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Abstract

In recent years, passive motion paradigms, derived from the equilibrium point hypothesis and impedance control,

have been utilised as manipulation methods for humanoid robots and robotic manipulators. These paradigms are

typically achieved by creating a kinematic chain that enables the manipulator to perform goal-directed actions with-

out explicitly solving the inverse kinematics. This approach leverages a kinematic model constructed through the

training of artificial neural networks, aligning well with principles of cybernetics and cognitive computation by

enabling adaptive and flexible control. Specifically, these networks model the relationship between joint angles and

end-effector positions, facilitating the computation of the Jacobian matrix. Although this method does not require

an accurate robot model, traditional neural networks often suffer from drawbacks such as overfitting and ineffi-

cient training, which can compromise the accuracy of the final passive motion paradigm model. In this paper, we

implement the method using a deep neural network and investigate the impact of activation functions and net-

work depth on the performance of the kinematic model. Additionally, we propose a transfer learning approach to

fine-tune the pre-trained model, enabling it to be transferred to other manipulator arms with different kinematic

properties. Finally, we implement and evaluate the deep neural network-based passive motion paradigm on the Uni-

versal Robots, comparing it with traditional kinematic controllers and assessing its physical interaction capabilities

and accuracy.

1. Introduction

In the field of control systems, optimal control theory is a key approach for addressing the degrees

of freedom problem. This involves defining an objective function and finding its extremum under the

constraints of the system’s equations of motion and allowable control variables. A substantial body of

literature has explored various objective functions, including minimising the square of the hand’s jerk

over an entire movement [1], integrated torque change [2], minimum object crackle [3], and minimum

acceleration criterion [4]. Despite these advances, a significant challenge remains in deriving optimal

solutions for nonlinear time-varying systems, especially as the complexity of the objective function and

constraints increases. The mathematical process of computing the optimal feedback controller in such

cases is notably intricate [5]. While evolutionary algorithms offer a promising method for addressing

these challenges [6, 7], they are often limited by the risk of converging to local optima rather than global

solutions.

© The Author(s) 2024.
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In robotics, generating complex motor behaviours that rival human capabilities remains a significant

challenge [8]. For instance, to enhance the performance of human-robot cooperation tasks, a system

where the human arm grasps a robot handle has been modelled as a closed kinematic chain, evaluated

using ergonomics-related criteria [9]. This approach improves human-robot interaction by increasing

accuracy, stability, and user comfort, but it often comes at the cost of task speed and completion time.

Rich, accurate, and stable motor behaviour can be understood as a sequence or superposition of fun-

damental motor primitives. Two distinct approaches [10] have been proposed to achieve this: Dynamic

Movement Primitives (DMPs), which consist of a canonical system, nonlinear forcing terms, and

transformation systems [11, 12, 13], and Elementary Dynamic Actions (EDAs), which are based on

submovements, oscillations, and mechanical impedance [14, 15, 16].

The key differences between DMPs and EDAs are noteworthy. DMPs offer high-precision tracking

using inverse dynamics but require an accurate robot model. In contrast, EDAs are better suited for

managing uncertainties, as they do not rely on an inverse dynamics model. Instead, they use mechan-

ical impedance to handle physical interactions and tracking errors. This paper explores and presents

an EDAs-based approach, integrating impedance control, the Passive Motion Paradigm (PMP) [17],

and deep neural networks to control the manipulator’s end-effector. This approach addresses kinematic

redundancy without solving the inverse kinematics problem, using deep neural networks to approximate

kinematic transformations with reasonable accuracy.

Specifically, impedance control was developed to account for the mechanics of interactions between

physical systems [18]. Given that manipulation is inherently a nonlinear problem, it is crucial to dis-

tinguish between impedance and admittance; specifically, when interacting with inertial objects in the

environment, the manipulator should be an impedance. To adapt the objective function of optimal con-

trol theory to the force field paradigm in impedance control, a neural network implementation [19] of

the PMP has been developed for robot manipulation, based on the equilibrium point hypothesis [20].

This process can qualitatively represent how the brain allocates work across a redundant set of joints

when the end-effector is tasked with reaching a specific point in space. It is described as an "internal

simulation process", calculating the movement of each joint if an external force (i.e., the goal) were to

draw the end-effector slightly towards the target. The term "passive" aligns with the equilibrium point

hypothesis, suggesting that the brain does not explicitly determine the equilibrium point but instead con-

tributes to the activation of "task-related" force fields [21]. To date, the PMP model has been applied in

various contexts, including combining postural and focal synergies during whole-body reaching tasks

[22], coordinating the movements of a humanoid robot’s upper body and a paintbrush to generate motor

commands for drawing shapes [23], and developing the Pinocchio framework for action representation

using force fields [24]. Additionally, this model has also been utilised in an agricultural robot to control

a manipulator for harvesting soft fruit [25].

Implementing this model requires the Jacobian matrix of the kinematic mapping from joint angles

to the end-effector position, which can be learnt through "babbling" movements and represented using

artificial neural networks (ANNs) [26]. This method is similar to physics-informed neural networks,

which incorporate physical laws—expressed as partial differential equations or other mathematical

models—directly into the learning process [27]. The Jacobian matrix, being a matrix of first-order par-

tial derivatives arranged in a specific way, can be solved using this physics-informed neural network

approach, i.e., by fitting the relationship between the joint angles and the end positions using the trained

neural network weights for evaluation. ANNs make the kinematic model more flexible and adaptable to

different configurations or robots with slightly varying link lengths or joint properties. This flexibility

becomes useful when deploying the system across different manipulators with minimal adjustments.

