belongs to L j ;
• contracting (c) if the corresponding eigenvector belongs to Pj−1 but not to L j ;
call the space spanned by these eigenvectors Vj (c);

• expanding (e) if the corresponding eigenvector belongs to Pj but not to L j ; call
the space spanned by these eigenvectors Vj (e);

• transverse (t), all remaining eigenvalues.

As explained in the Introduction, we focus here on heteroclinic cycles, not networks,
and in particular, we focus on heteroclinic cycles that contain only equilibria with
one-dimensional unstable manifolds. In particular, each equilibrium has a positive
expanding eigenvalue, and all other eigenvalues (radial, contracting, and transverse)
are negative.Wealso simplify the presentation by considering at this stage only systems
that have a single (positive) expanding eigenvalue, and avoid the complication of
having a mixture of positive and negative expanding eigenvalues, as in the examples
of Matthews and co-authors (Rucklidge and Matthews 1995; Matthews et al. 1996).

As well as Definitions 1 and 2, there are several further classifications of hetero-
clinic cycles: simple of types A, B, and C (Krupa and Melbourne 2004), simple of
type Z (Podvigina 2012), pseudo-simple (Podvigina and Chossat 2017), and quasi-
simple (Garrido-da-Silva and Castro 2019). We do not need the details of these
definitions here, as what we are about to introduce is different from all of these.
In particular, we depart from the assumption that dim Pj = 2 for all j in Definition 1,
and from the even weaker assumption that dim Pj = dim Pj+1 for all j , which is used
for type Z cycles by Podvigina (2012) and for quasi-simple cycles byGarrido-da-Silva
and Castro (2019). The fact that we do not rely on the equivariance of the vector field
avoids some issues in determining the best definition of simple identified by Podvigina
and Chossat (2015; 2017) and Chossat et al. (2018).

3 Robust Cycles in Pluridimensions

We focus on problems where the flow-invariant connecting subspaces Pj do not all
have the same dimensions, and define:

Definition 3 A robust heteroclinic cycle X is said to be a robust cycle in pluridimen-
sions if there exist two flow-invariant connecting subspaces with different dimensions,
that is, dim Pj−1 �= dim Pj for some j .

The examples from Sikder and Roy (1994), Hawker and Ashwin (2005), Castro and
Lohse (2023), Matthews et al. (1996), and Rucklidge and Matthews (1995) all fit this
definition, and many more examples can be constructed. In order to give context to
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the stability theory developed in Section 4, we aim in this section to generate the
simplest possible examples of robust heteroclinic cycles in pluridimensions, and so
we make a number of simplifying assumptions that nonetheless capture the essential
features of cycles in pluridimensions, working in spaces of lowest dimension possible.
In Section 6, we explain how the stability theory applies, or can be extended, in the
case of cycles in pluridimensions that do not satisfy each of these assumptions.

The simplifying assumptions that we make for generating examples are:

(A1) dim W u(ξi ) = 1 for all equilibria ξi ∈ X ;
(A2) all coordinate axes and hyperplanes are flow-invariant subspaces;
(A3) there is at most one equilibrium per connected component1 of each flow-

invariant subspace;
(A4) the origin is not part of the heteroclinic cycle.

With Assumption (A1), that all unstable manifolds of equilibria in the cycle are one
dimensional, we remain within simple heteroclinic cycles by Definition 2. Assump-
tion (A2) is natural in the context of population dynamics and game theory, and avoids
some of the complexities that arise in the presence of symmetry. This assumption
implies that the variables cannot cross coordinate planes and so cannot change sign,
and that all eigenspaces are flow invariant. Assumptions (A1) and (A2) together make
the order in which trajectories visit the equilibria respect the order chosen for num-
bering the coordinates. These assumptions also enable the stability calculations in
Section 4. Assumptions (A3) and (A4) come from Krupa and Melbourne (2004) and
reduce the number of possibilities we have to consider in developing the classification
in this section. A weaker version of (A3), as made by Krupa and Melbourne (2004),
would permitmore that one equilibriumon (for example) a positive coordinate axis, but
only one of these would be part of the cycle.Wemake the stronger Assumption (A3) in
order to reduce the number of possible equilibria and the range of possible heteroclinic
cycles in pluridimensions.

The examples of heteroclinic cycles in pluridimensions in the literature (Castro and
Lohse 2023; Matthews et al. 1996; Rucklidge and Matthews 1995; Sikder and Roy
1994; Hawker and Ashwin 2005) each have features that complicate the presentation
of a general theory, and we use these simplifying assumptions to develop examples
that illustrate the theory without additional complications. The example in Castro and
Lohse (2023) has one equilibrium with a two-dimensional unstable manifold and so
does not satisfy (A1), and allows trajectories to leave one of the equilibria in a range of
different directions. In the convection and magnetoconvection examples in Matthews
et al. (1996) and Rucklidge and Matthews (1995), not all coordinate axes are flow
invariant and so these do not satisfy (A2). In these examples, there are equilibria with
negative expanding eigenvalues, so the expanding directions are higher dimensional
than strictly necessary. The example in Sikder and Roy (1994) has two equilibria in a
coordinate plane and so does not satisfy (A3). This is not a significant issue from the
point of view of the stability theory, but in terms of generating new examples, allowing
multiple equilibria in a coordinate axis or coordinate plane would lead to examples

1 By connected component, we follow the meaning in Krupa and Melbourne (2004): A coordinate axis has
two connected components separated by the origin, a coordinate plane has four, separated by the coordinate
axes, etc.
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with arbitrarily many equilibria. Finally, the example in Hawker and Ashwin (2005)
includes the origin in the heteroclinic cycle and so does not satisfy (A4). Again, this
is not a significant issue from the point of view of the stability theory.

For the remainder of this section, we use the index j to refer to equilibria that satisfy
dim Pj−1 �= dim Pj , and the index i for any equilibrium point, with no restriction on
dim Pi−1 and dim Pi .

In seeking examples of heteroclinic cycles in pluridimensions, there are several
consequences of these assumptions, stated below.

(C1) It follows from (A1) that all radial, contracting, and transverse eigenvalues are
negative; otherwise, there would be an equilibrium with an unstable manifold
of dimension higher than one.

(C2) It follows from (A1), (A2), and (A3) that dim Pi = dim Li + 1 for all i , and in
addition from (A4) that dim Li ≥ 1. This is because Pi is the space containing
the connection [ξi → ξi+1], and this connection is one-dimensional from (A1)
and is not in Li from (A3). There can only be a single (positive) expanding
eigenvalue from (A2), so leaving ξi can only increase the dimension by 1.
Assumption (A4) gives us that dim Li ≥ 1.

(C3) Since our definition of the flow-invariant connecting subspaces Pi is that they
are the smallest subspaces that contain each connection [ξi → ξi+1], the
number of nonzero coordinates on each connection is equal to the dimension
of Pi . Similarly, since ξi ∈ Li = Pi ∩ Pi−1, the dimension of Li is equal to
the number of nonzero coordinates of ξi .

(C4) There is an i such that dim Li−1 �= dim Li . This follows from (C2) (dim Pi =
dim Li +1) and from the definition of cycles in pluridimensions (Pj and Pj−1
have different dimensions). Then, there is at least one equilibrium point that
is not on a coordinate axis.

Note that (C4) does not hold unless the cycle is in pluridimensions.
Standard results on the stability of robust heteroclinic cycles (Krupa andMelbourne

1995) rely on all equilibria in the cycle having contracting and expanding directions.
However, a feature of robust cycles in pluridimensions is that some equilibria do not
have contracting directions, and so standard stability results cannot be applied. In
addition, some equilibria have more than one contracting direction. We show this in
the following.

Theorem 1 For a robust cycle in pluridimensions X satisfying (A1), there is at least
one equilibrium whose Jacobian matrix does not have contracting eigenvalues, and
there is at least one equilibrium whose Jacobian matrix has at least two contracting
eigenvalues.

Proof For the first part of the theorem, note that if Li = Pi−1, then there are no
contracting eigenvalues at ξi , since the contracting direction Vi (c) is the empty set.
Because X is a robust cycle in pluridimensions, we know that for some j , we have
dim Pj > dim Pj−1. Then dim Pj � L j > dim Pj−1 � L j , where we use A � B
to denote the orthogonal complement of set B inside set A. The set Pj � L j is
the expanding direction Vj (e), which is one dimensional by Assumption (A1). So
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1 > dim Pj−1 � L j , so dim Pj−1 � L j = 0, and the contracting direction Vj (c) is
empty, and so for this equilibrium point, there are no contracting eigenvalues.

For the second part of the theorem, we know that for some j , we have dim Pj−1 >

dim Pj . Then dim Pj−1 � L j > dim Pj � L j . The set Pj � L j is the expanding
direction Vj (e), which is one dimensional by Assumption (A1). So dim Pj−1 � L j ≥
2, and the contracting direction Vj (c) is at least two dimensional. Hence, for this
equilibrium point, there are at least two contracting eigenvalues. 	


Wenote thatTheorem1does not hold for robust cycles that are not pluridimensional:
Such cycles have contracting eigenvalues at all equilibria. Conversely, the example
of Castro and Lohse (2022) is pluridimensional according to Definition 3, but does
not satisfy (A1), and all equilibria in that cycle do have contracting dimensions.

The second part of Theorem 1 highlights another feature of robust cycles in pluridi-
mensions, which has consequences for the calculation of the stability of the cycle.
These are addressed in Subsection 4.2 and illustrated in Figure 9.

