Contents lists available at ScienceDirect

Journal of Algebra

journal homepage: www.elsevier.com/locate/jalgebra

Research Paper

A Frobenius splitting and cohomology vanishing for the cotangent bundles of the flag varieties of GL_n

ALGEBRA

Rudolf Tange

School of Mathematics, University of Leeds, LS2 9JT, Leeds, UK

ARTICLE INFO

Article history: Received 18 March 2025 Available online 23 May 2025 Communicated by Prakash Belkale

MSC: 14F17 14M15 14L30

Keywords: Cohomology Cotangent bundle Flag variety Frobenius splitting

ABSTRACT

Let k be an algebraically closed field of characteristic p > 0, let $G = \operatorname{GL}_n$ be the general linear group over k, let P be a parabolic subgroup of G, and let \mathfrak{u}_P be the Lie algebra of its unipotent radical. We show that the Kumar-Lauritzen-Thomsen splitting of the cotangent bundle $G \times^P \mathfrak{u}_P$ of G/Phas top degree $(p-1)\dim(G/P)$. The component of that degree is therefore given by the (p-1)-th power of a function f. We give a formula for f and deduce that it vanishes on the exceptional locus of the resolution $G \times^P \mathfrak{u}_P \to \overline{\mathcal{O}}$ where $\overline{\mathcal{O}}$ is the closure of the Richardson orbit of P. As a consequence we obtain that the higher cohomology groups of a line bundle on $G \times^P \mathfrak{u}_P$ associated to a dominant weight are zero. The splitting of $G \times^P \mathfrak{u}_P$ given by f^{p-1} can be seen as a generalisation of the Mehta-Van der Kallen splitting of $G \times^{B} \mathfrak{u}.$ © 2025 The Author(s). Published by Elsevier Inc. This is an

open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

Introduction

Let G be a reductive group over an algebraically closed field k of positive characteristic p. For a parabolic P containing the positive Borel and P-module M, we denote by

https://doi.org/10.1016/j.jalgebra.2025.05.003

E-mail address: R.H.Tange@leeds.ac.uk.

⁰⁰²¹⁻⁸⁶⁹³ \odot 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

 $H^i(G/P, M)$ the *i*-th cohomology group of the sheaf $\mathcal{L}_{G/P}(M)$ on G/P associated to M. It is an open problem whether we have for all parabolic subgroups P and all dominant characters λ of P that

$$H^{i}(G/P, S(\mathfrak{u}_{P}^{*}) \otimes k_{-\lambda}) = 0 \quad \text{for all } i > 0, \qquad (*)$$

where the most important case is $\lambda = 0$, see e.g. [2, Introduction to Ch 5]. In characteristic 0 this is an easy consequence of the Grauert-Riemenschneider Theorem, see [4, Thm 2.2]. In characteristic p (*) is known for P = B, for arbitrary P and "P-regular" dominant λ , see [12], and for P corresponding to sets of pairwise orthogonal short simple roots and $\lambda = 0$, see [16].¹

It is easy to write a formula for the Euler character

$$\sum_{i\geq 0} (-1)^i \mathrm{ch}\, H^i(G/P, S(\mathfrak{u}_P^*)\otimes k_{-\lambda})\,,$$

see [10, Sect 8.14-8.16] and [3, Prop 2.1], so if (*) holds we get a formula for $\operatorname{ch} H^0(G/P, S(\mathfrak{u}^*) \otimes k_{-\lambda})$.

For computing cohomology of Frobenius kernels of G, (*), or a special case of it, is often used, see [9, II.12.12-15], [12, Thm 8], [1, Sect 7] and [13, Sect 7].

When $\mathcal{L}_{G/P}(\lambda) = \mathcal{L}_{G/P}(k_{-\lambda})$ is ample, i.e. λ "*P*-regular" dominant, one gets (*) from the fact that $G \times^{P} \mathfrak{u}_{P}$ is Frobenius split. One can also use Frobenius splittings to prove (*) for $\lambda = 0$ via a characteristic *p*-version of the Grauert-Riemenschneider Theorem [14, Thm 1.2], since the canonical bundle of $G \times^{P} \mathfrak{u}_{P}$ is trivial. But then the map from $G \times^{P} \mathfrak{u}_{P}$ to the Richardson orbit closure has to be birational and the splitting has to be a (p-1)-th power of a section σ of the anti-canonical bundle which vanishes on the exceptional locus. This is the approach we will follow.