Although this method is theoretically feasible, it demands a large amount of data and considerable

computing time for training to obtain an accurate and effective Jacobian matrix. Moreover, ANNs are

prone to overfitting. Additionally, the results of each training session are specific to one kinematic
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Table 1. Table of symbols .

Symbol Description

PMP Passive Motion Paradigm

DMPs Dynamic Movement Primitives

EDAs Elementary Dynamic Actions

ANNs Artificial Neural Networks

UR (e.g., UR3) Universal Robots (e.g., the payload is 3 kilograms)

DH parameters Denavit-Hartenberg parameters

MSE Mean Squared Error

parameter of the manipulator, necessitating the retraining of new ANN parameters if the model is to

be deployed on different manipulators.

To address the concerns mentioned above, this study first investigates the influence of activation

functions and network depth on ANN training performance for these "babbling" movements. With

advancements in deep learning, PMP models based on deep neural networks have been developed

to overcome the limitations of traditional ANNs. Furthermore, this paper explores the use of trans-

fer learning [28] to improve the transferability and adaptability of the PMP model across different

manipulators. The enhanced model was validated on Universal Robots (UR arms), demonstrating its

effectiveness. Additionally, we compared our method with MoveIt [29] and Robotics Toolbox [30], two

widely used open-source motion planning frameworks in robotics. MoveIt typically employs motion

planning approaches to solve inverse kinematics, yielding highly accurate results. In contrast, the PMP

approach proposed here provides an EDAs-based method that balances reasonable accuracy with the

inherent characteristics of EDAs. The Robotics Toolbox is used to develop a non-ANN-based PMP,

compared with the ANN-based PMP. The code for PMP implementations and transfer learning-based

approximate kinematic transformations is open-sourced and available in the supplementary material.

Note: A summary of the symbols used in this paper can be found in Table 1.

2. Problem statement

2.1. Implementation of impedance control

For the impedance control of manipulators, mathematically, the actuator is assumed to generate the com-

manded torque T with the actuator angle 𝜃, and a kinematic relationship between the actuator angle and

the end-point exists such that x = L(𝜃). Designing a feedback control law that coordinates the desired

relationship between end-point force F and position x for implementation in an actuator is straightfor-

ward. To define the desired equilibrium position for the end-point without environmental forces as x0,

a general form for the desired force–position relation is:

F = K(x0 − x) (1)

According to the Jacobian matrix J and the principle of virtual work, the required relationship in actuator

coordinates is:

T = J
𝑇
K(x0 − L(𝜃)) (2)

The relation K(x0 − x) does not present any linear restrictions. The selected relation making the

end-point stiff accomplishes Cartesian end-point position control and eliminates the inverse kinematics

problem; only the forward kinematic equations for the manipulator must be computed.
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Figure 1. Basic kinematic network implements the passive motion paradigm for a simple kinematic

chain (K: Stiffness, A: Admittance). As the end-effector gets closer to the goal, the virtual force tends to

zero (equilibrium).

2.2. Implementation of the PMP

Based on the impedance control theory, as shown in Figure 1 the PMP animation for a serial kinematic

chain can be constructed to enable goal-directed actions. The equations used in this section are derived

from biomechanics and robotics that focus on passive dynamics and control theory [18, 31, 32] and the

steps are as follows.

• This approach aligns closely with the EDAs framework, as described in [10] how the robot interacts

with its environment by specifying desired dynamics, like a desired force to achieve a goal position:

Fextr = K(x𝐺 − x) (3)

where x𝐺 denotes the goal to reach, and K is the virtual stiffness of the attractive field in the

extrinsic space. K determines the shape and intensity of the force field. In the simplest case, K is

proportional to an identity matrix, corresponding to an isotropic field converging to the target along

straight flow lines. In line with the EDAs framework, this force generation serves as a primitive

action that drives the movement towards the desired target.

• Map the force field from the extrinsic space into the virtual torque field in the intrinsic space:

Tvirt = J
𝑇
Fextr (4)

This transformation aligns with the idea of EDAs, where motor commands are generated by

mapping external forces into joint torques, thus allowing for a dynamic and adaptive response in the

intrinsic space of the manipulator.

• Relax the arm configuration to the applied field:

¤𝜃 = ATvirt (5)

where A denotes the virtual admittance matrix in the intrinsic space. The modulation of this matrix

affects the relative contributions of the different joints to the overall reaching movement. This

control law helps the robot to adjust its motion and reach the position passively by controlling the

stiffness and admittance of the system.

• Map the arm movement into the extrinsic workspace:

¤x = J ¤𝜃 (6)
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This step integrates the motor primitive back into the extrinsic space, ensuring that the end-effector’s

movement is dynamically coordinated with joint space behaviour, similar to the concept of EDAs

synchronizing joint actions with overall task objectives.

• Integrate over time until equilibrium:

x(𝑡) =

∫ 𝑡

𝑡0

J ¤𝜃𝑑𝜏 (7)

This step is integration, which provides a trajectory with the equilibrium configuration x(𝑡) defining

the final position of the robot in the extrinsic space. All the computations in the above loop are

“well-posed” and the relaxation mechanism does not require any objective function to solve the

indeterminacy related to the excess redundancy problem. Time can be explicitly controlled by

inserting a time-varying gain Γ(𝑡) in the nonlinear dynamics of the relaxation process (Eqs. 3–6). To

achieve this, the technique originally proposed in [33] for content-addressable memories can be

extended in the context of goal-directed reaching for robots [34].