Wenowconstruct examples of robust heteroclinic cycles in pluridimensions, aiming
for examples that demonstrate the typical features of these cycles. Our assumptions
avoid the distraction of higher dimensional unstable manifolds, complications aris-
ing from symmetry considerations, having multiple routes in and out of invariant
subspaces, and the special case of connections along coordinate axes. We show in
Theorems 2–4 that robust cycles in pluridimensions satisfying (A1)–(A4) have to be
in at least four dimensions and have to have at least four equilibria, so our examples
will be in R4 and will have four equilibria.

Theorem 2 There are no robust cycles in pluridimensions satisfying (A1)–(A4) with
exactly two equilibria.

Proof We have ξ1 ∈ L1 = P1 ∩ P2, and ξ2 ∈ L2 = P2 ∩ P1, so L1 = L2, and
ξ1 and ξ2 are in the same space. This does not contradict Assumption (A3), since
the two equilibria could be on a coordinate axis with the origin in between. From
consequence (C2), which relies on (A1)–(A4), we have dim Pi = dim Li + 1, so
dim P1 = dim P2, and the cycle is not in pluridimensions. 	

Theorem 3 There are no robust cycles in pluridimensions satisfying (A1)–(A4) in R

3.

Proof The origin is not part of the cycle by (A4), so the dimensions of the L subspaces
are at least one. By (C2), the dimensions of the P subspaces are at least two. The P
subspaces cannot be three-dimensional in R

3, since the equilibrium at the end of the
connection in this three-dimensional space is a sink, and therefore, it cannot have an
unstable manifold in R3. Therefore, all the P subspaces are two dimensional, and the
cycle is not in pluridimensions. 	

Theorem 4 There are no robust cycles in pluridimensions satisfying (A1)–(A4) in R

4

with exactly three equilibria.

Proof In R4, by an argument similar to the proof of Theorem 3, there are not enough
dimensions for a pluridimensional cycle if the cycle does not include an equilibrium
point on an axis. So, without loss of generality, let ξ1 be on the x1 axis and let ξ2 be
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Table 1 Four cases of
heteroclinic cycles in
pluridimensions in R4 satifying
(A1)–(A4). The dimensions of
the Li subspaces satisfy
dim Li = dim Pi − 1 by (C2)

dim P1 dim P2 dim P3 dim P4 Illustrated in

Case 1 2 3 2 3 Figure 1

Case 2 2 3 2 2 Figure 2

Case 3 2 3 3 2 Figure 3

Case 4 2 3 3 3 Figure 4

in the (x1, x2) plane. This means that L1 = {(x1, 0, 0, 0) : x1 ∈ R} and P1 = L2 =
{(x1, x2, 0, 0) : x1, x2 ∈ R}. Then by (C2), we must have P2 = {(x1, x2, x3, 0) :
x1, x2, x3 ∈ R}.

The third equilibrium point ξ3 ∈ P2, so it must have three, two or one nonzero
coordinates. The connection ξ3 → ξ1 must have x2 = 0, because otherwise ξ1 would
not be a sink in the relevant subspace. This implies that ξ3 itself must have x2 = 0. In
addition, ξ3 must be unstable in the x4 direction (else, Theorem 3 would apply), and
so in order to get back to ξ1, given (A1), ξ3 must have x1 �= 0. By (A3), ξ3 /∈ L1, so
ξ3 must have x1 �= 0 and x3 �= 0. This means that L3 = {(x1, 0, x3, 0) : x1, x3 ∈ R},
and P3 = {(x1, 0, x3, x4) : x1, x3, x4 ∈ R}.

The implication of this is that ξ1 and ξ3 are both sinks in L3, a two-dimensional space
with ξ1 on the x1 axis and ξ3 in the (x1, x3) plane. There are no additional equilibria
in L3 by (A3), so there must be a periodic orbit surrounding ξ3 in the (x1, x3) plane.
However, this periodic orbit has an invariant manifold associated with perturbations
in the x2 direction. This cylindrical manifold surrounds the heteroclinic connection
from ξ2 to ξ3. The connection from ξ1 to ξ2 must, therefore, cross this manifold, which
is a contradiction. 	


We end this section by showing that there are only four heteroclinic cycles con-
necting four equilibria in pluridimensions in R

4 satisfying (A1)–(A4), apart from
coordinate permutations. The P subspaces cannot be one dimensional, from (C2), and
the P subspaces cannot be four dimensional, since the equilibria at the end of a con-
nection must be a sink within that subspace, and in R

4 there would be no dimension
for its unstable manifold. In pluridimensions, the P subspaces do not all have the same
dimension, and there must be a mixture of dim P = 2 and dim P = 3. Without loss of
generality, we take dim P1 = 2 and dim P2 = 3, and so dim L1 = 1 and dim L2 = 2
by (C2). Then, there are only four possible choices of dimension of subspaces P3 and
P4, listed in Table 1. The four examples are illustrated in Figures 1–4.
Cases 1 and 2.Assumption (A2) ensures that it suffices to look at positive coordinates,
so let x ( j)

i ∈ R+, where i refers to the index of the coordinate and j to that of the
equilibrium point. The first three equilibria are, given (C3) and (C4),

• ξ1 = (x (1)
1 , 0, 0, 0) and L1 = {(x1, 0, 0, 0) : x1 ∈ R}, since equilibria are not the

origin by (A4);
• ξ2 = (x (2)

1 , x (2)
2 , 0, 0) and L2 = P1 = {(x1, x2, 0, 0) : x1, x2 ∈ R}, by our

assumption on the dimensions of P1 and P2 and by (C2);
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Fig. 1 Robust heteroclinic cycles in pluridimensions in R
4: Case 1. The equilibria ξ1 and ξ3 are on axes,

while ξ2 and ξ4 are in the (x1, x2) and (x3, x4) planes, respectively. The equilibria and connections ξ1 →
ξ2 → ξ3 are identical to those in Case 2. For ease of presentation, in this and the next three figures, we split
the four-dimensional space into two or more panels. In this and all other figures, the arrows on trajectories
indicate the direction of travel and arrows on coordinate axes indicate their orientation

Fig. 2 Robust heteroclinic cycles in pluridimensions in R
4: Case 2. The equilibria ξ1, ξ3, and ξ4 are on

axes, while ξ2 is in the (x1, x2) plane. The equilibria and connections ξ1 → ξ2 → ξ3 are identical to those
in Case 1

• ξ3 = (0, 0, x (3)
3 , 0), P2 = {(x1, x2, x3, 0) : x1, x2, x3 ∈ R} and L3 =

{(0, 0, x3, 0) : x3 ∈ R}, because ξ3 is in a one-dimensional subspace from
dim P3 = 2 in these two cases.

There are two different choices for ξ4 with the same P3 but different L4 and P4:
Case 1: ξ4 = (0, 0, x (4)

3 , x (4)
4 ), L4 = P3 = {(0, 0, x3, x4) : x3, x4 ∈ R} and P4 =

{(x1, 0, x3, x4) : x1, x3, x4 ∈ R};
Case 2: ξ4 = (0, 0, 0, x (4)

4 ), P3 = {(0, 0, x3, x4) : x3, x4 ∈ R} and L4 =
{(0, 0, 0, x4) : x4 ∈ R} and P4 = {(x1, 0, 0, x4) : x1, x4 ∈ R}.

These two examples of robust heteroclinic cycles in pluridimensions in R4 satisfy-
ing (A1)–(A4) are illustrated in Figures 1–2.
Cases 3 and 4.Again, let x ( j)

i ∈ R+. The first two equilibria are the same as in Cases 1
and 2, as are the spaces L1, P1, L2, and P2. The other two equilibria are, given (C3),

• ξ3 = (0, x (3)
2 , x (3)

3 , 0), P2 = {(x1, x2, x3, 0) : x1, x2, x3 ∈ R} and L3 =
{(0, x2, x3, 0) : x2, x3 ∈ R}, because ξ3 is in a two-dimensional subspace from
dim P3 = 3 in these two cases.

Again, there are two different choices for ξ4 with the same P3 but different L4 and P4:
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Fig. 3 Robust heteroclinic cycles in pluridimensions in R
4: Case 3. The equilibria ξ1 and ξ4 are on axes,

while ξ2 and ξ3 are in the (x1, x2) and (x2, x3) planes, respectively. The equilibria and connections ξ1 →
ξ2 → ξ3 are identical to those in Case 4

Case 3: ξ4 = (0, 0, 0, x (4)
4 ), P3 = {(0, x2, x3, x4) : x2, x3, x4 ∈ R} and L4 =

{(0, 0, 0, x4) : x4 ∈ R} and P4 = {(x1, 0, 0, x4) : x1, x4 ∈ R};
Case 4: ξ4 = (0, 0, x (4)

3 , x (4)
4 ), L4 = P3 = {(0, x2, x3, x4) : x2, x3, x4 ∈ R} and

P4 = {(x1, 0, x3, x4) : x1, x3, x4 ∈ R}.
These two examples of robust heteroclinic cycles in pluridimensions in R4 satisfy-

ing (A1)–(A4) are illustrated in Figures 3–4.

