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Let k be an algebraically closed field of characteristic p > 0, 
let G = GLn be the general linear group over k, let P be 
a parabolic subgroup of G, and let uP be the Lie algebra 
of its unipotent radical. We show that the Kumar-Lauritzen-
Thomsen splitting of the cotangent bundle G ×P uP of G/P
has top degree (p − 1) dim(G/P ). The component of that 
degree is therefore given by the (p− 1)-th power of a function 
f . We give a formula for f and deduce that it vanishes 
on the exceptional locus of the resolution G ×P uP → O
where O is the closure of the Richardson orbit of P . As a 
consequence we obtain that the higher cohomology groups of 
a line bundle on G ×P uP associated to a dominant weight 
are zero. The splitting of G×P uP given by fp−1 can be seen 
as a generalisation of the Mehta-Van der Kallen splitting of 
G×B u.
© 2025 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

Introduction

Let G be a reductive group over an algebraically closed field k of positive characteristic 
p. For a parabolic P containing the positive Borel and P -module M , we denote by 
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Hi(G/P,M) the i-th cohomology group of the sheaf LG/P (M) on G/P associated to M . 
It is an open problem whether we have for all parabolic subgroups P and all dominant 
characters λ of P that

Hi(G/P, S(u∗P ) ⊗ k−λ) = 0 for all i > 0 , (∗)

where the most important case is λ = 0, see e.g. [2, Introduction to Ch 5]. In characteristic 
0 this is an easy consequence of the Grauert-Riemenschneider Theorem, see [4, Thm 2.2]. 
In characteristic p (*) is known for P = B, for arbitrary P and “P -regular” dominant λ, 
see [12], and for P corresponding to sets of pairwise orthogonal short simple roots and 
λ = 0, see [16].1

It is easy to write a formula for the Euler character

∑
i≥0 

(−1)ichHi(G/P, S(u∗P ) ⊗ k−λ) ,

see [10, Sect 8.14-8.16] and [3, Prop 2.1], so if (*) holds we get a formula for 
chH0(G/P, S(u∗) ⊗ k−λ).

For computing cohomology of Frobenius kernels of G, (*), or a special case of it, is 
often used, see [9, II.12.12-15], [12, Thm 8], [1, Sect 7] and [13, Sect 7].

When LG/P (λ) = LG/P (k−λ) is ample, i.e. λ “P -regular” dominant, one gets (*) from 
the fact that G×P uP is Frobenius split. One can also use Frobenius splittings to prove 
(*) for λ = 0 via a characteristic p-version of the Grauert-Riemenschneider Theorem 
[14, Thm 1.2], since the canonical bundle of G×P uP is trivial. But then the map from 
G ×P uP to the Richardson orbit closure has to be birational and the splitting has to 
be a (p− 1)-th power of a section σ of the anti-canonical bundle which vanishes on the 
exceptional locus. This is the approach we will follow.

When I asked Thomsen about the case G = GLn, he told me he expected that the 
pushforward to G×P uP of the splitting of G×B uP induced by the “MVdK-splitting” 
of G ×B u from [15] is the homogeneous component of degree (p− 1) dim(G/P ) of the 
“KLT-splitting”, see Section 1.2, from [12]. Although we can not prove this conjecture, we 
can show that the above component is in fact the top degree component and therefore a 
(p−1)-th power. From this we can then deduce that this homogeneous splitting vanishes 
on the exceptional locus of the resolution ϕ : [g,X] �→ gXg−1 : G×P uP → O, where O
is the closure of the Richardson orbit corresponding to P , see Theorem 1 in Section 2. 
Finally, we then deduce that (*) holds in type A, see Theorem 2. In fact we can formulate 
this as a result for arbitrary reductive groups.

The main idea of the proof is as follows. The “KLT-splitting” from [12] is the (p−1)-th 
power of the pullback along ϕ of the function which maps an n× n matrix X to

1 The case P = B and λ = 0 is [9, Lem II.12.12].
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n−1∏
i=1 

det
(
(In + X)≤i,≤i

)
, (1)

where Y≤i,≤i denotes the submatrix of Y given by the first i rows and columns, see [2, 
Example 5.1.15].2 Unlike in the case P = B, the degree of the i-th factor may be less 
than i. In Lemma’s 1(ii) and 3 we determine the degree of the i-th factor and from that 
it follows that the product (1) has degree dim(G/P ).