This can be implemented by substituting the relaxation Eq. (5) with:

¤𝜃 = Γ(𝑡)ATvirt (8)

where a possible form of the time-varying gain is given by a minimum-jerk generator with duration 𝑡:

Γ(𝑡) =
𝜉 (𝑡)

1 − 𝜉 (𝑡)
(9)

where

𝜉 (𝑡) = 6

( 𝑡

𝜏

)5

− 15
( 𝑡

𝜏

)4

+ 10
( 𝑡

𝜏

)3

(10)

In general, a time-based generator can be used as a computational tool for synchronising multiple

relaxations in composite PMP networks, essentially coordinating the relaxation of movements of two

manipulators or even the body movements of humanoid robots. This concept reflects the EDAs principle

of coordinating multiple primitive actions for complex, goal-directed behaviours.

For a simple reaching task with a manipulator, at the end of the animation process, four sets of

trajectories are obtained as a function of time:

1. Sequence of joint angles given by the positioning node in the joint space.

2. Resulting consequence, i.e., the sequence of end-effector position in end-effector space.

3. Sequence of torques at the different joints in the joint space.

4. Resulting consequence, i.e., the sequence of forces applied by the end-effector in the end-effector

space.

The time-varying gain is considered a temporal pressure that becomes stronger as the deadline

approaches and diverges afterwards. Further details of the mathematical model for terminal attractor

dynamics applied to goal-directed reaching in robots can be found in [34].

Simultaneously, a range of internal and external constraints can be integrated at runtime based on

the requirements of the task that needs to be performed, using force fields defined either in the extrinsic

space or in the intrinsic space. Importantly, the Jacobian matrix in the PMP model characterises the

kinematic properties of the manipulator. By importing the corresponding Jacobian matrix, it is possible

to switch between PMP models for different manipulators.
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Figure 2. Multi-Layer Perceptrons. The input is the angles of the six joints (assuming 6 degrees of

freedom robotic arm), whereas the output is the 3D coordinate point of the end-effector. The network is

trained to approximate the kinematic transformation and used to evaluate the Jacobian matrix. In the

hidden layers, the tanh, sigmoid or relu functions are usually used as activation functions, but in the last

layer, the linear function is used to let the coordinate values lie between positive infinity and negative

infinity.

3. ANN-based approximate kinematic transformations

To approximate kinematic transformations using artificial neural networks, data is typically obtained

through sensorimotor exploration. In the manipulator’s workspace, joint rotation readings and corre-

sponding end-effector coordinates are recorded based on forward kinematic analysis.

To illustrate a common ANN’s structure, as shown in Figure 2, PMPs are often based on this type

of neural network to approximate motion transformations, i.e., two- or three-layer networks consisting

of a number of neurons. With the increase in the number of layers and neurons to form deep neural

networks, the general mathematical derivation of the Jacobian matrix based on the training weights is

outlined below.

Consider a neural network with 𝐿 layers. Let:

• 𝜃 ∈ R𝑛 be the input vector representing the joint angles.

• 𝑥 ∈ R3 be the output vector representing the end-effector 3D coordinates.

• 𝑊 [𝑙 ] , 𝑏 [𝑙 ] be the weights and biases for layer 𝑙.

• 𝑓 [𝑙 ] be the activation function for layer 𝑙.

Forward Propagation

The forward propagation for each layer 𝑙 is given by:

ℎ[𝑙 ] = 𝑊 [𝑙 ] 𝑧 [𝑙−1] + 𝑏 [𝑙 ] , 𝑧 [𝑙 ] = 𝑓 [𝑙 ] (ℎ[𝑙 ]) for 𝑙 = 1, . . . , 𝐿 (11)

The final layer output is:

𝑥 = 𝑊 [𝐿 ] 𝑧 [𝐿−1] + 𝑏 [𝐿 ] (12)

Jacobian Calculation

The Jacobian 𝐽 ∈ R3×𝑛 of the output 𝑥 with respect to the input 𝜃 is computed using the chain rule:
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J =
𝜕𝑥

𝜕𝜃
(13)

Using the chain rule, the Jacobian can be expressed as:

J = 𝑊 [𝐿 ] · diag( 𝑓 ′[𝐿−1] (ℎ[𝐿−1])) ·𝑊 [𝐿−1] · . . . · diag( 𝑓 ′[1] (ℎ[1])) ·𝑊 [1] (14)

This derivation is based on the chain rule, which is a standard process widely used for gradient

calculations in neural networks. The detailed step-by-step calculation for each layer is omitted for brevity,

as the focus is on the overall process of computing the Jacobian to facilitate control of the end-effector

within the PMP framework.

The Jacobian plays a crucial role in evaluating how small changes in joint angles affect the end-

effector’s position, which is essential for adapting movements during training. This section lays the

foundation for training the ANN, which will be detailed in the subsequent section.

4. ANN training and analysis

While the mathematical derivation is elegant, it relies on accurately trained weights to evaluate the

Jacobian matrix. In this study, a training set of half a million data points from the UR5e robotic arm was

generated for training ANNs. During data generation, the six joint angles were randomly generated, and

the corresponding end-effector positions were calculated using forward kinematics, serving as the input

and output for training, respectively.