4 Stability of Cycles in Pluridimensions

In this section, we compute return maps for cycles in pluridimensions, starting with
definitions of the incoming and outgoing cross-sections at the equilibria and the global
maps between them.We then define localmaps at each equilibriumpoint: It is natural to
express these as linear maps, matrices multiplying the logarithms of the coordinates.
The dynamics from one equilibrium point to the next is described by composing a
local map at the first equilibrium point with the global map that leads to the next.
For trajectories that are very close to the cycle, having very small values of some
coordinates with very large negative values of their logarithms, the composed map is
dominated by a transition matrix multiplying the logarithms of the coordinates (Field
and Swift 1991). Multiplying these transition matrices around the cycle gives the
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Fig. 4 Robust heteroclinic cycles in pluridimensions in R4: Case 4. The equilibrium ξ1 is on an axis, while
ξ2, ξ3, and ξ4 are in the (x1, x2), (x2, x3), and (x3, x4) planes, respectively. The equilibria and connections
ξ1 → ξ2 → ξ3 are identical to those in Case 3

overall behaviour of trajectories very close to the cycle, and in particular gives the
stability of the cycle (Krupa and Melbourne 1995).

In cycles that are not in pluridimensions, the form of the map from one equilibrium
point to the next does not depend on the previous equilibrium point in the cycle,
as the dimensions of the P subspaces are all the same. A new feature of cycles in
pluridimensions is that the form of the map from one equilibrium point to the next
can depend on the location of the previous equilibrium point in the cycle: A map from
a point on an axis to a point in a plane will be different depending on whether the
previous point was on an axis or in a plane. This is explained in detail in Subsection 4.3.
A consequence of this is that the transition matrices are not necessarily square.

In this section, we use generic coordinates in R
4, represented by one of the three

vectors (zi , zi+1, zi+2, zi+3), (zi−1, zi , zi+1, zi+2), or (zi−2, zi−1, zi , zi+1), depend-
ing on which is more convenient (the choice is clearly stated where needed). Using
these z’s rather than x’s distinguishes these general coordinates, labelled by i − 2, …,
i + 3, etc., from the specific ones in the examples in Sections 3 and 5, labelled by 1,
2, 3, and 4.

4.1 Global Maps and Cross-Sections

In this subsection, we establish the possible global maps for heteroclinic cycles in
pluridimensions inR4. The four cases from Table 1, illustrated in Figures 1–4, contain
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Fig. 5 The global map between two equilibria on axes. Panel (a) shows the flow-invariant subspaces,
equilibria, and the direction of the eigenvalues. Panel (b) shows the cross-sections and coordinates of their
intersection with the unstable manifold of ξi

mixtures of four types of transition, from axis-to-axis, axis-to-plane, plane-to-axis,
and plane-to-plane. These four types of transition are illustrated in Figures 5–8, and
the four global maps between the equilibria are derived in the paragraphs below.

Near ξi , the outgoing cross-section in the direction of ξi+1 is Hout,i+1
i (defined

more precisely in each case below), and the incoming cross-section near ξi+1 from the
direction of ξi is Hin,i

i+1 . In this context, all coordinates are non-negative. The global

maps go from Hout,i+1
i to Hin,i

i+1 , and are denoted by �i→i+1.
Axis-to-axis connection. This type of global map describes the dynamics along a
connection between two equilibria on coordinate axes, such as the connection between
ξ3 and ξ4 inCase 2, Figure 2(b). Figure 5 illustrates important points in the construction
of the global map.

We define the cross-sections as follows:

Hout,i+1
i = {(zi , zi+1, zi+2, zi+3) ∈ R

4: zi = O(1), zi+1 = h, zi+2 < h, zi+3 < h}

and

Hin,i
i+1 = {(zi , zi+1, zi+2, zi+3) ∈ R

4: zi = h, zi+1 = O(1), zi+2 < h, zi+3 < h},

for small h. At ξi , zi is the radial coordinate (and is of order 1), and zi+1 is the
expanding coordinate, and at ξi+1, zi+1 is the radial coordinate, zi is the contracting
coordinate, and zi+2 is the expanding coordinate. The remaining coordinates can be
contracting or transverse, depending on previous or subsequent connections.

The unstable manifold of ξi , W u(ξi ), is the connection from ξi to ξi+1 in Pi , where
zi+2 = zi+3 = 0. It intersects the cross-sections at

W u(ξi ) ∩ Hout,i+1
i = {(z̄i , h, 0, 0)} and W u(ξi ) ∩ Hin,i

i+1 = {(h, ẑi+1, 0, 0)}.

Throughout, we will use bar and hat accents to indicate the radial coordinate values
where the unstable manifolds intersect outgoing and incoming sections, respec-
tively. The plane Pi is invariant so W u(ξi ) leaves ξi with (zi+2, zi+3) = (0, 0)
and arrives at ξi+1 also with (zi+2, zi+3) = (0, 0). We write a point in Hout,i+1

i
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Fig. 6 The global map between an equilibrium on an axis to an equilibrium in a plane. Panel (a) shows the
flow-invariant subspaces, equilibria, and the direction of the eigenvalues. Panel (b) shows the cross-sections
and coordinates of their intersection with the unstable manifold of ξi . The two radial (possibly complex)
eigenvalues at ξi+1 are both labelled −ri+1

as (zi , zi+1, zi+2, zi+3) = (z̄i + z̃i , h, zi+2, zi+3), with |z̃i | < h. Throughout, we will
use tilde accents to indicate displacements from the unstable manifold in the radial
direction at the outgoing section. The linearisation around W u(ξi ) provides the global
map (using [...] for entries in the matrix that are of no consequence for the study of
stability)

�i→i+1

⎛
⎝

zi

zi+2
zi+3

⎞
⎠ =

⎛
⎝

[...] [...] [...]
0 Ai+2

i→i+1 0
0 0 Ai+3

i→i+1

⎞
⎠

⎛
⎝

z̃i

zi+2
zi+3

⎞
⎠ +

⎛
⎝

ẑi+1
0
0

⎞
⎠ . (1)

This map takes as argument the values of (zi , zi+2, zi+3) on the outgoing section and
returns the values of (zi+1, zi+2, zi+3) on the incoming section. The invariance of the
zi+2 = 0 and the zi+3 = 0 subspaces from (A2) leads to the diagonal structure of
the (i + 2, i + 3) part of the matrix. The A coefficients come from the linearisation
around the unstable manifold. The un-named entries in the matrix, indicated by [...],
lead to contributions that are small compared to the fixed order 1 value of ẑi+1. There
are also O(h2) corrections to this linearised map (not written). Both of these small
contributions to the global map will be disregarded when all variables are small, close
to the heteroclinic cycle.
Axis-to-plane connection. This type of global map describes the dynamics along a
connection from an equilibrium on a coordinate axis to an equilibrium in a coordinate
plane, containing that coordinate axis. This situation is illustrated by the connection
between ξ1 and ξ2 in Case 1, Figure 1(a). In this case, the connection is between
an equilibrium with one nonzero coordinate and an equilibrium with two nonzero
coordinates. Figure 6 illustrates important points in the construction of the global
map.

We define the outgoing cross-section near ξi as follows:

Hout,i+1
i = {(zi , zi+1, zi+2, zi+3) ∈ R

4 : zi = O(1), zi+1 = h, zi+2 < h, zi+3 < h}

for small h. At ξi , zi is the radial coordinate (and is of order 1), and zi+1 is the expanding
coordinate. However, there is no contracting direction at ξi+1, so the incoming section
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Fig. 7 The global map between an equilibrium in a plane to an equilibrium on an axis. Panel (a) shows the
flow-invariant subspaces, equilibria, and the direction of the eigenvalues. Panel (b) shows the cross-sections
and coordinates of their intersection with the unstable manifold of ξi . We have illustrated the case where
zi contracts more slowly than zi−1

is defined in terms of the two radial coordinates, (zi , zi+1). Because of this, it is
natural to use polar coordinates in the radial direction centred on ξi+1. We define the
displacement from ξi+1 as (ρi cos θi , ρi sin θi ), for ρi ≥ 0 and 0 ≤ θi < 2π . We
define a cylinder for the incoming cross-section near ξi+1 as follows:

Hin,i
i+1 = {(zi , zi+1, zi+2, zi+3) ∈ R

4 : ρi = h, 0 ≤ θi < 2π, zi+2 < h, zi+3 < h},

for small h.
The unstable manifold of ξi , W u(ξi ), which is the connection from ξi to ξi+1 in Pi ,

intersects the cross-sections at

W u(ξi ) ∩ Hout,i+1
i = {(z̄i , h, 0, 0)} and W u(ξi ) ∩ Hin,i

i+1 = {(ρi = h, θi = θ̂i , 0, 0)}.

The plane Pi is invariant so W u(ξi ) leaves ξi with (zi+2, zi+3) = (0, 0) and arrives
at ξi+1 also with (zi+2, zi+3) = (0, 0). As before, we write a point in Hout,i+1

i
as (zi , zi+1, zi+2, zi+3) = (z̄i + z̃i , h, zi+2, zi+3), with |z̃i | < h. The linearisation
around W u(ξi ) provides the global map

�i→i+1

⎛
⎝

zi

zi+2
zi+3

⎞
⎠ =

⎛
⎝

[...] [...] [...]
0 Ai+2

i→i+1 0
0 0 Ai+3

i→i+1

⎞
⎠

⎛
⎝

z̃i

zi+2
zi+3

⎞
⎠ +

⎛
⎝

θ̂i

0
0

⎞
⎠ . (2)

This map takes as argument the values of (zi , zi+2, zi+3) on the outgoing section and
returns the values of (θi , zi+2, zi+3) on the incoming section. The invariance of the
zi+2 = 0 and the zi+3 = 0 subspaces leads to the diagonal structure of the (i +2, i +3)
part of the matrix. The A coefficients come from the linearisation around the unstable
manifold. The un-named entries in the matrix, indicated by [...], lead to contributions
that are small compared to thefixedorder 1value of θ̂i . There are alsoO(h2) corrections
to this linearised map (not written). Both of these small contributions to the global
map will be disregarded when all variables are small, close to the heteroclinic cycle.
Plane-to-axis connection. This type of global map describes the dynamics along a
connection from an equilibrium in a coordinate plane to an equilibrium on a coordi-
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nate axis, not contained in that coordinate plane. This situation is illustrated by the
connection between ξ2 and ξ3 in Case 1, Figure 1(a). In this case, the connection is
from an equilibrium with two nonzero coordinates, zi−1 and zi , to an equilibrium
with only one nonzero coordinate zi+1. For this reason, we label coordinates starting
at i − 1 rather than i . Figure 7 illustrates important points in the construction of the
global map.

