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Despite the recent success of identifying experimental signatures of the orbital Hall effect (OHE),
the research on the microscopic mechanisms behind this unique phenomenon is still in its infancy.
Here, using a gapped 2D Dirac material as a model system of the OHE, we develop a microscopic
theory of orbital transport which captures extrinsic disorder effects non-perturbatively. We show
that it predicts several hitherto unknown effects, including (i) a strong dependence of the orbital Hall
conductivity with the strength and symmetry of the impurity scattering potential, and (ii) a smooth
crossover from intrinsic to extrinsic OHE as a function of the Fermi energy and impurity density. In
contrast to previous (perturbative) studies, the OHE is found to exhibit bona őde diffusive behavior
in the dilute impurity limit, which we trace back to the dominance of skew scattering-type processes.
More generally, we argue that the newly unveiled orbital skew scattering mechanism governs the
diffusive OHEs of a large class of 2D materials even when the crystal structure is inversion-symmetric.
Our work unveils the crucial nature of non-perturbative vertex corrections for a complete description
of orbital transport and conőrms common short-range impurities as key enablers of the OHE.

The transport of orbital angular momentum (OAM) in
solids has garnered signiőcant interest for its fundamental
role in understanding quantum dynamics in spin-orbit
coupled systems and its potential for device applications
[1ś4]. In materials with weak spin-orbit coupling, charge-
neutral orbital currents can be generated electrically via
the orbital Hall effect (OHE) [5ś7], őrst proposed in 2005
[8] and recently observed in experiments on light metals
[9ś11]. This development is steering spintronics in new
directions, with studies addressing orbital torques, ultra-
fast OAM transport, and more [12ś26].

Efforts to unravel the microscopic mechanisms of the
OHE have primarily focused on intrinsic transport driven
by momentum-space orbital textures, often linked to
quantum geometric effects [27]. However, theoretical
estimates based solely on intrinsic mechanisms differ
signiőcantly from experimental results in titanium thin
őlms, suggesting that disorder plays a critical role in
the relaxation of nonequilibrium orbital densities [9].
Recent theoretical work supports this view, showing
that thermal disorder at room temperature is an
important piece of the OHE puzzle [28ś30]. A pressing
challenge moving forward is to understand how disorder,
particularly short-range defects and impurities, affect
the generation of OAM currents. Short-range defects
are ubiquitous in metals and other OHE candidate
materials [11] and may enable efficient mechanisms of
extrinsic orbital transport. A strong contender, hitherto
unconsidered, is orbital skew scattering (i.e. the orbital
analog of Mott scattering), whereby an applied electric

őeld causes wave packets with opposite OAM (e.g., Lz =
±ℏ) to scatter asymmetrically, resulting in transverse
OAM ŕow. Two such mechanisms may contribute to
the OHE without the need for spin-orbit coupling: (i)
asymmetric scattering due to impurities with non-trivial
orbital-space structure, and (ii) asymmetric scattering
enabled by the orbital texture of wavefunctions. The
former may induce OHE in otherwise orbital-inactive
systems, while the latter is a band-driven mechanism
whose spin analog has been found to emerge in 2D
materials with broken spatial symmetries [31, 32].

Despite the increasing interest surrounding the OHE,
only a few studies have systematically examined the role
of disorder [33ś37]. Although a coherent picture has
not yet emerged, this early work suggests that a non-
perturbative treatment of disorder at some level of theory
will be crucial to unlock the extrinsic OHE. Our purpose
in this Letter is to őll this gap. The key issue concerns
the exact nature of the vertex corrections to the orbital
Hall conductivity (OHC). Speciőcally, Ref. [34] predicts
an extrinsic OHE insensitive to the disorder parameters,
while Ref. [36] őnds that vertex corrections of the OHC
vanish entirely for short-range impurities. In contrast,
numerical real-space calculations carried out for small
system sizes clearly show a disorder-dependent OHE
[37]. Although real space numerics can simulate tight-
binding models of arbitrary complexity [38], reaching the
interesting diffusive regime of macroscopic systems at low
impurity densities remains a considerable challenge [39].
Here, diagrammatic linear-response techniques can prove
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FIG. 1. Diagrammatic technique: (a) the extrinsic OHC; (b)
the disorder-renormalized charge current vertex function; and
(c) the T -matrix expansion of this work. In the popular ladder
approximation, only the őrst diagram in (c) is retained. This
captures side-jump processes perturbatively, but misses out
the skew scattering mechanism as well as the strong scattering
regime. Solid (dashed) lines denote disorder-averaged Green’s
function (single-impurity potential insertions), while red/blue
indicates advanced/retarded sectors.

exceedingly useful, as they capture the diffusive regime
by design. Indeed, we will show below that a formulation
beyond the standard perturbative approach solves the
conundrum of the vertex corrections and unveils a rich
OHE phenomenology, where the microscopic details of
the disorder landscape occupy the center stage.