Theoretically, each joint angle can range between [-365, 365] degrees; however, in practical applica-

tions, the robotic arm operates within a more limited range to perform specific tasks in its workspace.

By focusing on the robotic arm’s actual working area, the complexity of the dataset can be reduced. For

this paper, the data selection ranges for each joint were set as follows: the base between [0, 180] degrees,

the shoulder and elbow between [-180, 0] degrees, and the remaining joints within [-180, 180] degrees.

To collect the necessary data, we modelled the forward kinematics of the robotic arm in MATLAB by

randomly generating joint angles and obtaining the corresponding end-effector position coordinates.

All training was performed on a laptop equipped with an i7-13650HX 2.6GHz processor.

4.1. Training with different activation functions

To analyse the effect of different activation functions on training this data, 80% of the data is used as the

training set and 20% as the test set. Mean squared error (MSE) is used as the performance metric. The

models shown in Figure 3 are used for training, and the convergence curves of the training process are

plotted in Figure 4.

The maximum number of epochs for the training algorithm is set to 2000, with a patience mechanism

implemented to stop training early if necessary. Specifically, training is halted if the loss value does not

decrease after 250 consecutive epochs (the patience counter). On average, this early stopping mechanism

is triggered after approximately 0.4 hours of training for each model. The convergence curves are shown

in Figure 4. Since the initial loss values are in the tens of thousands, the figure focuses on the 0 to 100

interval to facilitate easier comparison of the results.

As illustrated in the figure, the tanh function has certain advantages in processing this data, while the

first layer of Model 4 uses the sigmoid function to restrict the output data to the [0,1] range. Therefore,

the first layer of Model 4 can be regarded as the normalisation layer, with the middle hidden layers pro-

cessed by the tanh function until the last layer adopts a linear function to output the results. Admittedly,

the activation function can be paired in other ways, but given that Model 4 has already shown some

advantages, further research will be carried out based on Model 4.
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Figure 3. Four models with different activation functions.

Figure 4. Comparison of loss convergence curves with different activation functions.

4.2. Training with different numbers of neurons

To compare the effects of different numbers of neurons on the performance of the model, the convergence

curves of the training are plotted in Figure 5, based on Model 4, with the number of neurons set to

128, 256, and 512 for each layer, respectively. Clearly, as the number of neurons increases, there is an

improvement in the fitting accuracy of the model; however, the training time also increases. For all the

data in this paper, the average duration of training for these three neuron counts increases from 0.4 hours

to 1.1 hours, and finally to 1.9 hours. Therefore, it makes sense to choose the appropriate network depth

based on the volume and complexity of data.

5. Transfer learning for fine-tuning and kinematic model switch

While Model 4 with 512 numbers of neurons achieved a better performance, in the later stages of

training, a lot of training time was consumed but no longer resulted in significant performance gains.

Specifically, the model has a loss value of 0.1979 mm for the training set and 0.396 mm for the vali-

dation set at epoch 750. In contrast, at the termination of training, the training set has a loss value of

0.1971 mm and the validation set has a loss value of 0.3952 mm.

To address this issue, a transfer learning algorithm is proposed to fine-tune the trained model and

further improve performance. This algorithm is detailed in Algorithm 1. In this algorithm, the pre-

trained model is trained again by importing new data. Initially, all layers of the model are trainable, and
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Figure 5. Comparison of loss convergence curves with different numbers of neurons.

Figure 6. Fine-tuning results for Model 4 with 512 number of neurons.

as training progresses, each layer is gradually frozen to train the remaining layers until all layers are

frozen, at which point training stops. The training loop can be summarised as follows:

• Train the model for each epoch.

• Append the current loss and validation loss to the history.

• Check for improvements in the validation loss and update the best validation loss if improved.

• Implement a patience mechanism to freeze layers if no improvement is observed.

• Recompile the model after freezing layers.

The core of the algorithm is weights optimisation of the pre-trained ANN model by sequentially

freezing the network layers.

To verify whether the algorithm can further improve model performance, a new dataset comprising

300,000 points was generated, keeping the value intervals the same as in the previous data, to fine-tune

Model 4 with 512 neurons. The maximum patience counter for training was again set to 250, and the total

number of training epochs was set to 5000 to observe the change in loss. The convergence curves are

plotted in Figure 6. Ultimately, the model’s training loss was reduced to 0.0818 mm, and the validation

loss to 0.1973 mm. In the next section, this model will be deployed in the PMP for robotic arm control

verification.
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Algorithm 1 Transfer Learning Algorithm for ANN Model

Require: Pre-trained model; new dataset; learning rate schedule; patience; maximum epochs

Initialize: Model with all layers trainable; best validation loss to ∞; patience counter 𝑝 ← 0; layers

to freeze 𝑙 ← 0

Load new dataset and split into training and validation sets

Define learning rate schedule and compile model with Adam optimiser and MSE loss

while training not converged do

for each epoch do

Train model for one epoch

Append current loss and validation loss to history

if current validation loss improves then

Update best validation loss

Reset patience counter 𝑝 ← 0

else

Increment patience counter 𝑝 ← 𝑝 + 1

if patience counter 𝑝 ≥ patience then

Increment layers to freeze 𝑙 ← 𝑙 + 1

Freeze first 𝑙 layers

Recompile model with updated trainable layers

Reset patience counter 𝑝 ← 0

end if

end if

if early stopping conditions met then

Break

end if

end for

end while

Save final fine-tuned model and training history

Furthermore, in many application scenarios where multiple manipulators of different sizes (DH

parameters) are required to complete a series of tasks, the proposed transfer learning algorithm can

transfer the weights of an already trained model from one manipulator to another. This enables the rapid

deployment and conversion of PMP models. Additionally, this kinematic transfer learning approach pro-

vides a convenient method for self-developed manipulators to utilise the algorithm to transfer known

model weights to an unknown model. The only requirement is to have the manipulator move randomly

within its workspace to collect data.