We define the cross-sections as follows:

Hout,i+1
i = {(zi−1, zi , zi+1, zi+2) ∈ R

4 : zi−1 = O(1), zi = O(1), zi+1=h, zi+2 < h}

and

Hin,i
i+1 = {(zi−1, zi , zi+1, zi+2) ∈ R

4 : max(zi−1, zi ) = h, zi+1 = O(1), zi+2 < h},

for small h. At ξi , zi−1 and zi are the radial coordinates (and are of order 1), and zi+1 is
the expanding coordinate, and at ξi+1, zi+1 is the radial coordinate, zi−1 and zi are the
contracting coordinates, and zi+2 is the expanding coordinate. The reason for writing
max(zi−1, zi ) = h is that the two contracting coordinates decay at different rates, so
we define the cross-section in terms of the one that reaches h last. This guarantees
that both zi−1 ≤ h and zi ≤ h on the incoming section. See the discussion around
Figure 9 for more detail.

Again the unstable manifold of ξi , W u(ξi ), is the connection from ξi to ξi+1, and
intersects the cross-sections at

W u(ξi ) ∩ Hout,i+1
i = {(z̄i−1, z̄i , h, 0)}

and either

W u(ξi ) ∩ Hin,i
i+1 = {(h, ẑi , ẑi+1, 0)} or W u(ξi ) ∩ Hin,i

i+1 = {(ẑi−1, h, ẑi+1, 0)},

depending on which contracting eigenvalue is closer to zero. The Pi space (zi+2 = 0)
is invariant so W u(ξi ) leaves ξi with zi+2 = 0 and arrives at ξi+1 also with zi+2 = 0.
We write a point in Hout,i+1

i as (zi−1, zi , zi+1, zi+2) = (z̄i−1+ z̃i−1, z̄i + z̃i , h, zi+2),
with |z̃i−1| < h and |z̃i | < h. The linearisation around W u(ξi ) provides the global
map:

�i→i+1

⎛
⎝

zi−1
zi

zi+2

⎞
⎠ =

⎛
⎝

[...] [...] [...]
[...] [...] [...]
0 0 Ai+2

i→i+1

⎞
⎠

⎛
⎝

z̃i−1
z̃i

zi+2

⎞
⎠ +

⎛
⎝

ẑi

ẑi+1
0

⎞
⎠ , (3)

in the case that zi−1 reaches h last. This map takes as argument the values of
(zi−1, zi , zi+2) on the outgoing section and returns the values of (zi , zi+1, zi+2) on
the incoming section. In the case that zi reaches h last, the returned values would be
(zi−1, zi+1, zi+2) on the incoming section, with a ẑi−1 (instead of ẑi ) in the first line.
The invariance of the zi+2 = 0 subspace leads to the structure of the i + 2 part of the
matrix. The A coefficient comes from the linearisation around the unstable manifold.
The un-named entries in the matrix, indicated by [...], lead to contributions that are
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Fig. 8 The global map between two equilibria in planes. Panel (a) shows the flow-invariant subspaces,
equilibria, and the direction of the eigenvalues. Panel (b) shows the cross-sections and coordinates of their
intersection with the unstable manifold of ξi

small compared to the fixed order 1 values of ẑi and ẑi+1. There are also O(h2) cor-
rections to this linearised map (not written). Both of these small contributions to the
global map will be disregarded when all variables are small, close to the heteroclinic
cycle.
Plane-to-plane connection.This is the type of global map that describes the dynamics
along a connection between two equilibria in different (but intersecting) coordinate
planes. Such a connection appears, for example, between ξ2 and ξ3 in Case 3, Fig-
ure 3(a). In this case, each equilibrium has two nonzero coordinates: ξi has nonzero
zi−1 and zi , and ξi+1 has nonzero zi and zi+1. As in the plane-to-axis case, we label
coordinates starting at i − 1 rather than i . Figure 8 illustrates important points in the
construction of the global map.

We define the cross-sections as follows:

Hout,i+1
i = {(zi−1, zi , zi+1, zi+2) ∈ R

4 : zi−1 = O(1), zi = O(1), zi+1 = h, zi+2 < h}

and

Hin,i
i+1 = {(zi−1, zi , zi+1, zi+2) ∈ R

4 : zi−1 = h, zi = O(1), zi+1 = O(1), zi+2 < h},

for small h. At ξi , zi−1 and zi are the radial coordinates (and are of order 1), and zi+1
is the expanding coordinate, and at ξi+1, zi and zi+1 are the radial coordinates, zi−1
is the contracting coordinate, and zi+2 is the expanding coordinate.

Again the unstable manifold of ξi , W u(ξi ), is the connection from ξi to ξi+1, and
intersects the cross-sections at

W u(ξi )∩Hout,i+1
i = {(z̄i−1, z̄i , h, 0)} and W u(ξi )∩Hin,i

i+1 = {(h, ẑi , ẑi+1, 0)}.

The Pi space (zi+2 = 0) is invariant so W u(ξi ) leaves ξi with zi+2 = 0 and arrives
at ξi+1 also with zi+2 = 0. We write a point in Hout,i+1

i as (zi−1, zi , zi+1, zi+2) =
(z̄i−1 + z̃i−1, z̄i + z̃i , h, zi+2), with |z̃i−1| < h and |z̃i | < h. The linearisation around
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W u(ξi ) provides the global map

�i→i+1

⎛
⎝

zi−1
zi

zi+2

⎞
⎠ =

⎛
⎝

[...] [...] [...]
[...] [...] [...]
0 0 Ai+2

i→i+1

⎞
⎠

⎛
⎝

z̃i−1
z̃i

zi+2

⎞
⎠ +

⎛
⎝

ẑi

ẑi+1
0

⎞
⎠ . (4)

This map takes as argument the values of (zi−1, zi , zi+2) on the outgoing section and
returns the values of (zi , zi+1, zi+2) on the incoming section. The invariance of the
zi+2 = 0 subspace leads to the structure of the i+2 part of thematrix. The A coefficient
comes from the linearisation around the unstable manifold. The un-named entries in
the matrix, indicated by [...], lead to contributions that are small compared to the fixed
order 1 values of ẑi and ẑi+1. There are also O(h2) corrections to this linearised map
(not written). Both of these small contributions to the global map will be disregarded
when all variables are small, close to the heteroclinic cycle.

These globalmaps are all characterised as having two different parts, corresponding
to the different natures of the upper and lower rows in the matrices. The upper part
is one row in connections starting on an axis and two rows in connections starting on
a plane. The upper parts are dominated by fixed O(1) numbers (such as ẑi−1 in (1)),
with O(h) contributions, indicated by [...]. The exception is the second contracting
direction in (3), in which ẑi < h and all the other terms are O(h) or smaller. We will
see in the next subsections that all these terms can be neglected when considering
properties of trajectories very close to the heteroclinic cycle, since h is a fixed small
number, while trajectories can come arbitrarily close the cycle.

The lower parts of the global maps are all written in terms of 2 × 2 (starting on an
axis) or 1 × 1 (starting on a plane) diagonal matrices. With ξi on an axis, the global
map starting at Hout,i+1

i is of the form

(
zi+2
zi+3

)
→

(
Ai+2

i→i+1zi+2

Ai+3
i→i+1zi+3

)
+

(O(h2)

O(h2)

)
.

With ξi on a plane, the global map starting at Hout,i+1
i is of the form

(
zi+2

) → (
Ai+2

i→i+1zi+2
) + (O(h2)

)
.

We have explicitly written the size of the nonlinear corrections to the maps. However,
note that the correction to (for example) zi+2 must be zero when zi+2 = 0 (because
of the invariance of the zi+2 = 0 space), so the correction can be thought of as
being O(hzi+2), and similarly for zi+3. These amount to O(h) corrections to the A
coefficients for trajectories very close to the heteroclinic cycle.

4.2 Local Maps

The local map at equilibrium point ξi , denoted by φi , takes the trajectory from Hin,i−1
i

to Hout,i+1
i , and describes the dynamics near ξi . As in Podvigina (2012), we use
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logarithms of the coordinates, so that the local maps take the form of a linear map.
We assume (as is usual) that the flow near each equilibrium point is linearisable and
depends only on the four eigenvalues of the Jacobian matrix at that point.

There are two types of local maps, depending on whether the equilibrium is on an
axis or in a plane. On an axis, there is one negative radial eigenvalue, one positive
expanding eigenvalue, and two negative eigenvalues that can be either contracting or
transverse. In a plane, there are two negative radial eigenvalues, one positive expanding
eigenvalue, and one negative eigenvalue that can be either contracting or transverse.
Whether an eigenvalue is contracting or transverse depends on the preceding global
dynamics.