When I asked Thomsen about the case $G = \operatorname{GL}_n$, he told me he expected that the pushforward to $G \times^P \mathfrak{u}_P$ of the splitting of $G \times^B \mathfrak{u}_P$ induced by the "MVdK-splitting" of $G \times^B \mathfrak{u}$ from [15] is the homogeneous component of degree $(p-1) \dim(G/P)$ of the "KLT-splitting", see Section 1.2, from [12]. Although we can not prove this conjecture, we can show that the above component is in fact the top degree component and therefore a (p-1)-th power. From this we can then deduce that this homogeneous splitting vanishes on the exceptional locus of the resolution $\varphi : [g, X] \mapsto gXg^{-1} : G \times^P \mathfrak{u}_P \to \overline{\mathcal{O}}$, where $\overline{\mathcal{O}}$ is the closure of the Richardson orbit corresponding to P, see Theorem 1 in Section 2. Finally, we then deduce that (*) holds in type A, see Theorem 2. In fact we can formulate this as a result for arbitrary reductive groups.

The main idea of the proof is as follows. The "KLT-splitting" from [12] is the (p-1)-th power of the pullback along φ of the function which maps an $n \times n$ matrix X to

¹ The case P = B and $\lambda = 0$ is [9, Lem II.12.12].

$$\prod_{i=1}^{n-1} \det\left((I_n + X)_{\leq i, \leq i}\right),\tag{1}$$

where $Y_{\leq i,\leq i}$ denotes the submatrix of Y given by the first *i* rows and columns, see [2, Example 5.1.15].² Unlike in the case P = B, the degree of the *i*-th factor may be less than *i*. In Lemma's 1(ii) and 3 we determine the degree of the *i*-th factor and from that it follows that the product (1) has degree dim(G/P).

1. Preliminaries

1.1. Notation

Let k be an algebraically closed field of characteristic p > 0 and let G be a reductive group over k. We fix a Borel subgroup $B \leq G$ and maximal torus $T \leq B$. We denote by R the set of roots of T in the Lie algebra $\mathfrak{g} = \operatorname{Lie}(G)$ of G, and we denote the unipotent radical of B by U. We call the roots of T in $\mathfrak{u} = \operatorname{Lie}(U)$ positive and we denote the corresponding set of simple roots by S. For a subset I of S we denote the root system spanned by I by R_I . Furthermore, we denote the corresponding parabolic subgroup containing B and its Levi subgroup containing T by P_I and L_I . Denote the character group of an algebraic group H by X(H). For $I \subseteq S$ we identify $X(P_I)$ and $X(L_I)$ with $\{\lambda \in X(T) \mid \langle \lambda, \alpha^{\vee} \rangle = 0$ for all $\alpha \in I\}$.

For P a parabolic of G and M a P-module we write $\mathcal{L}(M)$ for the G-linearised sheaf on G/P associated to M. For $\lambda \in X(P) \leq X(T)$ we put $\mathcal{L}(\lambda) = \mathcal{L}(k_{-\lambda})$, it is the sheaf of sections of the line bundle $G \times^P k_{-\lambda}$ on G/P. We use the same symbol $\mathcal{L}(\lambda)$ to denote the sheaf of sections of the pullback of this line bundle to $G \times^P V$ for any P-variety V. We also write $H^i(G/P, M)$ for

$$H^i(G/P, \mathcal{L}(M)) \simeq R^i \operatorname{ind}_P^G(M),$$

see [9, I.5.12]. We have that

$$H^{i}(G \times^{P} \mathfrak{u}_{P}, \mathcal{L}(\lambda)) = H^{i}(G/P, k[\mathfrak{u}_{P}] \otimes k_{-\lambda}),$$

see [2, Lem 5.2.2].

If $p = \operatorname{char} k$ is good for G, then we have $\mathfrak{g}/\mathfrak{p} \simeq \mathfrak{u}_P^*$ as P-modules and $G \times^P \mathfrak{u}_P$ is the cotangent bundle $T^{\vee}(G/P)$ of G/P, see [2, 5.1.8-11].