Setting the stage. ÐWe explore a system of massive
2D Dirac electrons, a prototypical model for 2D materials
with broken inversion symmetry. We note, however, that
the extrinsic OHE and its main driving force (see below)
are expected to be universal features of a large class of
orbital-active 2D materials, including centrosymmetric
systems. Orbital physics in 2D materials [40ś49] such as
dichalcogenide monolayers, has previously been linked to
phenomena like orbital Hall insulating phases [41, 44] and
OAM-carrying in-gap edge states [50]. To incorporate
disorder into the picture, we employ a diagrammatic
technique wherein electron-impurity scattering events
responsible for vertex corrections to the OHC are
described via a generalized ladder series of Feynman
diagrams [51]. It accomplishes the exact resummation
of the inőnite series of 2-particle non-crossing diagrams
("ladder", "Y ", "X", etc.; see Fig. 1). Hence, all
the extrinsic mechanisms triggered by single-impurity
scattering events (e.g., semiclassical skew scattering,
asymmetric scattering precession [52] and side jumps) are
captured in a fully nonperturbative fashion [51]. Previous
applications include the spin Hall effect (SHE) in twisted
2D heterostructures [32] and the anomalous Hall effect
in magnetized 2D materials [53]. Armed with this
formalism, we uncover the dominant OHE mechanisms
(most notably, orbital skew scattering) and construct
a phase diagram of OAM transport spanning extrinsic
and intrinsic regimes. The crucial role played by the
symmetry of the scattering centers will also be addressed.

Theory.ÐThe single-particle Hamiltonian around the
K(K ′) point in the valley-isotropic basis reads as

Hτ = vσ · p+ τ∆σz + Vdis(x) (1)

where v is the bare Fermi velocity of 2D massless Dirac
fermions, p = −iℏ∇ is the momentum operator, σ is
the vector of pseudospin Pauli matrices and τ = ±1
is the valley index. Moreover, ∆ is a staggered on-site
potential leading to an energy gap Eg = 2∆ and Vdis(x)
describes the disorder landscape. To get a broader
picture of the extrinsic OHE, here we shall consider
a generalized short-range impurity model. Speciőcally,
Vdis(x) =

∑

i Mdis(u0, uz) δ(x−xi), where Mdis(u0, uz) =
u0 σ0 + uz τσz, {xi} is the set of impurity positions (i =
1, ..., N), u0(z) is the strength of the scalar (staggered)
component of the scattering potential, and σ0 is the
2 × 2 identity matrix. Our main quantum observable of
interest is the orbital-current operator J z

i = 1
2{ji, Lz},

where ji = v σi (with i = x, y) is the particle current
operator, Lz is the ẑ component of the OAM operator
and {·, ·} denotes the anticommutator. Lz has the
following momentum-space representation in the valley-
isotropic basis Lz(k) = −ℏσ0τ∆mev

2/E2
k

[45], where me

is the electron mass, Ek =
√
ℏ2v2k2 +∆2 is the energy

dispersion, and k = |k| is the wavevector measured from
a valley. We note that wavepackets centered at the K
and K ′ points carry opposite OAM due to time-reversal
(T ) symmetry. Because the impurity Hamiltonian in
our model is diagonal in valley space (i.e. intervalley
scattering terms are neglected), the total OHC is two
times the OHC of a single valley. In the following, we
work in the K-valley sector (H ≡ Hτ=1) and introduce
a valley degeneracy factor (gv = 2) when required.

The extrinsic contribution to the linear-response OHC
in the dilute impurity limit is governed by the Fermi-
surface (type I) term of the Kubo-Streda formula:

σOHE
ij (ε) =

gvgs
2π

∫

dk tr
[

J z
i (k)

〈

G+
ε Jj G

−
ε

〉

(k)
]

, (2)

where Ji = −eji is the charge current operator (e > 0),
G±

ε = (ε −H ± i0+)−1 is the retarded(+)/advanced(−)
Green’s function at the Fermi energy ε, gs = 2 is the spin-
degeneracy factor, ⟨...⟩ is the disorder average, ℏ ≡ 1,
and the trace is taken over the pseudospin degree of
freedom. The expression inside angular brackets can
be cast as ⟨G+

