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Fig. 2: A visual comparison of the performance of image
enhancement and segmentation using enhanced and unen-
hanced data. (a) Example resulting enhanced images from the
proposed enhancement-calibration deep learning model with
selected high-quality data, compared to unenhanced data. (b)
The predictive masks for slices in (a), trained with enhanced
and unenhanced data, compared to the ground truth labels. Red
circles indicate the missing or inaccurate portion when seg-
mented using the unenhanced data.
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Fig. 3: Comparison of Segmentation Performance Metrics
and Dice Score Distribution with Unenhanced and Enhanced
ACDC. (a) Quantitative Analysis of Dice Score, ICC, and CoV for
Segmentation with Unenhanced and Enhanced ACDC. (b) Sta-
tistical Distribution of Dice Scores for Segmentation using
Baseline (Unenhanced) and Enhanced Data from the Proposed
Model with 20 Enhanced Targets. All evaluations were averaged
over five cross-validation folds. CoV: Coefficient of Variation,
ICC: Intraclass Correlation.
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Background: Predicting disease penetrance in individuals with
pathogenic sarcomere mutation (G +) without hypertrophy (LVH-) is
a significant clinical challenge in hypertrophic cardiomyopathy, that
currently requires lifelong imaging surveillance. We combined deep
phenotyping with machine learning to detect abnormalities that may
be missed by conventional tests.

Methods: We performed a multicentre study on 155 individuals:
61 G+LVH- and 94 overt LVH+ (49 G+ / 45 G-). All participants
underwent advanced CMR with diffusion tensor imaging, quantita-
tive perfusion and electrocardiographic imaging.

Parameters employed in unsupervised machine learning included
those reflecting LVH (maximum wall thickness [MWT] analyzed
using AI algorithms), ischaemia (myocardial perfusion reserve
[MPR]), microstructural alteration (fractional anisotropy [FA],
sheetlet orientation [E2A]), epicardial conduction (mean activation
time [mean AT], gradients [GATmean/max] and fractionation) and
repolarization (mean activation recovery interval corrected [mean
ARIc], range of ARIc, gradients GRTcmean/max).

We performed unsupervised machine learning using agglomera-
tive hierarchical cluster analysis. Redundant CMR metrics were
eliminated by removing features where pair-wise correlation was r
>0.7. The dissimilarity matrix was calculated using Euclidean
distance and clusters were joined using Ward’s method, which can
separate clusters even in the presence of some noise. The optimal
number of clusters was chosen using the NBclust library, which
chooses the best consensus by evaluating multiple clustering valida-
tion indices. All clustering was performed blinded to clinical data
(demographics, genotype, LVH thresholds, abnormal ECG).

Results: Cluster validity indices calculated using advanced
phenotyping implied that there were three optimal clusters (Figure).
Cluster 1 represented a mild deep phenotype (low MWT), with
preserved microvascular function (higher MPR) and more preserved
microstructure (higher FA, lower E2A). Repolarization was not
prolonged (lower mean ARIc) but other EP changes were similar to
cluster 2 (mean AT, GAT) and cluster 3 (Fractionation and GRTc).

Clusters 2 and 3 displayed intermediate and severe phenotypes
respectively in terms of LVH (MWT higher than cluster 1 and less
than 3), ischaemia (MPR was higher than cluster 1 and less than 3),
and microstructural alteration (FA was lower than cluster 1 and
higher than 3). EP changes were less severe in cluster 2 than cluster
3 in all parameters except for fractionation and GAT.
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33% of subclinical HCM clustered in intermediate or severe deep
phenotypes. These individuals had no difference in MWT and 50%
had a normal ECG.

Conclusion: A high prevalence of subclinical HCM have an
intermediate or severely abnormal deep microstructural, microvas-
cular and EP phenotype. This subgroup had no LVH and normal 12-
lead ECG, therefore are only detected by deep phenotyping techni-
ques.

Figure. Heat map with dendrogram to show phenotypic
clustering based on hypertrophy, microvascular function,
microstructural alteration and ECG Imaging parameters. Each
row represents a participant. (abbreviations as per Table)
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Phenotypic clustering based on hypertrophy, microvascular func-
tion, microstructural alteration and ECG Imaging parameters.