1.2. Frobenius splittings

By [2, Lem 5.1.1] the canonical bundle of $G \times^{P} \mathfrak{u}_{P}$ is trivial, so we can choose a nowhere zero global section: a volume form. It is easy to see that such a section is unique up to a

 $^{^2\,}$ Apart from the degree computation, the arguments there work for any parabolic.

scalar multiple, see [2, 5.1.2]. This means that we can think of Frobenius splittings (up to a scalar multiple) of $G \times^P \mathfrak{u}_P$ as certain regular functions on $G \times^P \mathfrak{u}_P$.

In [12, Thm 1] it was proved that, when p is good for G, the cotangent bundle $T^{\vee}(G/P)$ of G/P is Frobenius split, see also [2, Thm 5.1.3]. We will refer to the *B*-canonical splitting $\psi_P(f_- \otimes f_+)$ as the "KLT-splitting" of $T^{\vee}(G/P)$, where ψ_P, f_-, f_+ are as defined in [2, Ch 5]. Actually this is only a splitting up to a scalar multiple, but in the case $G = \operatorname{GL}_n$ we assume that the chosen volume form on $T^{\vee}(G/P)$ is such that the pullback along φ of the function given by (1), φ defined as in the introduction, defines a splitting. That formula is all we need to know about the KLT-splitting in this paper.

The standard grading of $k[\mathfrak{u}_P] = S(\mathfrak{u}_P^*)$ gives a grading on $k[G \times^P \mathfrak{u}_P]$, and in [2, 5.1.14] it is explained that the homogeneous component of degree $(p-1) \dim(G/P)$ of a splitting σ of $G \times^P \mathfrak{u}_P$ is again a splitting of $G \times^P \mathfrak{u}_P$. This component is *B*-canonical if σ is *B*-canonical.

1.3. A result on cohomology vanishing

The following result may be well-known, but for lack of reference we give a proof.

Proposition 1. Assume p is good for G, let P be a parabolic of G, let $\lambda \in X(P)$ be dominant, let Q be the parabolic of G containing P such that $\lambda \in X(Q)$ and $\mathcal{L}_{G/Q}(\lambda)$ is ample, and let L be the Levi subgroup of Q containing T. If $H^i(L/L \cap P, S(\mathfrak{l}/\mathfrak{l} \cap \mathfrak{p})) = 0$ for all i > 0, then $H^i(G/P, S(\mathfrak{g}/\mathfrak{p}) \otimes k_{-\lambda})$ for all i > 0.

Proof. By [12, Cor 3 to Thm 4] or [2, Thm 5.3] $G \times^P \mathfrak{u}_P$ is Frobenius split, so by [2, Lemma 1.2.7(i)] it is enough to show the vanishing for $m\lambda$, $m \gg 0$ (in fact we only need it for $p^m\lambda$ and some $m \ge 0$).

Some of the arguments below are adaptations of arguments from the proof of [2, Lem 5.2.7].

Each $S^{j}(\mathfrak{g}/\mathfrak{p})$ has a filtration with sections $S^{r}(\mathfrak{q}/\mathfrak{p}) \otimes S^{s}(\mathfrak{g}/\mathfrak{q}), r+s=j$, so it is enough to show that $R^{i} \operatorname{ind}_{P}^{G}(S(\mathfrak{q}/\mathfrak{p}) \otimes S(\mathfrak{g}/\mathfrak{q}) \otimes k_{-\lambda}) = 0$ for all i > 0. We have $P = (L \cap P)U_{Q}$ and $\mathfrak{q}/\mathfrak{p} \simeq \mathfrak{l}/\mathfrak{l} \cap \mathfrak{p}$. Note that U_{Q} acts trivially on $\mathfrak{q}/\mathfrak{p}$. Combining [9, I.6.11] and our assumption with a standard spectral sequence argument, we have

$$R^{i} \mathrm{ind}_{P}^{G}(S(\mathfrak{q}/\mathfrak{p}) \otimes S(\mathfrak{g}/\mathfrak{q}) \otimes k_{-\lambda}) \simeq R^{i} \mathrm{ind}_{Q}^{G}(\mathrm{ind}_{P}^{Q}S(\mathfrak{q}/\mathfrak{p}) \otimes S(\mathfrak{g}/\mathfrak{q}) \otimes k_{-\lambda}).$$
(2)