We proceed in the usual manner. Near each equilibrium point ξi , we use the fol-
lowing linear approximation for the local expanding dynamics

żi+1 = ei,i+1zi+1,

where ei,i+1 is the expanding eigenvalue at ξi in the zi+1 direction. The solution of this
equation is zi+1(t) = zi+1(0) exp(ei,i+1t), where zi+1(0) is the value of the expanding
coordinate on Hin,i−1

i . The trajectory reaches Hout,i+1
i at time T :

T = − 1

ei,i+1
log

(
zi+1(0)

h

)
, (5)

where this is found from solving zi+1(T ) = h.
The radial, contracting, and transverse directions all have negative eigenvalues,

from (C1).We use z(t) to represent any of these, with eigenvalue−k, so−k is a radial,
contracting, or transverse eigenvalue. The differential equation ż = −kz has solution
z(t) = z(0) exp(−kt). In the contracting and transverse directions, the invariance of
the subspaces means that eigenvalues must be real, by (A2).

In the radial case, z represents the deviation from the equilibrium point, and when
there are two radial eigenvalues, these can be complex. However, as in Krupa andMel-
bourne (1995), the radial eigenvalues are irrelevant to the stability of the heteroclinic
cycle, even in the absence of a contracting eigenvalue. The reason is that we only need
to know that the radial coordinate isO(1), not its exact value, since radial coordinates
at one point become contracting coordinates at the next. Incoming cross-sections are
defined by requiring that the contracting coordinate (if there is only one) is equal to h.
If there is more than one, we show below that they are of similar size (defined more
precisely below). The end result is that we do not need the exact form of the local
maps in the radial direction.

The value of z at time T , when the trajectory reaches Hout,i+1
i , is

z(T ) = z(0)

(
zi+1(0)

h

)k/ei,i+1

.
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Fig. 9 Illustration of the sizes of the variables as a function of time at Hin,i−1
i , the incoming section of the

local map at ξi . The location of the cross-sections is indicated above the horizontal axis with a reference

to the global and local maps, ending or starting at Hin,i−1
i , respectively. The colours represent zi−2 (red),

zi−1 (purple), zi (blue), and zi+1 (black), plotted in logarithmic coordinates. The local map begins at time
t = 0, with max(zi−2(0), zi−1(0)) = h. In this illustration, we take zi−2(0) = h so zi−1(0) < h, and
there is an earlier time t∗ < 0 such that zi−1(t∗) = h and zi−2(t∗) > h. This happens because the previous
equilibrium point ξi−1 had both zi−2 and zi−1 being of order one. Throughout, the fourth variable zi+1 is
small compared to h

Writing this in terms of logarithms, we have

log z(T ) = log z(0) + k

ei,i+1
log zi+1(0) − k

ei,i+1
log h. (6)

Recall that h is a fixed small number, but near the heteroclinic cycle, zi+1(0) is arbi-
trarily small, so | log zi+1(0)| 
 | log h|, taking absolute values as both logarithms are
negative. As a result, wewrite the last term in (6) asO(log h). This term is unimportant
when trajectories are very close to the cycle.

We next turn to the log z(0) term in (6): We treat this term differently according to
whether z is a transverse or contracting coordinate. If z is a transverse coordinate, we
have z(0) � h and so | log z(0)| 
 | log h|, and the log z(0) term must be retained.
Conversely, when z is a contracting direction, this coordinate wasO(1) at some point
along the connecting trajectory prior to reaching Hin,i−1

i . If there is only one contract-
ing direction, in which case z(0) = h, the first term on the RHS of (6) is log h and
is also unimportant when trajectories are very close to the cycle. However, in cycles
in pluridimensions, there can be equilibria with more than one contracting direction.
In this case, we argue in the next paragraph that | log z(0)| = O(| log h|), and so the
log z(0) term can be absorbed into the O(log h) term in (6), and so the contracting
directions are all treated in the same way.

In the case where there is more than one contracting direction, the trajectory inter-
sects the incoming cross-section when the largest of the contracting coordinates is
equal to h (i.e. max(zi−2(0), zi−1(0)) = h in analogy with the plane-to-axis discus-
sion in Section 4.1 above). To be definite, as in that case, we suppose that zi−2 reaches h
last, so zi−2(0) = h and zi−1(0) < h. We define an earlier time t∗ < 0 such that at
that time, zi−1(t∗) = h and zi−2(t∗) > h. See Figure 9 for more detail. We take h
small enough so that the dynamics is governed by linear differential equations from
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time t∗, and so

zi−2(t) = he−ci−2(t−0) and zi−1(t) = he−ci−1(t−t∗),

where −ci−2 and −ci−1 are the relevant contracting eigenvalues. This gives

zi−2(t∗) = he−ci−2t∗ and zi−1(0) = heci−1t∗ .

We eliminate t∗ between these expressions and use the fact that 0 > log zi−2(t∗) >

log h to derive

log h > log zi−1(0) >

(
1 + ci−1

ci−2

)
log h.

From this, we conclude that log zi−1(0) = O(log h) for any contracting coordinate,
and so the first term in (6) can be absorbed into the O(log h) terms.

This distinction between contracting and transverse coordinates arises because, in
the contracting case, the coordinates have O(1) values at the previous equilibrium
point, while transverse coordinates are generally very small. This distinction becomes
important when we compose the local and global maps in Section 4.3.
Equilibriumon an axis.Here, we consider the localmapφi from Hin,i−1

i to Hout,i+1
i ,

at an equilibrium point ξi on an axis. At ξi , the four directions are radial (zi ), expand-
ing (zi+1), contracting (zi−1), and a fourth direction (zi−2). This last direction can be
contracting or transverse, sowe label its eigenvalue as (ct)i,i−2. In terms of logarithms,
we have

φi

(
log zi+1
log zi−2

)
=

⎡
⎣

(ct)i,i−2
ei,i+1

1
ci,i−1
ei,i+1

0

⎤
⎦

(
log zi+1
log zi−2

)
+ O(log h). (7)

This map takes as argument the logarithms of (zi+1, zi−2) on the incoming section
and returns the logarithms of (zi−2, zi−1) on the outgoing section. In the case where
zi−2 is a contracting coordinate, the discussion of having more than one contracting
coordinate applies, and so log zi−2 = O(log h), and the terms that arise from the
second column in the matrix are O(log h).
Equilibrium in a plane.Here, we consider the local map φi from Hin,i−1

i to Hout,i+1
i ,

at an equilibrium point ξi in a plane. At ξi , the four directions are radial (zi−1 and zi ),
expanding (zi+1), and one more direction (zi−2). This last direction can be contracting
or transverse, so we label its eigenvalue as (ct)i,i−2. In terms of logarithms, we have

φi

(
log zi+1
log zi−2

)
=

[
(ct)i,i−2

ei,i+1
1
] (

log zi+1
log zi−2

)
+ O(log h). (8)

This map takes as argument the logarithms of (zi+1, zi−2) on the incoming section
and returns the logarithm of zi−2 on the outgoing section. As above, in the case where
zi−2 is a contracting coordinate, the term that arises from the second column in the
matrix is O(log h).
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Fig. 10 Four examples of composed maps: (a) axis-to-axis-to-axis, (b) plane-to-plane-to-axis, (c) plane-

to-axis-to-axis, and (d) axis-to-plane-to-axis. The maps are all from Hin,i−1
i to Hin,i

i+1 , trajectories having
come from ξi−1. We have presented all four dimensions, with zi+1 coming out of the page and zi−2 going
into the page. The black curves indicate W u(ξi−1) and W u(ξi ). The blue curve indicates a trajectory from

Hin,i−1
i to Hin,i

i+1 . The composed map is given by (9) in panel (a), (10) in panel (b), (11) in panel (c), and

(12) in panel (d). The magnitudes of the variables at Hin,i−1
i are indicated: z ∼ h means log z = O(log h)

(it could also mean z = h). Variables that are not given areO(1)

4.3 TransitionMatrices: Local Maps Composed with Global Maps

We next compose local and global maps, �i→i+1 ◦ φi , going from Hin,i−1
i to Hin,i

i+1 .
The local maps are written in terms of the logarithms of the coordinates, and we
use the same logarithmic representation for the composed maps. The local map from
Hin,i−1

i to Hout,i+1
i depends not only on the position (axis or plane) of ξi but also

on the position of ξi−1. The reason for this dependence is that, at Hin,i−1
i , zi−2 can

be a contracting or transverse coordinate, according to whether ξi−1 is in a plane or
on an axis. This has a consequence for whether log zi−2 = O(log h) (and so can be
neglected) or | log zi−2| 
 | log h| (and so must be kept). There are thus eight cases
for ξi−1 → ξi → ξi+1: axis-to-axis-to-axis, etc. However, the form of the global map
from ξi → ξi+1 depends on the position of ξi (and not ξi+1), so there are in fact only
four distinct cases for the composed local and global maps.

The composed maps (see Figure 10) will includeO(log h) and other terms that can
be neglected for trajectories that are very close to the heteroclinic cycle. Once these
terms are neglected, the result is a transition matrix (Field and Swift 1991; Krupa
and Melbourne 2004) that describes the map from Hin,i−1

i to Hin,i
i+1 . The transition

matrix multiplies the logarithms of the small (expanding and transverse) coordinates
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on Hin,i−1
i . Note that our transition matrices are not necessarily square: This is a new

feature of cycles in pluridimensions, explained in more detail below.
We use the notation of Podvigina and Ashwin (2011) and define a( j)

i to be the
negative of the quotient between the contracting (in the j direction) and expanding
eigenvalues at ξi . We define b( j)

i to be the negative of the quotient between the trans-
verse (in the j direction) and expanding eigenvalues at ξi .
Axis-to-axis-to-axis and axis-to-axis-to-plane cases. Here, we consider the local
map from Hin,i−1

i to Hout,i+1
i , at an equilibrium point ξi on an axis, having come

from ξi−1, also on an axis. The next point ξi+1 can be on an axis or on a plane. This
situation is illustrated in Case 2, Figure 2: ξ3 → ξ4 → ξ1 is axis-to-axis-to-axis, and
ξ4 → ξ1 → ξ2 is axis-to-axis-to-plane.