1. Preliminaries

1.1. Notation

Let k be an algebraically closed field of characteristic p > 0 and let G be a reductive 
group over k. We fix a Borel subgroup B ≤ G and maximal torus T ≤ B. We denote 
by R the set of roots of T in the Lie algebra g = Lie(G) of G, and we denote the 
unipotent radical of B by U . We call the roots of T in u = Lie(U) positive and we 
denote the corresponding set of simple roots by S. For a subset I of S we denote the 
root system spanned by I by RI . Furthermore, we denote the corresponding parabolic 
subgroup containing B and its Levi subgroup containing T by PI and LI . Denote the 
character group of an algebraic group H by X(H). For I ⊆ S we identify X(PI) and 
X(LI) with {λ ∈ X(T ) | 〈λ, α∨〉 = 0 for all α ∈ I}.

For P a parabolic of G and M a P -module we write L(M) for the G-linearised sheaf 
on G/P associated to M . For λ ∈ X(P ) ≤ X(T ) we put L(λ) = L(k−λ), it is the sheaf 
of sections of the line bundle G×P k−λ on G/P . We use the same symbol L(λ) to denote 
the sheaf of sections of the pullback of this line bundle to G×P V for any P -variety V . 
We also write Hi(G/P,M) for

Hi(G/P,L(M)) � RiindG
P (M) ,

see [9, I.5.12]. We have that

Hi(G×P uP ,L(λ)) = Hi(G/P, k[uP ] ⊗ k−λ) ,

see [2, Lem 5.2.2].
If p = char k is good for G, then we have g/p � u∗P as P -modules and G×P uP is the 

cotangent bundle T∨(G/P ) of G/P , see [2, 5.1.8-11].

1.2. Frobenius splittings

By [2, Lem 5.1.1] the canonical bundle of G×P uP is trivial, so we can choose a nowhere 
zero global section: a volume form. It is easy to see that such a section is unique up to a 

2 Apart from the degree computation, the arguments there work for any parabolic.
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scalar multiple, see [2, 5.1.2]. This means that we can think of Frobenius splittings (up 
to a scalar multiple) of G×P uP as certain regular functions on G×P uP .

In [12, Thm 1] it was proved that, when p is good for G, the cotangent bundle 
T∨(G/P ) of G/P is Frobenius split, see also [2, Thm 5.1.3]. We will refer to the B-
canonical splitting ψP (f− ⊗ f+) as the “KLT-splitting” of T∨(G/P ), where ψP , f−, f+
are as defined in [2, Ch 5]. Actually this is only a splitting up to a scalar multiple, but in 
the case G = GLn we assume that the chosen volume form on T∨(G/P ) is such that the 
pullback along ϕ of the function given by (1), ϕ defined as in the introduction, defines a 
splitting. That formula is all we need to know about the KLT-splitting in this paper.

The standard grading of k[uP ] = S(u∗P ) gives a grading on k[G ×P uP ], and in [2, 
5.1.14] it is explained that the homogeneous component of degree (p− 1) dim(G/P ) of a 
splitting σ of G ×P uP is again a splitting of G×P uP . This component is B-canonical 
if σ is B-canonical.

1.3. A result on cohomology vanishing

The following result may be well-known, but for lack of reference we give a proof.

Proposition 1. Assume p is good for G, let P be a parabolic of G, let λ ∈ X(P ) be 
dominant, let Q be the parabolic of G containing P such that λ ∈ X(Q) and LG/Q(λ) is 
ample, and let L be the Levi subgroup of Q containing T . If Hi(L/L ∩ P, S(l/l ∩ p)) = 0
for all i > 0, then Hi(G/P, S(g/p) ⊗ k−λ) for all i > 0.

Proof. By [12, Cor 3 to Thm 4] or [2, Thm 5.3] G ×P uP is Frobenius split, so by [2, 
Lemma 1.2.7(i)] it is enough to show the vanishing for mλ, m  0 (in fact we only need 
it for pmλ and some m ≥ 0).

Some of the arguments below are adaptations of arguments from the proof of [2, 
Lem 5.2.7].