We have $\mathfrak{p} = \mathfrak{l} \cap \mathfrak{p} \oplus \mathfrak{u}_Q$, $\mathfrak{u}_P = \mathfrak{u}_{L \cap P} \oplus \mathfrak{u}_Q$, $(\mathfrak{g}/\mathfrak{p})^* \simeq \mathfrak{u}_P$, $(\mathfrak{g}/\mathfrak{q})^* \simeq \mathfrak{u}_Q$, and $(\mathfrak{q}/\mathfrak{p})^* \simeq \mathfrak{u}_{L \cap P}$. By the arguments of [10, p94] there exists an affine *Q*-variety V_0 such that $k[V_0] \simeq k[Q \times^P \mathfrak{u}_{L \cap P}] = \operatorname{ind}_P^Q S(\mathfrak{q}/\mathfrak{p})$, *Q*-equivariantly (U_Q acting trivially). Put $V = V_0 \times \mathfrak{u}_Q$. Then $k[V] = \operatorname{ind}_P^Q S(\mathfrak{q}/\mathfrak{p}) \otimes S(\mathfrak{g}/\mathfrak{q})$. Now the morphism $G \times^Q V \to G/Q$ is affine, so by [7, Ex III.8.2] the RHS of (2) is isomorphic to

$$H^{i}(G \times^{Q} V, \mathcal{L}(\lambda)).$$
(3)

By [6, 5.1.12] $\mathcal{L}(\lambda)$ is ample on $G \times^Q V$, since $G \times^Q V \to G/Q$ is affine. The morphism $V_0 \to \overline{Q \cdot \mathfrak{u}_{L\cap P}}$ is finite, see [10, p94], so the same is true for the morphisms $V \to \overline{Q \cdot \mathfrak{u}_{L\cap P}} \times \mathfrak{u}$ and $G \times^Q V \to G \times^Q (\overline{Q \cdot \mathfrak{u}_{L\cap P}} \times \mathfrak{u}_Q)$. So composing the latter with the projective morphism $G \times^Q (\overline{Q \cdot \mathfrak{u}_{L\cap P}} \times \mathfrak{u}_Q) \to \mathfrak{g}$, given by the embedding of $\overline{Q \cdot \mathfrak{u}_{L\cap P}} \times \mathfrak{u}_Q$ in \mathfrak{g} , we obtain a proper morphism $G \times^Q V \to \mathfrak{g}$. Now [7, III.5.3] tells us that (3) is 0 if we replace λ by $m\lambda$, $m \gg 0$. \Box

2. The main results

Throughout this section, except in Theorem 2 and its proof, $G = \operatorname{GL}_n = \operatorname{GL}(k^n)$ and T is the subgroup of diagonal matrices in G. As simple roots we choose the usual characters $\varepsilon_i - \varepsilon_{i+1}$, $1 \leq i \leq n-1$, where we used additive notation for characters, and ε_i is the *i*-th coordinate function on T. Then B consists of the upper triangular matrices in G. As is well-known, the conjugacy classes of parabolic subgroups of G are labelled by the compositions of n, see e.g. [8, 3.2]. By ν we denote a composition of n and $P = P_{\nu} \supseteq B$ is the standard parabolic whose block sizes are given in order by ν . If A_{ν} is the set $\{\nu_1, \nu_1 + \nu_2, \ldots, \sum_{j=1}^{s-1} \nu_j\}$, s the length of ν , then $P_{\nu} = P_{I_{\nu}}$, the parabolic associated to the set of simple roots $I_{\nu} = \{\varepsilon_i - \varepsilon_{i+1} \mid i \in \{1, \ldots, n-1\} \setminus A_{\nu}\}$. We denote by λ the transposed partition of the weakly descending sorted version of ν . It is well-known that the Richardson orbit of P_{ν} is \mathcal{O}_{λ} , the nilpotent orbit whose Jordan block sizes are given by λ , see e.g. [8, Thm 3.3(a)].