At ξi , the four directions are radial (zi ), contracting (zi−1), expanding (zi+1), and
transverse (zi−2), with zi = O(1) and zi−1 = h, and zi+1 � h and zi−2 � h. After
applying the local map φi (7), we get

⎡
⎣

ti,i−2
ei,i+1

1
ci,i−1
ei,i+1

0

⎤
⎦

(
log zi+1
log zi−2

)
+ O(log h).

This gives, in the first row, log zi−2 on Hout,i+1
i , and in the second row, log zi−1.

The next step is to go from ξi (on an axis) to ξi+1, which could be on an axis or
in a plane. The global map from Hout,i+1

i to Hin,i
i+1 , in both the axis-to-axis case (1)

and in the axis-to-plane case (2), is written in terms of zi+2 and zi+3. Since we are
working in R

4, we have zi+2 = zi−2 and zi+3 = zi−1, but in higher dimensions, the
maps would have to keep track of additional variables. In (1) and (2), both maps act
to multiply zi+2 and zi+3 by order 1 constants Ai+2

i→i+1 and Ai+3
i→i+1. Composing the

local and global maps results in

[
b(i−2)

i 1
a(i−1)

i 0

] (
log zi+1
log zi−2

)
+ O(log h) + O(log A), (9)

where A represents Ai+2
i→i+1 and Ai+3

i→i+1. This gives, in the first row, log zi+2 on Hin,i
i+1 ,

and in the second row, log zi+3. Once theO(log h) andO(log A) terms are neglected,
the map (9) gives the transition matrix for the axis-to-axis-to-axis and axis-to-axis-to-
plane cases.
Plane-to-plane-to-axis and plane-to-plane-to-plane cases. Here, we consider the
local map from Hin,i−1

i to Hout,i+1
i , at an equilibrium point ξi on an plane, having

come from ξi−1, also on an plane. The next point ξi+1 can be on an axis or on a plane.
This situation is illustrated in Case 3, Figure 3: ξ2 → ξ3 → ξ4 is plane-to-plane-to-
axis, and in Case 4, Figure 4: ξ2 → ξ3 → ξ4 is plane-to-plane-to-plane.

At ξi , the four directions are radial (zi , zi−1), contracting (zi−2), and expand-
ing (zi+1), with no transverse direction, with zi−1, zi = O(1) and zi−2 = h, and
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zi+1 � h. After applying the local map φi (8), we get

[ ci,i−2
ei,i+1

1
] (

log zi+1
log zi−2

)
+ O(log h).

Since zi−2 = h on Hin,i−1
i , the log zi−2 contribution is absorbed into the O(log h)

term, and so the right column of thematrix is removed. This gives log zi−2 on Hout,i+1
i .

The next step is to go from ξi (on an plane) to ξi+1, which could be on an axis or
in a plane. The global map from Hout,i+1

i to Hin,i
i+1 , in both the plane-to-axis case (3)

and in the plane-to-plane case (4), is written in terms of zi+2. Since we are working in
R
4, we have zi+2 = zi−2. In (3) and (4), both maps act to multiply zi+2 by an order 1

constant Ai+2
i→i+1. Composing the local and global maps results in

[
a(i−2)

i

] (
log zi+1

) + O(log h) + O(log A), (10)

where A represents Ai+2
i→i+1. The first (only) row is zi+2 on Hin,i

i+1 . Once the O(log h)

and O(log A) terms are neglected, the map (10) gives the transition matrix for the
plane-to-plane-to-axis and plane-to-plane-to-plane cases.
Plane-to-axis-to-axis and plane-to-axis-to-plane cases. Here, we consider the local
map from Hin,i−1

i to Hout,i+1
i , at an equilibrium point ξi on an axis, having come from

ξi−1 on a plane. The next point ξi+1 can be on an axis or on a plane. This situation
is illustrated in Case 2, Figure 2: ξ2 → ξ3 → ξ4 is plane-to-axis-to-axis, and Case 1,
Figure 1: ξ2 → ξ3 → ξ4 is plane-to-axis-to-plane.

At ξi , the four directions are radial (zi ), contracting (zi−1, zi−2), expanding (zi+1),
with no transverse direction, with zi = O(1), max(zi−1, zi−2) = h, and zi+1 � h.
After applying the local map φi (7), we get

[ ci,i−2
ei,i+1

1
ci,i−1
ei,i+1

0

](
log zi+1
log zi−2

)
+ O(log h).

Since log zi−2 = O(log h) on Hin,i−1
i as discussed in Section 4.2, the log zi−2 contri-

bution is absorbed into the O(log h) term, and so the right column of the matrix
is removed. This gives, in the first row, log zi−2 on Hout,i+1

i , and in the second
row, log zi−1.

The next step is to go from ξi (on an axis) to ξi+1, which could be on an axis or
in a plane. The global map from Hout,i+1

i to Hin,i
i+1 , in both the axis-to-axis case (1)

and in the axis-to-plane case (2), is written in terms of zi+2 and zi+3. Since we are
working in R

4, we have zi+2 = zi−2 and zi+3 = zi−1. In (1) and (2), both maps act
to multiply zi+2 and zi+3 by order 1 constants Ai+2

i→i+1 and Ai+3
i→i+1. Composing the

local and global maps results in

[
a(i−2)

i

a(i−1)
i

] (
log zi+1

) + O(log h) + O(log A), (11)
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where A represents Ai+2
i→i+1 and Ai+3

i→i+1. This gives, in the first row, log zi+2 on

Hin,i
i+1 , and in the second row, log zi+3. Once the O(log h) and O(log A) terms are

neglected, the map (11) gives the transition matrix for the plane-to-axis-to-axis and
plane-to-axis-to-plane cases.
Axis-to-plane-to-axis and axis-to-plane-to-plane cases.Here, we consider the local
map from Hin,i−1

i to Hout,i+1
i , at an equilibrium point ξi on an plane, having come

from ξi−1 on an axis. The next point ξi+1 can be on an axis or on a plane. This situation
is illustrated in Case 1, Figure 1: ξ1 → ξ2 → ξ3 is axis-to-plane-to-axis, and in Case 3,
Figure 3: ξ1 → ξ2 → ξ3 is axis-to-plane-to-plane.

At ξi , the four directions are radial (zi , zi−1), transverse (zi−2), and expand-
ing (zi+1), with no contracting direction, with zi−1, zi = O(1) and zi−2 � h, and
zi+1 � h. In this case, incoming section is a cylinder of radius h. After applying the
local map φi (8), we get

[ ti,i−2
ei,i+1

1
] (

log zi+1
log zi−2

)
+ O(log h).

This gives log zi−2 on Hout,i+1
i .

The next step is to go from ξi (on an plane) to ξi+1, which could be on an axis or
in a plane. The global map from Hout,i+1

i to Hin,i
i+1 , in both the plane-to-axis case (3)

and in the plane-to-plane case (4), is written in terms of zi+2. Since we are working in
R
4, we have zi+2 = zi−2. In (3) and (4), both maps act to multiply zi+2 by an order 1

constant Ai+2
i→i+1. Composing the local and global maps results in

[
b(i−2)

i 1
] (

log zi+1
log zi−2

)
+ O(log h) + O(log A), (12)

where A represents Ai+2
i→i+1. The first (only) row is zi+2 on Hin,i

i+1 . Once the O(log h)

and O(log A) terms are neglected, the map (12) gives the transition matrix for the
axis-to-plane-to-axis and axis-to-plane-to-plane cases.

4.4 Composing TransitionMatrices Around the Cycle

The four cases of cycles in pluridimensions in R
4 satisfying (A1)–(A4) are listed in

Table 1. Our choice of dim P1 = 2 and dim P2 = 3 means that ξ1 is on an axis and
ξ2 is in a plane, so the local map at ξ2 is of the form (12). The implication is that on
Hout,3
2 , and on Hin,2

3 , z4 is the only small coordinate. As a result, the Poincaré return

map, composed around the whole cycle from Hin,2
3 to itself, takes the form of a 1× 1

transition matrix in all four cases. In the four cases, these matrices are:

Case 1:
[
δ1

] =
[

b(4)
2 1

] [
a(3)
1

a(4)
1

] [
b(2)
4 1

] [
a(1)
3

a(2)
3

]
, (13)
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Case 2:
[
δ2

] =
[

b(4)
2 1

] [
b(3)
1 1

a(4)
1 0

] [
b(2)
4 1

a(3)
4 0

][
a(1)
3

a(2)
3

]
, (14)

Case 3:
[
δ3

] =
[

b(4)
2 1

] [
b(3)
1 1

a(4)
1 0

] [
a(2)
4

a(3)
4

] [
a(1)
3

]
, (15)

Case 4:
[
δ4

] =
[

b(4)
2 1

] [
a(3)
1

a(4)
1

] [
a(2)
4

] [
a(1)
3

]
. (16)

Starting at a different cross-section can result in 2 × 2 matrices, which have two
eigenvalues: one the same as the δi calculated starting at Hin,2

3 and the other equal to

zero. For example, in Case 3, if we started at Hin,1
2 instead, the product of the matrices

would be [
b(3)
1 1

a(4)
1 0

] [
a(2)
4

a(3)
4

] [
a(1)
3

] [
b(4)
2 1

]
.