Each Sj(g/p) has a filtration with sections Sr(q/p)⊗Ss(g/q), r+s = j, so it is enough 
to show that RiindG

P (S(q/p)⊗ S(g/q)⊗ k−λ) = 0 for all i > 0. We have P = (L∩ P )UQ

and q/p � l/l ∩ p. Note that UQ acts trivially on q/p. Combining [9, I.6.11] and our 
assumption with a standard spectral sequence argument, we have

RiindG
P (S(q/p) ⊗ S(g/q) ⊗ k−λ) � RiindG

Q(indQ
PS(q/p) ⊗ S(g/q) ⊗ k−λ) . (2)

We have p = l∩ p⊕uQ, uP = uL∩P ⊕uQ, (g/p)∗ � uP , (g/q)∗ � uQ, and (q/p)∗ � uL∩P . 
By the arguments of [10, p94] there exists an affine Q-variety V0 such that k[V0] �
k[Q ×P uL∩P ] = indQ

PS(q/p), Q-equivariantly (UQ acting trivially). Put V = V0 × uQ. 
Then k[V ] = indQ

PS(q/p) ⊗ S(g/q). Now the morphism G×Q V → G/Q is affine, so by 
[7, Ex III.8.2] the RHS of (2) is isomorphic to

Hi(G×Q V,L(λ)) . (3)
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By [6, 5.1.12] L(λ) is ample on G×Q V , since G×Q V → G/Q is affine. The morphism 
V0 → Q · uL∩P is finite, see [10, p94], so the same is true for the morphisms V →
Q · uL∩P × u and G ×Q V → G ×Q (Q · uL∩P × uQ). So composing the latter with the 
projective morphism G×Q (Q · uL∩P ×uQ) → g, given by the embedding of Q · uL∩P ×uQ

in g, we obtain a proper morphism G×Q V → g. Now [7, III.5.3] tells us that (3) is 0 if 
we replace λ by mλ, m  0. �
2. The main results

Throughout this section, except in Theorem 2 and its proof, G = GLn = GL(kn)
and T is the subgroup of diagonal matrices in G. As simple roots we choose the usual 
characters εi − εi+1, 1 ≤ i ≤ n − 1, where we used additive notation for characters, 
and εi is the i-th coordinate function on T . Then B consists of the upper triangular 
matrices in G. As is well-known, the conjugacy classes of parabolic subgroups of G are 
labelled by the compositions of n, see e.g. [8, 3.2]. By ν we denote a composition of 
n and P = Pν ⊇ B is the standard parabolic whose block sizes are given in order by 
ν. If Aν is the set {ν1, ν1 + ν2, . . . ,

∑s−1
j=1 νj}, s the length of ν, then Pν = PIν , the 

parabolic associated to the set of simple roots Iν = {εi − εi+1 | i ∈ {1, . . . , n− 1} \Aν}. 
We denote by λ the transposed partition of the weakly descending sorted version of ν. 
It is well-known that the Richardson orbit of Pν is Oλ, the nilpotent orbit whose Jordan 
block sizes are given by λ, see e.g. [8, Thm 3.3(a)].

It is well-known that the map ϕ : [g,X] �→ gXg−1 : G ×P uP → Oλ is birational. 
Indeed the group centraliser GX of any X ∈ g is the set of invertible elements in the 
Lie algebra centraliser gX , so is connected. Now see [10, 4.9 and 8.8 Remark]. It is also 
well-known that Oλ is normal, see e.g. [5] or [15, Sect 4.7].

For i ∈ {1, . . . , n−1} we denote by dλ,i the number of nonzero positions on the (n−i)-
th upper codiagonal of uP . So for ν = (2, 1, 2) we have dλ,1, dλ,2, dλ,3, dλ,4 = 1, 2, 3, 2, 
see the figure of up below.

⎡
⎣

0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 0
0 0 0 0 0

⎤
⎦

Since each diagonal j × j block of P takes away j − i nonzero positions from the i-th 
upper codiagonal, we have, if j occurs mj times in ν,

dλ,n−i = n− i−
∑
j>i 

(j − i)mj = n− i−
∑
j>i 

λj = −
n ∑

j=i+1
(λj − 1) =

i ∑
j=1 

(λj − 1) .

Therefore, dλ,i = i−
∑

j>n−i λj =
∑n−i

j=1(λj − 1). So indeed the dλ,i only depend on λ, 
moreover, they determine λ.
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For a square matrix X we denote by X≤i,≤i the submatrix of X given by the first 
i rows and columns. For an i × i matrix Y we denote by sj(Y ) the trace of the j-th 
exterior power of Y , i.e. the sum of the diagonal j × j minors of Y . As is well-known, 
det(aIi − Y ) = ai +

∑i
j=1(−1)jai−jsj(Y ), where Ii is the i × i identity matrix. So 

the largest j with sj(Y ) �= 0 is the number of nonzero eigenvalues of Y , counted with 
(algebraic) multiplicity. This number also equals the rank of Y l for l sufficiently big. We 
will call it the stable rank of Y .