As illustrated above, the fine-tuned model was trained with data from the UR5e arm. Therefore, the

proposed algorithm will transfer the model to the UR3 and UR10e arms separately. We used the same

method to generate UR3 and UR10e data, each comprising half a million points. Subsequently, the

training was conducted using the transfer learning algorithm and compared with the traditional direct

training method. The comparison results are shown in Figure 7.

It is evident that convergence using transfer learning is significantly faster than with traditional meth-

ods. The initial loss value is lower in the transfer learning approach because the UR5 model is introduced

first. In this experiment, from initial training to 1200th epoch, the validation loss for the UR3 converged

from 33,472 mm to 0.1822 mm, and for the UR10e from 203,960 mm to 0.8725 mm using the tra-

ditional training method. In contrast, using transfer learning, the UR3 converged from 8.8140 mm to

0.0574 mm, and the UR10e converged from 2552.98 mm to 0.2203 mm. It is important to note that this

transfer learning approach does not add additional algorithmic complexity to the training of the ANN,
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Figure 7. Comparison results between transfer learning and traditional training.

and its training efficiency remains comparable to that of the traditional method. However, the efficiency

of the external training loop depends on the settings of the parameters, such as the number of epochs

and the patience counter.

5.1. Discussion of results

In light of the above training results, it is clear that the activation function and network depth can impact

the accuracy of approximating kinematic transformations using ANNs. This study found that the tanh

function offers certain advantages in processing this type of data, and increasing the network depth can

improve convergence speed to some extent. In practical applications, the working range of the robotic

arm is usually fixed, so the training data collection can be limited to this range. Consequently, when the

data does not encompass a large space, the model can be trained with fewer layers and reduced depth to

save computational resources and decrease computational complexity when deploying the PMP. Addi-

tionally, although the final training accuracy of the ANN can achieve good accuracy, there is a possibility

of over-fitting—whereby the robotic arm is only accurate within the space corresponding to the training

data. If the workspace needs to be expanded, it is advisable to generate/collect new corresponding data

and fine-tune the model again using transfer learning.

Regarding the transfer learning results, they indicate that when transferring from a large robotic

arm to a smaller one (UR5e to UR3), the convergence speed is notably faster than when transferring

from a smaller arm to a larger one (UR5e to UR10e). This is because the workspace of the larger arm

encompasses that of the smaller arm. This observation reinforces the notion that the more complex the

workspace, the more challenging it is to fit the data accurately.
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Figure 8. The experiment of UR5e: First, the initial position is set, then three target points are randomly

assigned within the workspace, the target points are input to the PMP, and finally the PMP drive the

robot to move from the initial position to the target sequentially.

Table 2. Experimental results of movements (unit: mm).

Action Ground truth Actual position Error

1 (-141.67, 356.10, -20.63) (-141.43, 356.41, -20.42) 0.4447

2 (-20.28, 353.98, -41.76) (-19.75, 354.04, -41.49) 0.5978

3 (169.72, 374.88, -19.92) (169.66, 374.89, -19.69) 0.2379

6. Experiments and verification on the robotic arm

6.1. PMP-based movement implementation and analysis

As transfer learning can precisely approximate the kinematic transformation, the Jacobian matrix can

be accurately evaluated based on the theory outlined in Section 2.2. In this section, the fine-tuned model

based on Figure 6 is implemented in the PMP to evaluate the Jacobian matrix of the UR5e. Subsequently,

the PMP model is verified on the physical UR5e robot. As shown in Figure 8, a common applica-

tion scenario for a robotic arm involves acquiring the target position through sensors or cameras and

then transmitting the target position to the controller, which drives the robot to reach the target. In this

example, three separate targets were assigned, and their coordinate values (ground truth) and the actual

positions reached by the robot are recorded in Table 2. All coordinate points are referenced to the base

of the arm, and the error is calculated as the Euclidean distance.

Additionally, throughout the PMP-solving process, the trajectories of the end-effector and the rota-

tions of each joint angle of the robotic arm are plotted in Figure 9. As shown in the figure, the joint angles

change smoothly, demonstrating the effectiveness of the PMP in computing feasible joint configurations

for achieving the desired end-effector movement.

Figure 9 illustrates the joint angles and end-effector trajectories for three actions, each corresponding

to a distinct end-effector position in 3D space. The left subplots show the evolution of joint angles over

time, where most joints change continuously and smoothly to adapt to the required movement, while

some undergo minor adjustments to stabilize the final pose. The right subplots depict the end-effector

trajectories, which follow straight paths from the initial to the target positions. This linear movement

reflects the constant and uniform stiffness matrix K in Eq. (3) used during the experiment, ensuring

a proportional force that drives the end-effector directly towards the target. The coefficient matrix is

assumed constant throughout the analysis, meaning it does not depend on time or the system’s state. This

assumption simplifies the model and facilitates the analysis of the resulting motion. In the simplest case,
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Figure 9. Changes in the position of the end-effector and the angle of each joint during the movement

from the initial point (112.37, 334.54, 184.96) to the target.

the stiffness matrix is proportional to the identity matrix, representing uniform stiffness in all directions.