ε Jj G
−
ε ⟩ → G+

ε (k) J̃j G−
ε (k) ≡ 2πϱj(ε,k),

where G±
ε (k) are disorder-averaged Green’s functions and

J̃j is the disorder-renormalized charge current operator
obtained by solving the Bethe-Salpeter equation in Fig.
1(b). Explicitly, we have: G±

ε (k) = (ε−H0(k)− Σ±
ε )

−1,
where H0(k) is the disorder-free Hamiltonian, Σ±

ε =
nT±(ε) is the disorder self-energy, T±(ε) is the single-
impurity T matrix, and n is the impurity density in the
thermodynamic limit (N → ∞); see Ref. [54] for detailed
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expressions of G±
ε (k), T±(ε) and J̃j(ε). All together, the

knowledge of the renormalized vertex yields the extrinsic
OHC via σOHE

ij (ε) = gsgv
∫

dk tr [J z
i (k)ϱj(ε,k)]. This

elegant expression shows that ϱj(ε,k) plays the role
of a k-resolved density matrix encapsulating the linear
response of the system, and therefore that the structure of

the renormalized vertex is key [54]. Finally, the intrinsic
OHC, σint

OHE, is obtained by momentum space integration
of the orbital Berry curvature [45]. In what follows,
we assume that the electric őeld driving the OHE is
applied along the x̂ axis and deőne σdis.

OHE ≡ σOHE
yx (due to

symmetry of the model, we also have σOHE
xy = −σOHE

yx ).

Results and discussion.ÐWe consider two types of
scattering centers: (i) conventional scalar impurities and
(ii) impurities with uz ̸= 0. Both cases are realistic and
commonly realized. A simple example is a top impurity
with C3v symmetry (e.g. an ad-atom chemisorbed on
an A- or B-type site in graphene [55ś57]). Its localized
nature around a site belonging to a particular sublattice
(A or B) implies uz ≈ ±u0, so that the projection of Mdis

on the opposite sublattice (B or A) vanishes or is strongly
suppressed. In contrast, hollow-position impurities enjoy
6-fold rotational symmetry and thus generate purely
scalar potentials (uz = 0) [58]. This justiőes our use
of a generalized disorder model, and will allow us to
draw a number of conclusions regarding the nature of
possible OHEs. We őrst focus on scalar impurities, as
they are the most symmetric ones. To help uncover the
main driver of the extrinsic OHE, we expand Eq. (2) in
powers of the n [or equivalently, 1/(ετ0), where τ0 ∝ n−1

is a typical (charge) scattering time]. The leading term of
the expansion O(n−1) encodes the semiclassical response:

σs.c.
OHE =χε

2emev
2

πn
θ(|ε| − |∆|)

[

∆2

u0ε2
f1(ε,∆)

f2(ε,∆)
+

4∆4f1(ε,∆) log
(

Λ2

ε2−∆2 − 1
)

πv2ε [f2(∆, ε)]3/2
+O(u0)



 ,

(3)

where χε = sign(ε), f1(ε,∆) = (ϵ2 − ∆2)2, f2(∆, ε) =
(

ε2 + 3∆2
)2

, and Λ ≫ ε,∆ is an energy cutoff used to
regularize diverging integrals appearing at higher order
(typically Λ ≈ 10 eV, but the results are little sensitive to
actual choice of Λ [59]). The validity of the analytical u0-
expanded result [Eq. (3)] (accurate for |u0| up to ≈ 0.2
eVnm2) is discussed in the Supplemental Material [54].

The őrst term of Eq. (3) is inversely proportional to
the potential strength and has odd parity, i.e. σs.c.

OHE(ε) =
−σs.c.

OHE(−ε), unlike σint
OHE which is an even function of

ε [45]. This symmetry is perturbatively broken due
to disorder, and, for intermediate scattering strengths,
an important next-order contribution [the second term
in Eq.(3)] kicks in. This effect can be seen in Fig.
2, where the total OHC, σtot

OHE = σdis.
OHE + σint.

OHE, is

FIG. 2. Top panel: Illustration of the orbital skew scattering
mechanism leading to a transverse net ŕow of OAM. Bottom
panel: Fermi energy dependence of the total OHC (σtot

OHE =
σOHE +σint

OHE) in the presence of dilute random impurities for
selected scalar potential strengths. Inset: Extrinsic OHC as
a function of uz/u0 for ε = 1.2∆ (note that |σint

OHE| is shown
as a solid line for comparison). Parameters: v = 106 m/s,
∆ = 0.5 eV, n = 1012 cm−2, and u0 = 1 eV nm2 (inset).

plotted against the Fermi energy for two choices of
u0 and a őxed n. We note that σdis.