Lemma 1. Let X ∈ Oλ.

(i) Any i-dimensional subspace W of V = kn contains an X-invariant subspace U of 
dimension ≥

∑
j>n−i λj.

(ii) X≤i,≤i has stable rank ≤ dλ,i.

Proof. (i). We show this by induction on n. It is trivial when i ≤ n − r, r the length 
of λ, in particular when n = 0. Assume i > n − r. Then W has nonzero intersection 
with Ker(X) for dimension reasons. Pick v nonzero in that intersection. First note that 
the transformation X induced on V/kv by X has partition μ which is obtained from λ
by subtracting 1 from one part of λ and then sorting the result in weakly descending 
order. Indeed if we decompose V as a direct sum of X-Jordan blocks and we pick a 
X-Jordan block of minimal size with the property that v has nonzero component in it, 
then we can replace that X-Jordan block by an X-Jordan block of the same size which 
contains v. Now we apply the induction hypothesis to V/kv and W/kv, noting that 
(n− 1)− (i− 1) = n− i, to obtain an X-invariant subspace U/kv of W/kv of dimension 
≥

∑
j>n−i μj ≥

∑
j>n−i λj − 1. Now U is the X-invariant subspace we want.

(ii). The linear map (X≤i,≤i)i coincides with Xi on any X-invariant subspace U of 
ki ≤ kn and therefore kills it. Choosing U as in (i), it induces a linear map ki/U → ki

and therefore has rank ≤ i−
∑

j>n−i λj = dλ,i. �
Lemma 3 below follows from Lemma 1(ii) and the existence of the KLT-splitting, but 

we prefer to give a direct proof.

Lemma 2. For any h ∈ {1, . . . , i− 1} there exists a regular nilpotent i× i matrix X such 
that X≤h,≤h is invertible.

Proof. Let (e1, . . . , ei) be the standard basis of ki. Then the regular nilpotent matrix X
given by X(ej) = ej−1 for 2 < j ≤ i, X(e2) = e1 + eh+1 and X(e1 + eh+1) = 0 has the 
desired property. �
Remark 2.1. Of course it follows from Lemma 2 that there exists a regular i× i matrix 
X such that X≤h,≤h is invertible for all h ∈ {1, . . . , i− 1}, but we won’t need this.

Lemma 3. There exists X ∈ Oλ such that X≤i,≤i has stable rank dλ,i.
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Proof. First choose any Y ∈ g nilpotent with partition λ and decompose kn into Y -
Jordan blocks with sizes λ1, λ2, . . . , λr, where r is the length of λ. It suffices to find an 
ordered basis B of kn such that the upper left i× i-block Z of the matrix of Y relative 
to this basis has stable rank dλ,i.

Determine s ≤ r maximal with 
∑s

j=1(λj − 1) ≤ i and put h = i −
∑s

j=1(λj − 1). 
Using Lemma 2 choose for each j ≤ s a basis of the j-th block such that the upper left 
(λj − 1) × (λj − 1) block of the matrix of Y relative to this basis is invertible, if s < r

and h > 0 choose a basis of the (s + 1)-th block such that the upper left h× h block of 
the matrix of Y relative to this basis is invertible, and for the remaining blocks choose 
any basis.

We now form B as follows. First consider the case i ≤ n−r. For each j ≤ s we pick the 
first λj − 1 basis vectors from the j-th block, if s < r we append the first h basis vectors 
from the (s+1)-th block, and finally we append all remaining n− i basis vectors. Now Z
is in block diagonal form with invertible diagonal block of sizes λ1−1, . . . , λs−1, h, where 
h has to be omitted if h = 0. Now consider the case i > n− r. For each j ≤ n− i we pick 
the first λj − 1 basis vectors from the j-th block, then we append the basis vectors from 
the next r− (n− i) blocks, and finally we append all remaining n− i basis vectors. Now 
Z is in block diagonal form with diagonal block sizes λ1 −1, . . . , λn−i−1, λn−i+1, . . . , λr

where the first n − i blocks are invertible, and the others nilpotent. In both cases we 
obtain that Z has stable rank dλ,i (when i ≤ n− r we have dλ,i = i). �

Below we will denote a function X �→ E(X) on a closed subvariety of g just by the 
expression E(X).