The stiffness matrix’s more complex, state- or time-dependent forms can also be considered.

Across all three actions, the final joint (wrist 3) rotates from its initial configuration to achieve a

consistent end-effector pose at the target. This final pose ensures that the gripper remains horizontal,

aided by the constraints imposed by the admittance matrixA in Eq. (5). The matrix effectively moderates

the end-effector’s compliance, allowing the system to account for external disturbances and maintain the

desired orientation.

The linear end-effector trajectories highlight the influence of constant stiffness, resulting in a direct

force vector aiming at the target, with a magnitude proportional to the distance between the initial and

target positions. Alternatively, by adjusting the stiffness matrix K, it is possible to influence the trajec-

tory of the end-effector, allowing it to follow a curved or more complex path. Such adjustments can be

beneficial for avoiding obstacles around the environment.
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Figure 10. The UR5e motion planning in the simulation: the first row shows the planning results using

MoveIt without constraints; the second row shows the PMP results with constraints..

6.2. Comparisons results with MoveIt

Further, to compare with the approach built-in MoveIt, we present Table 3, which records the results

of both the PMP and MoveIt driving the UR5e to 10 additional randomly generated points under the

same initial state. MoveIt uses a motion planning approach, which operates in the configuration space.

It generates random samples and connects feasible configurations to construct a path, ensuring that

the resulting joint angles yield minimal errors when achieving the desired end-effector position. While

MoveIt performs better accuracy than PMP, it failed to generate a valid path in one instance, as shown

in this table.

Table 3. Comparison experiment results between MoveIt and PMP(unit: mm).

Ground truth MoveIt position PMP position MoveIt error PMP error

(215.03, 98.39, 268.07) (215.11, 98.36, 268.10) (216.16, 98.62, 268.03) 0.0906 1.1539

(510.30, 80.56, -36.97) (510.30, 80.51, -36.91) (510.36, 81.23, -36.58) 0.0781 0.7776

(186.44, 23.61, 390.22) (186.48, 23.67, 390.28) (186.72, 23.76, 391.23) 0.0938 1.0588

(270.08, -158.53, 260.71) (270.06, -158.57, 260.68) (270.12, -158.31, 261.17) 0.0539 0.5115

(124.69, 84.61, -174.25) (124.63, 84.59, -174.21) (125.39, 84.86, -174.11) 0.0748 0.7564

(689.67, -101.01, 290.44) (689.64, -100.97, 290.50) (689.74, -101.09, 288.36) 0.0781 2.0827

(255.42, 540.39, 430.73) (255.49, 540.38, 430.80) (255.59, 540.69, 430.64) 0.0995 0.3564

(483.90, 272.07, 120.55) (483.87, 271.98, 120.53) (483.80, 271.91, 120.54) 0.097 0.1889

(-10.50, -142.71, 161.11) Failed (-12.79, -144.87, 159.87) 𝑁𝐴𝑁 3.3834

(47.58, 312.46, 409.86) (47.58, 312.43, 409.90) (47.57, 312.58, 410.23) 0.05 0.3891

However, in many practical applications, the motion planning of a robotic arm also needs to consider

some constraints, such as the expected pose of the robotic arm to reach the target, the magnitude of

rotation of the joints, and so on. This enables obstacle avoidance or allows the end-effector to face the

desired direction. Compared with MoveIt, the constraints could be straightforwardly imported using

the admittance matrix without additional optimisation in the PMP approach. As shown in Figure 10,

the images in the first row (a-c) are the results of MoveIt running without considering the constraints,

compared to the initial state (yellow part), the end-effector orientations are all facing up while reaching

the target. The other images (d-f) are the results of the PMP, when running these results, the fourth (wrist

joint 1) and fifth joints (wrist joint 2) were constrained to 45 and 90 degrees by setting the admittance

matrix, respectively. In other words, these results from PMP show that by introducing constraints, the

arm can reach the target with an expected pose.
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Table 4. DH parameters of the Robotics Toolbox’s UR5 .

𝜃 𝑗 𝑑 𝑗 (𝑚𝑚) 𝑎 𝑗 (𝑚𝑚) 𝛼 𝑗

𝑞1 89.46 0 90
𝑜

𝑞2 0 −425 0
𝑜

𝑞3 0 −392.2 0
𝑜

𝑞4 109.1 0 90
𝑜

𝑞5 94.65 0 −90𝑜

𝑞6 82.3 0 0
𝑜

Additionally, in this experiment, the same constraints were added to MoveIt, i.e., the two wrist joints

were also set to 45 and 90 degrees, respectively, and a tolerance of ±15 degrees was allowed, but the

algorithm reported that the planner could not find any valid states to reach the goal. While MoveIt excels

at collision-free path planning, the PMP approach offers a simpler, more adaptive solution, particularly

suited for applications prioritising smooth and compliant interaction adaptability.