This is a 2× 2 matrix with determinant equal to zero and with trace equal to δ3, so the
eigenvalues are zero and δ3. The δ3 eigenvalue determines the stability of the cycle,
and retaining theO(log h) andO(log A) terms would break the degeneracy of the zero
eigenvalue.

Each time around the cycle in Case i , log z4 increases by a factor of δi , with
corrections that are small comparedwith | log z4| as z4 goes to zero.Hence, the stability
of the cycle in pluridimensions in Case i is given by δi : The cycle is asymptotically
stable when δi > 1 and unstable when δi < 1 (recalling that all radial eigenvalues
are negative), as is standard in stability calculations of heteroclinic cycles (Krupa and
Melbourne 1995).

The time taken to go around the cycle is the sumof four short times jumping between
the equilibria and four long times in the neighbourhoods of the four equilibria. The
total time is dominated by the four long times, which from (5) are proportional to
the logarithms of the expanding coordinates at each point. The logarithms of these
expanding coordinates increase (in the stable case) by a factor of δi each time around the
cycle. In the unstable case, the logarithms decrease by a factor of δi . These variations
in log z4 (in Hin,2

3 ) and in the times taken to go around the cycle can be seen in the
figures illustrating the examples in Section 5.

5 Specific Examples of the Four Cases inR
4

We construct ODEs for each of the four cases in Table 1 and illustrate the stability
results by choosing two sets of parameter values in each case, with δi > 1 and δi < 1.
We use the same case labels as in Section 3. The first of these examples (Case 1)
is inspired by the convection and magnetoconvection examples of Matthews et al.
(1996) and Rucklidge and Matthews (1995). The stability of a similar example was
considered by Postlethwaite (2005), with a similar calculation of the stability of an
example of cycling chaos in Ashwin and Rucklidge (1998). The examples of the other
cases are entirely new.
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In this section, we use the specific coordinates x1, …, x4 rather than the general
coordinates zi−2, …, zi+3.

5.1 Case 1

The first example is a cycle between the four equilibria ξ1 = (1, 0, 0, 0), ξ2 =
(d1, 1, 0, 0), ξ3 = (0, 0, 1, 0), and ξ4 = (0, 0, d3, 1), where we have scaled the four
variables to set some components to be 1, and we leave the other components as
parameters, with d1 > 0 and d3 > 0. We set the eigenvalues at the origin to be 1,
±1, ±1, and ±1 in the x1, x2, x3, and x4 directions, respectively, scaling time so that
the first eigenvalue is 1. Requiring radial stability of the four equilibria leads us to
the following choice of sign for the eigenvalues in the x2, x3, and x4 directions: −1,
+1, and −1 (these are chosen to be equal in magnitude to simplify the presentation).
Expressing the coefficients in the ODE in terms of the eigenvalues, we have

ẋ1 = x1[ 1 − X + d1x2 − c31x3 + (d3(1 + c31) + e41)x4],
ẋ2 = x2[−1 + X + e12x1 − d1(1 + e12)x2 − c32x3 + (d3(−1 + c32) − t42)x4],
ẋ3 = x3[ 1 − X − c13x1 + (d1(1 + c13) + e23)x2 + d3x4],
ẋ4 = x4[−1 + X − c14x1 + (d1(−1 + c14) − t24)x2 + e34x3 − d3(1 + e34)x4],

(17)
whereX = x1+ x2 + x3+ x4. The coefficients are written in terms of the eigenvalues,
classified as contracting, expanding, and transverse.We denote by−ci j the contracting
eigenvalue at ξi in the direction of the j th basis vector, and analogously by ei j and by
−ti j the expanding and transverse eigenvalues, respectively. The radial eigenvalues at
ξ1 and ξ3 are both −1. At ξ2 and ξ4, the radial eigenvalues are eigenvalues of the two
matrices

( −d1 d1(d1 − 1)
1 + e12 1 − d1(1 + e12)

)
and

( −d3 d3(d3 − 1)
1 + e34 1 − d3(1 + e34)

)
.

Stability in the radial direction at ξ2 and ξ4 can be achieved by requiring d1 > 1/(2+
e12) > 1

2 and d3 > 1/(2 + e34) > 1
2 . We note that complex radial eigenvalues are

possible.
In Figure 11, we give examples of parameter values where the heteroclinic cycle is

(a) stable and (b) unstable. This example is based on the convection problem examined
by Matthews et al. (1996) in R7, and it is capable of the same global bifurcations and
chaotic dynamics reported by Matthews et al. (1996).

5.2 Case 2

The second example is a cycle between the four equilibria ξ1 = (1, 0, 0, 0), ξ2 =
(d1, 1, 0, 0), ξ3 = (0, 0, 1, 0), and ξ4 = (0, 0, 0, 1), where d1 > 0. As before, we
require radial stability of the four equilibria and set the eigenvalues of the origin in
the x2, x3, and x4 directions to be −1, +1, and +1, equal in magnitude to simplify the
presentation. Expressing the coefficients in the ODE in terms of the eigenvalues, we
have
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Fig. 11 Illustration of the dynamics of Case 1 (17).The parameters are d1 = 1.1, d3 = 1.1, e12 = 1.3,
c13 = 0.5, c14 = 0.6, t24 = 1.3, e34 = 1.3, c31 = 0.6, c32 = 0.4, t42 = 1.2, and (a) e23 = 0.8, e41 = 0.8
(δ1 = 1.08654, stable heteroclinic cycle); (b) e23 = 0.9, e41 = 0.9 (δ1 = 0.93886, unstable heteroclinic
cycle). The colours represent x1 (red), x2 (purple), x3 (blue), and x4 (black), plotted in logarithmic (base 10)
coordinates. The initial conditions are (x1, x2, x3) = (1, d1, 10−10) and (a) x4 = 10−600 and (b) x4 =
10−900. The grey line indicates a factor of δ1 growth of the minima of log x4 as well as a factor of δ1
growth of the time interval between these minima, as indicated by (13). Here, the grey line matches the
successive minima of log x4 (black), with log x4 growing in magnitude in the stable case and decreasing in
magnitude in the unstable case. In the unstable case, the trajectory eventually leaves the neighbourhood of
the heteroclinic cycle

ẋ1 = x1[ 1 − X + d1x2 − c31x3 + e41x4],
ẋ2 = x2[−1 + X + e12x1 − d1(1 + e12)x2 − c32x3 − t42x4],
ẋ3 = x3[ 1 − X − t13x1 + (d1(1 + t13) + e23)x2 − c43x4],
ẋ4 = x4[ 1 − X − c14x1 + (d1(1 + c14) − t24)x2 + e34x3],

(18)

where X = x1 + x2 + x3 + x4. The radial eigenvalues at ξ1, ξ3, and ξ4 are all −1. At
ξ2, the radial eigenvalues are eigenvalues of the matrix

( −d1 d1(d1 − 1)
1 + e12 1 − d1(1 + e12)

)
.

Stability in the radial direction at ξ2 can be achieved by requiringd1 > 1/(2+e12) > 1
2 .

We note that complex radial eigenvalues are possible.
In Figure 12, we give examples of parameter values where the heteroclinic cycle is

(a) stable and (b) unstable.
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Fig. 12 Illustration of the dynamics of Case 2 (18). The parameters are d1 = 1.1, t13 = 0.3, c14 = 0.5,
t24 = 0.9, c31 = 0.4, c32 = 0.5, e41 = 0.5, t42 = 0.9, c43 = 0.8, and (a) e12 = 1.2, e23 = 0.7, e34 = 1.6
(δ2 = 1.07708); (b) e12 = 1.3, e23 = 0.8, e34 = 1.8 (δ2 = 0.83665). The colours and initial conditions
are as in Figure 11. The grey line indicates a factor of δ2 (14) growth, which lines up well with the minima
of log x4 (black)

5.3 Case 3

The third example is a cycle between the four equilibria ξ1 = (1, 0, 0, 0), ξ2 =
(d1, 1, 0, 0), ξ3 = (0, d2, 1, 0), and ξ4 = (0, 0, 0, 1), where d1 > 0 and d2 > 0.
As before, we require radial stability of the four equilibria and set the eigenvalues of
the origin in the x2, x3, and x4 directions to be −1, +1, and +1, equal in magnitude
to simplify the presentation. Expressing the coefficients in the ODE in terms of the
eigenvalues, we have

ẋ1 = x1[1 − X + d1x2 + (d2(1 − d1) − c31)x3 + e41x4],
ẋ2 = x2[−1 + X + e12x1 − d1(1 + e12)x2 + d2(d1(1 + e12) − 1)x3 − c42x4],
ẋ3 = x3[1 − X − t13x1 + (d1(1 + t13) + e23)x2 + d2(1 − d1(1 + t13) − e23)x3 − c43x4],
ẋ4 = x4[1 − X − c14x1 + (d1(1 + c14) − t24)x2 + (d2(1 + t24) − d1d2(1 + c14) + e34)x3],

(19)
where X = x1 + x2 + x3 + x4.
The radial eigenvalues at ξ1 and ξ4 are both−1. At ξ2 and ξ3, the radial eigenvalues

are eigenvalues of the two matrices
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Fig. 13 Illustration of the dynamics of Case 3 (19). The parameters are d1 = 1.1, d2 = 1, t13 = 0.3,
c14 = 0.5, t24 = 0.9, e34 = 1.6, c31 = 0.4, e41 = 0.4, c42 = 0.9, c43 = 0.8, and (a) e12 = 1.2,
e23 = 0.7, (δ3 = 1.05804); (b) e12 = 1.3, e23 = 0.9, (δ3 = 0.84615). The colours and initial conditions
are as in Figure 11. The grey line indicates a factor of δ3 (15) growth, which lines up reasonably well with
the minima of log x4 (black)

( −d1 d1(d1 − 1)
1 + e12 1 − d1(1 + e12)

)
and

(
d2(1 − d1(1 + e12)) d2(1 − d2 + d1d2(1 + e12))

d1(1 + t13) − 1 + e23 d2(1 − e23) − d1d2(1 + t13) − 1

)
.