Theorem 1. The degree (p − 1) dim(G/P ) component of the KLT splitting of G ×P uP

is the top degree component and equals the (p − 1)-th power of the pullback of ∏n−1
i=1 sdλ,i

(X≤i,≤i) ∈ k[Oλ] along the resolution ϕ : G ×P uP → Oλ. This pullback 
vanishes on the exceptional locus of ϕ.

Proof. The KLT splitting is the pullback along ϕ of the function given by (1). Fur-
thermore, we have det(Ii + Y ) =

∑i
j=0 sj(Y ) for any i × i matrix Y , and, of course, 

sj(X≤i,≤i) �= 0 on Oλ ⇐⇒ sj(X≤i,≤i) �= 0 on Oλ. So by Lemma’s 1(ii) and 3 the top 
degree component of the i-th factor in (1) is sdλ,i

(X≤i,≤i). So the KLT-splitting has top 
degree p − 1 times 

∑n−1
i=1 dλ,i = dim uP = dim(G/P ), and the top degree component is 

the (p− 1)-th power of the pullback along ϕ of the function given by the stated formula.
To prove the second assertion, put fλ,i(X) = sdλ,i

(X≤i,≤i) and fλ =
∏n−1

i=1 fλ,i. 
The exceptional locus is ϕ−1(Oλ \ Oλ), so it suffices to show that fλ vanishes on any 
Oμ ⊆ Oλ \ Oλ. We have dim(uQ) = 1

2 dim(Oμ) < 1
2 dim(Oλ) = dim(uP ), where Q is a 

standard parabolic whose Richardson orbit is Oμ, see [10, 4.9]. So for some i we must 
have dμ,i < dλ,i which means that fλ,i and therefore fλ vanishes on Oμ. �
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Theorem 2. Let G be any reductive group for which p is good, let λ ∈ X(T ) be dominant, 
put I = {α ∈ S | 〈λ, α∨〉 = 0}. Then Hi(T∨(G/PJ),L(λ)) = 0 for all J ⊆ I such that 
RJ contains all irreducible components of RI not of type A.

Proof. By Proposition 1 we may assume that λ = 0 and that all irreducible components 
of R have type A. Since we are dealing with cotangent bundles we may assume that G
is semisimple and simply connected. By the Künneth formula [11, Prop 9.2.4] we may 
then assume G = SLn and finally we may assume G = GLn. Now the result follows from 
Theorem 1 and [14, Thm 1.2], bearing in mind that the canonical bundle of T∨(G/P )
is trivial, see [2, Lem 5.1.1], and that Riϕ∗(OT∨(G/P )) is the sheaf associated with the 
cohomology group Hi(T∨(G/P ),OT∨(G/P )), since ϕ is affine. �

We remind the reader that a proper birational morphism ψ : X → Y is called a 
rational resolution if ψ∗OX = OY and the higher direct images of OX and ωX are 0, see 
[2, Def 3.4.1]. We assume again that G = GLn.

Corollary. The resolution ϕ : G×P uP → Oλ is rational.

Proof. This follows from a standard argument, see e.g. [9, Lem 14.5], and Theorem 2. �
Remarks 2.2. 1. If P = B, then d(n),i = i for all i, so the splitting from Theorem 1 equals 
the (p − 1)-th power of the pullback of 

∏n−1
i=1 det(X≤i,≤i) along ϕ : G ×B u → N . This 

is the MVdK splitting of G×B u, see [15].
2. Thomsen mentioned to me another proof of Lemma 1(ii): One can easily deduce 
it from the following result which can be proved by induction on n. For X ∈ uP let 
yij = δij + xij be the (i, j)-th entry of In + X. Then any monomial yi1j1yi2j2 · · · yisjs
with the il all distinct and the jl all distinct has degree ≤ dλ,s in the xij .
3. In [15, Sect 4.9] there is also a proof of the above corollary for certain parabolics, 
but that relies on the existence of a principal effective divisor D which is a subdivisor 
of (σ) (σp−1 is the MVdK splitting) and contains the exceptional locus. This is claimed 
in [15, Prop 4.5], but the proof of that result is incomplete and it seems rather unlikely 
that such a divisor exists for the set of parabolics in question. The proof of the above 
corollary sketched in [2, Exercise 5.3.E(b)] is also problematic: after pushing the splitting 
of Exercise 5.1.E.6 forward from G×BuP to G×P uP it’s no longer clear that the splitting 
is a (p− 1)-th power, so one can’t apply [2, Thm 1.3.14].

Conjecture (Thomsen). The pushforward to G×P uP of the splitting of G×B uP induced 
by the MVdK splitting is the top degree component of the KLT splitting.
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