6.3. Comparisons results with non-ANN based PMP

Furthermore, the proposed PMP method relies on an ANN implementation, as demonstrated by its

ability to derive the Jacobian matrix and compute forward kinematics using trained weights. First, the

Jacobian matrix serves as the critical link between the end-effector’s motion in extrinsic space and the

joint velocities in intrinsic space. Its primary role in the PMP calculation loop is translating the positional

displacement or force field into joint velocity or torque updates, driving the robot toward the target

position. Second, the calculation loop also requires forward kinematics to determine the end-effector’s

current position, which provides feedback for comparison with the intermediate target position. This

intermediate target is generated as part of an integration process to ensure smooth progression toward

the final goal (Eq. 7). Notably, the ANN-trained weights can substitute for both forward kinematics

equations and Jacobian matrix derivation.

Admittedly, the forward kinematics and Jacobian matrix can also be solved analytically using the

robot’s parameters. Therefore, in this section, the solution approach provided by the Robotics Toolbox

will be used as an alternative to the ANN-based implementation for computing the Jacobian matrix and

forward kinematics. This will enable a non-ANN-based PMP to be achieved and compared directly with

the ANN-based PMP.

As the Robotics Toolbox has a built-in model of UR5, it will be used as the benchmark for comparison.

The DH parameter of the UR5 in the Toolbox is shown in Table 4. Therefore, we transferred the trained

UR5e model to the UR5 model for the ANN-based PMP, which used the same process described in

Section 5. The other parts of the two algorithms remain the same, the differences are the derivation of

the Jacobian matrix and the forward kinematics solution.

The ANN model was retrained on data with the same joint angle ranges described in Section 4,

establishing the working space for the trained ANN-based PMP. To evaluate performance, we randomly

generated points within this working space and computed the results using both PMP algorithms. Each

algorithm provided the final joint angles, which were then verified through forward kinematics using

the DH parameters outlined in Table 4. The resulting positions and corresponding errors are recorded

in Table 5.

Notably, the PMP calculation loop requires comparing the current end-effector position with the

target position to update the virtual force field. To demonstrate if the two algorithms are sensitive to the

initial state, we changed the initial state of the UR5, i.e., the end-effector initial point was changed from

(91.23, 315.27, 118.60) to (−320.56, 226.71, 879.03), and reran the experiments of Table 5. The new

results are shown in Table 6.
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Table 5. Comparison results between non-ANN-based PMP and ANN-based PMP in the defined

working space(the initial position is (91.23, 315.27, 118.60), unit: mm)the initial state .

Ground truth ANN-based position non-ANN-based position ANN-based error non-ANN-based error

(-629.83, 224.86, 76.64) (-629.47, 224.74, 74.54) (-559.82, 201.40, 102.46) 2.13 78.22

(-393.08, 344.01, 290.75) (-393.07, 344.37, 290.87) (-368.57, 330.48, 292.30) 0.38 28.04

(441.41, 321.84, -129.83) (441.50, 322.14, -129.99) (361.88, 289.10, -52.54) 0.35 115.63

(213.77, 537.09, 358.69) (214.26, 537.24, 358.70) (192.63, 497.14, 353.98) 0.51 45.44

(268.24, 227.56, 227.52) (268.45, 227.53, 227.75) (245.07, 237.86, 226.46) 0.31 25.38

Table 6. Comparison results between non-ANN-based PMP and ANN-based PMP in the defined

working space(the initial position is (−320.56, 226.71, 879.03), unit: mm).

Ground truth ANN-based position non-ANN-based position ANN-based error non-ANN-based error

(-629.83, 224.86, 76.64) (-629.81, 225.07, 76.66) (-646.33, 235.15, 73.25) 0.21 19.74

(-393.08, 344.01, 290.75) (-393.12, 344.15, 290.51) (-436.04, 393.77, 295.19) 0.28 65.89

(441.41, 321.84, -129.83) (441.62, 321.89, -129.96) (164.43, 148.10, 94.89) 0.25 396.74

(213.77, 537.09, 358.69) (214.25, 537.21, 358.64) (206.48, 533.43, 359.18) 0.50 8.17

(268.24, 227.56, 227.52) (268.52, 227.80, 227.38) (234.43, 146.09, 424.41) 0.39 215.75

Compared with the two tables, the results showed that the ANN-based PMP is not sensitive to changes

in the initial state. There are only minor differences in the computational results, and the overall per-

formance of the ANN-based PMP is stable for different initial states. However, the non-ANN-based

PMP illustrated significant sensitivity to the change in the initial state. This is probably because the

non-ANN Jacobian computation suffers numerical instabilities or inaccuracies near singularities or at

configurations requiring precise joint coordination. These discrepancies in the non-ANN Jacobian calcu-

lations can propagate through the PMP loop, resulting in cumulative errors. Especially, large differences

between the initial and target positions may lead to further accumulating errors in the force field com-

putation. Additionally, when the initial state changes, the intermediate target points of the integration

trajectory also change, thus resulting in different solution accuracies.

In contrast, the ANN-based PMP is a data-driven model, and its performance depends on the dis-

tribution of training data within the working space. When the training data cover the full range of the

working space, the model’s performance is robust. On the other hand, if training data does not fully

cover the working space, the result should be unreliable. To demonstrate this, we reset the two PMP

algorithms to the previous initial state (91.23, 315.27, 118.60) under the same joint angles, and set the

targets as outside points of the training working space, the results are shown in Table 7.

Table 7. Comparison results between non-ANN-based PMP and ANN-based PMP outside the defined

working space(the initial position is (91.23, 315.27, 118.60), unit: mm).