OHE matches well
the analytical approximation of Eq. (3) in this low-
u0 regime. The extrinsic OHC is seen to depend
strongly on u0 and in the metallic regime it can easily

exceed σint.
OHE, especially for low n. To understand this

behavior, one needs to pin down the exact underlying
mechanism of the extrinsic response. The sensitivity of
σdis.

OHE to the impurity potential strength suggests that
an orbital version of the familiar (spin-dependent) skew
scattering mechanism is at play. To conőrm this, we also
perform a standard ladder resummation. The rationale is
that, by construction, the ladder approximation excludes
semiclassical skew-scattering diagrams (most notably
the Y diagram [51]). We őnd σladder

OHE = 0 (to the
leading order in n), which conőrms our hypothesis.
Due to the semiclassical nature of the skew scattering
mechanism, one has σOHE ∼ n−1 akin to the familiar
Drude conductivity (σxx). However, the transport times
governing each response function are drastically different.
To leading order in u0, one has σs.c.

OHE(ε) ∝ (nε2u0)
−1,

while σxx(ε) ∝ ετ∥ with τ∥ ∝ (nεu2
0)

−1 (here, the high
Fermi energy limit ε ≫ ∆ was taken for simplicity). This
shows that, in analogy to the extrinsic SHE, the orbital-
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Hall response is governed by its own transverse transport

time, namely, σs.c.
OHE ∝ vkF τ⊥, with kF =

√

f1(ε,∆) [the
parametric dependencies of τ⊥ can be read off from Eq.
(3)]. Due to T symmetry, the skewness of impurity cross
sections features a valley-orbit locking effect akin to the
intrinsic OHE mechanism [45]; see Fig. 2 (top panel).

The characteristic behavior of the OHC reŕects the
structure of the disorder-renormalized vertex J̃x. We őnd
J̃x = a Jx + b Jy, with a, b some O(n0) constants [54].
The O(n0) Jy term (absent in the ladder approximation)
shows that, through skew scattering, disorder acts as
a robust source of transverse OAM ŕow (note that
J z
y ∝ Jy in our model). Moreover, the nonperturbative

dependence of J̃x on the scattering potentials u0 and uz

is accessible via our technique [54]. It is instructive to
compare our őndings to Ref. [34], where a white-noise
(WN) model of scalar disorder was employed. There, the
leading term of the small-n expansion reads σWN

OHE ∝ (n)0,
suggesting that a noncrossing calculation is insufficient
(see Refs. [51, 60] for a discussion of the breakdown
of perturbative analysis in 2D Dirac models with WN
and similar zero-spatial-average disorder landscapes).
The WN statistics yield an extrinsic OHC independent

on the disorder details, as well as an unphysical C0-
type discontinuity as the Fermi energy approaches the
band edge [34]. In contrast, in our model (of random
short-range impurities), the extrinsic OHC shows regular
behavior across the band edge and the semiclassical skew
scattering mechanism is operative (σs.c.

OHE ∝ n−1), leading
to a physically sound σdis.

OHE that is sensitive to u0 and n
as expected in a realistic disordered material.

It is natural to ask whether the intrinsic mechanism
can prevail over orbital skew scattering in the regime
of diffusive charge transport. To answer this question,
we performed a detailed study in the parameter space
spanned by ε and the orbital mass of the gapped 2D Dirac
model. Note that the low native defect concentrations
[61] of graphene implies that, in this system (where a
sizable ∆ can be induced via strain őelds [62, 63]), skew
scattering is expected to dominate the OAM transport.
For this reason, we shall focus on the case of transition
metal dichalcogenide (TMD) monolayers. Here, the
area density of point defects can reach a few 1013 cm−2

[64, 65], taking the system closer to the actual łdirty
limitž. To establish a physical picture, we map out the
relative contribution of the skew scattering-driven OHE,
ηdis ≡ σ̄dis

OHE/(σ̄
dis
OHE + σ̄int

OHE), where the bar denotes
the absolute value and σOHE is computed numerically to
access the full nonperturbative regime. For very strong
scalar potentials (characteristic of vacancy defects [59]),
we őnd that the OHE is essentially intrinsic provided
n ≳ 5× 1012 cm−2. Note that TMD devices operating in
the metallic regime (with ε ≈ 1.1∆ [66, 67]) have been
demonstrated, so that pure intrinsic orbital transport

ε/∆

n
[1
01

2
cm

−
2
]

ηdis

FIG. 3. Crossover between the intrinsic and extrinsic regimes
of the OHE in a system with scalar disorder. The dash-dotted
curve corresponds to the critical line ηdis = 1/2 for impurities
with u0 ≡ u∗

0 = 100 eVnm2. The dotted lines show how the
boundary changes upon tuning u0. These transition from the
left to the right of the u∗

0 curve with u0 increasing as u0/u
∗

0 =
0.67, 0.77, 0.83, 1, 1.2, 1.3, 1.5. The color map represents the
relative extrinsic contribution strength ηdis ∈ [0 : 1]. Inside
the energy gap, the OAM transport is governed by the orbital
Berry curvature. Other parameters as in Fig. 2.