Cluster 1 Cluster 2 Cluster 3 P values
n=44 n=43 n=68 1vs2 2v3 1vs3
MWT 9.7(8.6- 15.7(11.7- 17.6(15.1- < < <
10.4) 17.2) 22.0) 0.001 0.001 0.001
MPR 3.26(2.60- 2.77(2.31- 2.21(1.95- 0.005 0.002 <
3.86) 3.25) 2.89) 0.001
FA 0.32(0.31-  0.29(0.28-  0.28(0.25- < < <
0.33) 0.31) 0.29) 0.001 0.001 0.001
E2A 45.2(42.3- 59.2(54.6- 62.9(57.3- < 0.056 <
49.8) 63.8) 65.5) 0.001 0.001
Mean AT 39(35-45) 31(36-44) 41(37-46) 0.53 0.16 0.031
Fractionation 12(2-36) 5(0-13) 13(1-36) 0.013 0.008 0.98
GATmean 0.41(0.33- 0.38(0.29- 0.43(0.33- 0.08 0.006 0.23
0.50) 0.45) 0.57)
GATmax 4.8(4.4-5.5) 4.43(4.1- 5.6(4.6-6.6) 0.14 < 0.007
5.2) 0.001
Mean ARIc  241(226- 280(243- 272(253- < 0.89 <
254) 297) 293) 0.001 0.001
ARIc Range 188(178- 158(144- 201(183- < < 0.15
205) 171) 218) 0.001 0.001
GRTcmean 1.2(1.1-1.4) 0.83(0.72- 1.1(1.0-1.3) < < 0.19
0.99) 0.001 0.001
GRTcmax 11.4(10.1-  9.9(8.8- 12.4(10.4- < < 0.2
13.3) 11.0) 14.5) 0.001 0.001
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Background: Accurate segmentation of stress first-pass perfusion
(FPP) CMR is critical for reliable myocardial blood flow analysis.
Automated artificial intelligence (AI) solutions are essential for
overcoming the inefficiencies and inconsistencies inherent in manual
contouring of stress/rest FPP studies [1,2]. Recent advances in deep
neural network (DNN)-based segmentation of CMR datasets show
that uncertainty-guided model selection improves generalization to
external datasets [3,4]. In this work, we propose a new approach
that combines state-of-the-art (SOTA) uncertainty-based DNN model
selection with CMR physics-informed features to improve segmenta-
tion accuracy across multi-center stress FPP datasets.

Methods: The DNN models in this study were trained using a
motion-corrected stress FPP internal dataset (n=80 stress/rest
studies) and tested on three external sites from the SCMR Registry
[5]. As described in Fig 1, in the first step, we pre-select the top 10
models based on the lowest uncertainty scores. Next, we employ a
physics-informed analysis to evaluate the quality of each segmenta-
tion result (Fig 1-A). Specifically, outliers are identified by analyzing
the temporal behavior of myocardial pixel time-curves, by measur-
ing deviations in the centroid of the area under the time curve (Fig 1-
B). The final segmentation solution is selected based on the lowest
outlier score. A total of 106 patients from 3 centers in the registry we
included in the external test dataset as described in Fig 2-A. To
evaluate the performance of the proposed hybrid physics-informed
approach vs. the uncertainty-based SOTA technique, we focused on
two common segmentation errors in FPP images that are difficult to
detect with Dice score [6]: Type I error, where bloodpool is
mistakenly included in the segmented myocardium; and, Type II
error, where areas with minimal blood flow (e.g., epicardial fat) are
erroneously included in the segmentation.

Results: The proposed hybrid model selection approach demon-
strated significantly improved performance compared to the SOTA
method. The prevalence of Type I errors was reduced from 20.3% to
4.0%, and Type II errors were reduced from 7.7% to 1.0% (p < 0.001
for both). The improvement was most notable in cases where the
SOTA approach resulted in subtle, yet critical segmentation errors as
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