Ground truth ANN-based position non-ANN-based position ANN-based error non-ANN-based error

(-260.74, -756.31, 300.22) (-331.05, -400.99, 29.30) (-218.45, -627.38, 289.02) 452.32 136.15

(-353.51, -477.59, 305.81) (-313.62, -257.91, 162.98) (-297.59, -416.05, 300.94) 265.05 83.29

(-331.36, 477.16, -594.75) (-379.90, 474.84, -594.18) (-279.48, 404.09, -437.35) 48.60 181.12

(-391.81, 434.79, -349.40) (-566.10, 512.94, -94.20) (-342.64, 381.96, -252.38) 318.77 120.92

(-535.85, -445.09, 139.89) (-315.24, -416.33, 18.40) (-418.64, -358.55, 171.08) 253.49 149.00

From the comparison results, it is clear that the ANN-based PMP significantly outperforms the non-

ANN-based PMP within the working space. Conversely, outside the working space, the non-ANN-based

PMP may be better, as it is independent of training data, relying on an idealised kinematic model. How-

ever, this reliance on a perfect model often fails to capture the physical robot’s behaviour accurately,

leading to less precise joint angle outputs for certain positions. The instability or inaccuracy in the com-

putation of the Jacobian matrix accumulates the error in the algorithm’s loop that struggles to ensure

good accuracy.
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Moreover, in most goal-directed actions, the arm must be coupled with an appropriate end-effector or

tool, which is typically not incorporated into the arm’s forward kinematics. Tools might include a sim-

ple gripper, cutter, sprayer, or custom-designed and 3D-printed extensions. Therefore, generating data

directly through robot experience to map motor commands and joint angles to their consequences (i.e.,

end-effector/tool positions) is necessary and advantageous. Such data can be generated kinesthetically

or through imitation, eliminating the need for random exploration.

In the ANN-based PMP, the trained ANN effectively represents an internal model of the robot’s

body, which is animated by the goal of synthesising the action. This enables a more robust and adaptive

performance, particularly when the model is trained with comprehensive and representative data.

6.4. Implementation on the redundant manipulator

Finally, another ability of the PMP is that the computations are inherently well-posed, and its relaxation

mechanism naturally resolves redundancy without requiring a cost function. This design ensures that

indeterminacies related to excess degrees of freedom are handled implicitly through iterative updates of

joint velocities guided by the force field and Jacobian matrix, allowing the system to converge to feasible

solutions without explicit optimisation.

Therefore, we used the same method to build ANN-based PMP and non-ANN-based PMP models

for a 7-degree-freedom robot, Sawyer Robot, and the comparison results are recorded in Table 8. In this

experiment, the trained ANN model of Sawyer Robot has an error of 1.67 mm on the validation set, the

non-ANN model still uses the Robotics Toolbox to execute the Jacobian matrix and forward kinematic

calculation. The experimental results were still conducted in the training workspace and the results once

again validated that the ANN-based PMP has better accuracy in this scenario.

Table 8. Comparison results on the Sawyer Robot (the initial position is (−207.5, 455.3, 619.25), unit:

mm).

Ground truth ANN-based position non-ANN-based position ANN-based error non-ANN-based error

(151.16, -429.56, 849.85) (150.74, -428.60, 851.79) (141.80, -376.99, 806.70) 2.20 69.65

(-515.91, 190.37, 65.24) (-515.35, 187.41, 61.89) (-477.86, 182.65, 69.50) 4.50 39.06

(451.22, 151.22, 158.63) (450.06, 153.99, 157.61) (499.89, 194.89, 141.07) 3.17 67.71

(-299.50, -159.62, 284.91) (-298.95, -160.15, 283.84) (-287.01, -142.68, 276.42) 1.31 22.69

(386.98, 187.81, 294.30) (386.33, 189.87, 293.38) (442.05, 250.03, 294.41) 2.35 83.09

7. Conclusion

This paper implemented the PMP via deep neural networks and verified it on the UR series robots.

Firstly, the kinematic model based on the PMP is theoretically "well-posed", eliminating the need to

refer to and solve the inverse kinematics or additional optimisation, and utilising impedance control and

the equilibrium point hypothesis as alternatives to optimal control. Furthermore, the Jacobian matrix,

as the core of the PMP, serves as the transformational "bridge" between the end-effector space and the

joint space. Unlike traditional PMP models based on simple ANNs, this paper discusses the process

of deriving the Jacobian matrix using deep neural networks, and the effects of the activation function

and network depth are analysed. Subsequently, a transfer learning algorithm is proposed, which further

optimises the pre-trained model and effectively facilitates the conversion of Jacobian matrix deriva-

tion models between different manipulators. Finally, the detailed experimental and comparison results

demonstrated the feasibility, adaptability, and generalisability of the proposed method.

It is anticipated that future work will take advantage of new artificial neural network architectures for

the implementation of PMPs, such as Long Short-Term Memory [35] and transformer networks [36],

which may offer new insights into the derivation of Jacobian matrices based on artificial neural networks.
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Further, the transfer learning method can be optimised to improve the re-training ability. Additionally,

the current PMP is a position-driven model, which can be further developed into a force-driven model.

This would enable the manipulator to reach the target and exert force on the target. Overall, PMP has

considerable promise in both theory and application, and our future work will build upon this study.

Supplementary material. The code of ANN-based approximate kinematic transformations and PMP implementation are

available at https://github.com/Fuli-Wang/Passive-motion-paradigm-implementation-via-ANN.git.
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