Stability in the radial direction at ξ2 can be achieved by requiring d1 > 1/(2+e12) >
1
2 . Radial stability at ξ3 is more complicated but can be readily checked in individual
examples. We note that complex radial eigenvalues are possible.

In Figure 13, we give examples of parameter values where the heteroclinic cycle is
(a) stable and (b) unstable.

5.4 Case 4

The fourth example is a cycle between the four equilibria ξ1 = (1, 0, 0, 0), ξ2 =
(d1, 1, 0, 0), ξ3 = (0, d2, 1, 0), and ξ4 = (0, 0, d3, 1), where d1 > 0, d2 > 0, and
d3 > 0. As before, we require radial stability of the four equilibria, and it turns out
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that setting the eigenvalues of the origin in the x2, x3, and x4 directions to be −1,
+1, and +1 is helpful for this. Expressing the coefficients in the ODE in terms of the
eigenvalues, we have

ẋ1 = x1[1 − X + d1x2 + (d2(1 − d1) − c31)x3 + (d3(1 + c31) + d2d3(d1 − 1) + e41)x4],
ẋ2 = x2[−1 + X + e12x1 − d1(1 + e12)x2 + d2(d1(1 + e12) − 1)x3

− (d1d2d3(1 + e12) + d3(1 − d2) + c42)x4],
ẋ3 = x3[1 − X − c13x1 + (d1(1 + c13) + e23)x2 + d2(1 − d1(1 + c13) − e23)x3

+ d3(d1d2(1 + c13) + d2(e23 − 1) + 1)x4],
ẋ4 = x4[1 − X − c14x1 + (d1(1 + c14) − t24)x2 + (d2(1 + t24) − d1d2(1 + c14) + e34)x3

+ d3(d1d2(1 + c14) − d2(1 + t24) − e34 + 1)x4],

(20)

where X = x1 + x2 + x3 + x4.
The radial eigenvalue at ξ1 is −1. At ξ2, ξ3, and ξ4, the radial eigenvalues are

eigenvalues of three 2×2 matrices. The first two of these are the same as in Example 3
(apart from relabelling t13 as c13); the third (for ξ4) is

(−d3(d1d2(1 + c13) + d2(e23 − 1) + 1) d3(d1d2d3(1 + c13) + d2d3(e23 − 1) + d3 − 1)
d2(1 + t24) − d1d2(1 + c14) + e34 − 1 d1d2d3(1 + c14) − d2d3(1 + t24) + d3(1 − e34) − 1

)
.

Radial stability can readily be checked in individual examples.
In Figure 14, we give examples of parameter values where the heteroclinic cycle is

(a) stable and (b) unstable. In this case, the grey line, indicting a factor of δ4 growth
in successive time intervals and minima of log x4, is noticeably different from the
actual locations of the minima. Decreasing the initial conditions from x4 = 10−600

and x4 = 10−900 to (for example) x4 = 10−6000 reduces this discrepancy, while
for an initial condition of x4 = 10−60, the discrepancy is even more pronounced.
This observation applies to the other cases as well: The discrepancy arises from the
O(log A) and O(log h) terms that have been dropped in deriving (13)–(16).

6 Discussion

Our results provide a starting point for a general approach to the study of the stability of
a broader class of robust heteroclinic cycles. Up until now, the systematic approaches
to stability required the existence of contracting eigenvalues at every equilibrium. We
have shown how to treat the absence of contracting eigenvalues, and although our
specific examples are in R

4, the principles of the calculations are applicable to any
dimension. Each transitionmap from Hin,i−1

i to Hin,i
i+1 depends on the locations of ξi−1,

ξi , and ξi+1 in these examples. In higher dimensions, there will be a greater variety of
possible transition matrices, with many possible combinations of dimensions.

Another interesting feature of robust heteroclinic cycles in pluridimensions is that
there are also equilibriawithmore than one contracting directions.Wehave shown that,
on the incoming section, the values of the contracting coordinates do not contribute
to the stability calculation, though the contracting eigenvalues do.
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Fig. 14 Illustration of the dynamics of Case 4 (20). The parameters are d1 = 1.3, d2 = 1.1, d3 = 1.1,
e12 = 0.9, c13 = 0.3, c14 = 0.5, e23 = 0.7, t24 = 0.9, e34 = 1.6, c31 = 0.4, c42 = 0.9, and (a) e41 = 0.2
(δ4 = 1.10714); (b) e41 = 0.3 (δ4 = 0.73810). The colours and initial conditions are as in Figure 11.
The grey line indicates a factor of δ4 (16) growth, which lines up approximately with the minima of log x4
(black), deviating in particular in the unstable case as the trajectory leaves the heteroclinic cycle

We have presented all examples of cycles in pluridimensions in R4 satisfying (A1)
(one-dimensional unstable manifolds), (A2) (invariant coordinate axes and hyper-
planes), (A3) (one equilibrium on each connected component), and (A4) (the origin
is excluded). These assumptions were only introduced for the purpose of constructing
simple examples but are not required for a robust heteroclinic cycle to have P subspaces
that vary in dimension around the cycle. Examples of robust cycles in pluridimensions
not satisfying these assumptions can be treated in a similar manner, with different
degrees of extra effort. In turn:

• Allowing higher-dimensional unstable manifolds, going beyond Definition 2 and
relaxing Assumption (A1), would bring in aspects of cycles with two (or more)
dimensional connections, as in Castro and Lohse (2022), or heteroclinic networks
as in (for example) Kirk and Silber (1994). The dynamics near such a network can
involve trajectories making choices as to which direction to take and the stability
of trajectories following sequences of choices is already understood in terms of
transition matrices (Krupa and Melbourne 2004; Podvigina 2012, 2023; Postleth-
waite and Rucklidge 2022). It would be very interesting to bring the systematic
handling of P subspaces that are of different dimensions to the theory of hetero-
clinic networks.
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• Our examples do not require any symmetries, but our assumption (A2) about
invariant coordinate axes and hyperplanes could be replaced, using symmetries
to guarantee the structurally stable connections needed for a heteroclinic cycle.
Symmetries, for example having reflection symmetry in every coordinate, can lead
to all hyperplanes being invariant in the same way as (A2). However, symmetries
can act more generally than this. In the example of Matthews et al. (1996) in R

7,
many of the coordinate planes are not invariant, and the sequence of dimensions of
the L subspaces is 2 → 4 → 2 → 4, and that of the P subspaces is 4 → 5 → 4 →
5. So, although the unstable manifolds of the equilibria are still one dimensional,
we do not always have (C2): There are equilibria with dim Pi > dim Li + 1. This
happens because some of the equilibria have negative as well as positive expanding
eigenvalues: This is prevented by (A2). In the related model of Rucklidge and
Matthews (1995) in R

9, some of the variables can change sign as they approach
the heteroclinic cycle. This is also prevented by (A2). Even so, we expect that the
approach to calculating stability thatwehave takenherewillwork,with appropriate
modifications, in these two examples.

• The example of Sikder and Roy (1994) does not satisfy Assumption (A3) but sta-
bility calculations for that, and similar, examples would carry through unchanged.
Allowing more than one equilibrium on an axis within a cycle could lead to fur-
ther interesting generalisations (Ashwin and Postlethwaite 2013; Castro and Lohse
2023).

• The example ofHawker andAshwin (2005) inR3 includes the origin (aswell as two
on-axis equilibria) and so does not satisfy (A4). The origin has two contracting
directions, the first of the on-axis equilibria has a transverse but no contracting
direction, and the second on-axis equilibrium has one contracting direction. The
stability calculations can be handled in a similar way, and we find that the stability
of the cycle is determined by the product of three transition matrices, of the form
of (10), (11) and (12). When multiplied out, our method agrees with the results
of Hawker and Ashwin (2005). Just as in Section 4.3 in the plane-to-axis-to-plane
case, the values of the logarithms of the two contracting variables at the origin are
both O(log h) and so they can both be neglected.

We remark that heteroclinic cycles in systems with symmetry are often associated
with certain patterns in the lattice of isotropy subgroups (Melbourne et al. 1989), where
equilibria in maximal fixed point subspaces are linked by connections in submaximal
fixed point subspaces. Up-and-down patterns in the lattice of isotropy subgroups indi-
cate the possibility of robust heteroclinic cycles. In the examples in Matthews et al.
(1996) and Rucklidge and Matthews (1995), the pluridimensional nature of the exam-
ples is related to the fact that the connections skip a level in the lattice of isotropy
subgroups. This observation suggest that heteroclinic cycles in pluridimensions might
be sought in symmetric systems having lattices of isotropy subgroups with sufficiently
many levels: This will be a subject of future work.

We end by observing that robust cycles in pluridimensions form an important class
of non-simple heteroclinic cycles, and the work we have presented here is a starting
point to a general theory of their stability. This type of cycle will arise, for example, in
modelling the dynamics of evolving populations when there are transitions between
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equilibria corresponding to mixed populations with different numbers of species, as in
the example of Matías et al. (2018). We also expect that these ideas we have presented
will be useful for analysing other more general problems, such as the stability of
depth two heteroclinic cycles (Chawanya 1997).
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