(that is, ηdis ≪ 1) may be within reach; see Fig. 3. We
checked that the side-jump contribution to the OHC is
typically too low to overcome intrinsic orbital transport,
especially for strong scattering potentials [54]. Moreover,
the extrinsic-to-intrinsic crossover is nonuniversal and
smooth. Similarly to charge transport [68], the nature
of OAM transport is sensitive to the carrier density and
the details of the disorder model. As one moves away
from the band edge into the metallic phase, the radius of
the Fermi surface increases, which favors skew scattering
processes. To better see this, in Fig. 3 we also show
n∗ = n∗(ε, u0), deőned as the critical impurity density
at which ηdis = 1/2 and thus intrinsic and extrinsic
mechanisms contribute equally. Below the critical n, the
extrinsic OHC dominates. The family of dotted lines
(which track the evolution of n∗ with u0) disclose a more
prevailing extrinsic behavior of the OAM transport for
weaker scattering potentials, as well as for higher carrier
densities. In contrast, intrinsic orbital transport is seen
to dominate close to the band edge and deep inside the
dirty limit. Due to the prevalence of atomic defects
in TMDs [65] with typical large |u0|, these őndings
indicate that the two distinct OAM transport regimes
should be accessible using a back-gate voltage. While
this study is focused on zero-temperature properties, the
general qualitative picture of the OHE remains the same
at őnite temperature, except for speciőc regions of the
parameter space where electron-phonon scattering plays
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a signiőcant role (see Ref. [54] for additional details).

The problem of extrinsic OAM transport becomes even
more intriguing when considering non-scalar disorder.
Scattering potentials endowed with a nontrivial internal
structure in the unit cell are ubiquitous but have so far
not been investigated in the context of the OHE. For case
(ii), in the limit of a pure staggered potential (see [54] for
more general expressions), we őnd

σ
s.c.(z)
OHE = −2emev

2

πn
θ(|ε| − |∆|) ∆

uz|ε|
f1(ε,∆)

f2(ε,∆)
+O(u0

z).

(4)
For such impurities, the extrinsic OHC has instead even
parity with respect to ε, which demonstrates that the
spatial symmetries of local scattering potentials can have
a large impact on the OHE. Note that the scaling with
ε and ∆ is also modiőed with respect to the case of
scalar impurities [c.f. Eq. (3)]. This is interesting, but
challenging to probe experimentally as pure staggered
δ-type potentials are not easily accessible [55ś57]. To
see how the skewness of orbital scattering processes may
vary between different types of common impurities, we
investigate the OHC dependence on the ratio uz/u0. A
representative study for ε = 1.2∆ is shown in the inset
of Fig. 2. Upon increasing the staggered component of
the potential, we see a quick reduction of the OHC from
about ≈ 145 (e/2π) at uz = 0 (C6v-symmetric impurities)
to zero for uz = u0. The latter is the special case of short-
ranged potentials localized on a single sublattice (C3v-
symmetric impurities), for which orbital skew scattering
is conspicuously inactive. For uz > u0, the OHC changes
sign and develops a nonmonotonic behavior, highlighting
a subtle competition between orbital skew scattering
processes of distinct origin. This conőrms the intuition
developed through Eqs. (3)-(4), that is, the structure of
impurity potentials is key to developing a quantitative
and qualitative description of extrinsic OAM transport.

Conclusion.ÐTaken together, our őndings reveal a
rich, hitherto unreported, interplay of OAM transport
mechanisms that reŕect the band structure and disorder
landscape. In particular, we uncover an orbital analog
of the familiar skew scattering mechanism, which is
sensitive to the symmetry and strength of local impurity
potentials. Despite our focus on 2D honeycomb layered
systems with broken inversion symmetry, many of the
OHE features we described here hold quite generally.
Most importantly, the new orbital skew scattering
mechanism is expected to be universal to orbital-active
2D electronic systems, both in the presence and absence
of T symmetry. In particular, it will play a key role
in centrosymmetric materials with hidden out-of-plane
orbital textures, as shown in the Supplementary Material
for the speciőc case of D6h-invariant graphene with only
intrinsic-type spin-orbit coupling [54]. The prevalent
manifestation of orbital skew scattering is a crucial result

and one of the main consequences of the microscopic
OHE framework developed in this work.
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