It is well-known that the map $\varphi : [g, X] \mapsto gXg^{-1} : G \times^P \mathfrak{u}_P \to \overline{\mathcal{O}_{\lambda}}$ is birational. Indeed the group centraliser G_X of any $X \in \mathfrak{g}$ is the set of invertible elements in the Lie algebra centraliser \mathfrak{g}_X , so is connected. Now see [10, 4.9 and 8.8 Remark]. It is also well-known that $\overline{\mathcal{O}_{\lambda}}$ is normal, see e.g. [5] or [15, Sect 4.7].

For $i \in \{1, \ldots, n-1\}$ we denote by $d_{\lambda,i}$ the number of nonzero positions on the (n-i)th upper codiagonal of \mathfrak{u}_P . So for $\nu = (2, 1, 2)$ we have $d_{\lambda,1}, d_{\lambda,2}, d_{\lambda,3}, d_{\lambda,4} = 1, 2, 3, 2$, see the figure of \mathfrak{u}_p below.

0	0	*	*	* T
0	0	*	*	*
0	0	0	*	*
0	0	0	0	0
L0	0	0	0	۲0

Since each diagonal $j \times j$ block of P takes away j - i nonzero positions from the *i*-th upper codiagonal, we have, if j occurs m_j times in ν ,

$$d_{\lambda,n-i} = n - i - \sum_{j>i} (j-i)m_j = n - i - \sum_{j>i} \lambda_j = -\sum_{j=i+1}^n (\lambda_j - 1) = \sum_{j=1}^i (\lambda_j - 1).$$

Therefore, $d_{\lambda,i} = i - \sum_{j>n-i} \lambda_j = \sum_{j=1}^{n-i} (\lambda_j - 1)$. So indeed the $d_{\lambda,i}$ only depend on λ , moreover, they determine λ .

For a square matrix X we denote by $X_{\leq i,\leq i}$ the submatrix of X given by the first i rows and columns. For an $i \times i$ matrix Y we denote by $s_j(Y)$ the trace of the j-th exterior power of Y, i.e. the sum of the diagonal $j \times j$ minors of Y. As is well-known, $\det(aI_i - Y) = a^i + \sum_{j=1}^i (-1)^j a^{i-j} s_j(Y)$, where I_i is the $i \times i$ identity matrix. So the largest j with $s_j(Y) \neq 0$ is the number of nonzero eigenvalues of Y, counted with (algebraic) multiplicity. This number also equals the rank of Y^l for l sufficiently big. We will call it the *stable rank* of Y.

Lemma 1. Let $X \in \mathcal{O}_{\lambda}$.

- (i) Any i-dimensional subspace W of V = kⁿ contains an X-invariant subspace U of dimension ≥ ∑_{j>n-i} λ_j.
- (ii) $X_{\leq i, \leq i}$ has stable rank $\leq d_{\lambda,i}$.

Proof. (i). We show this by induction on n. It is trivial when $i \leq n - r$, r the length of λ , in particular when n = 0. Assume i > n - r. Then W has nonzero intersection with Ker(X) for dimension reasons. Pick v nonzero in that intersection. First note that the transformation \overline{X} induced on V/kv by X has partition μ which is obtained from λ by subtracting 1 from one part of λ and then sorting the result in weakly descending order. Indeed if we decompose V as a direct sum of X-Jordan blocks and we pick a X-Jordan block of minimal size with the property that v has nonzero component in it, then we can replace that X-Jordan block by an X-Jordan block of the same size which contains v. Now we apply the induction hypothesis to V/kv and W/kv, noting that (n-1) - (i-1) = n - i, to obtain an \overline{X} -invariant subspace U/kv of W/kv of dimension $\geq \sum_{j>n-i} \mu_j \geq \sum_{j>n-i} \lambda_j - 1$. Now U is the X-invariant subspace we want.

(ii). The linear map $(X_{\leq i,\leq i})^i$ coincides with X^i on any X-invariant subspace U of $k^i \leq k^n$ and therefore kills it. Choosing U as in (i), it induces a linear map $k^i/U \to k^i$ and therefore has rank $\leq i - \sum_{j>n-i} \lambda_j = d_{\lambda,i}$. \Box

Lemma 3 below follows from Lemma 1(ii) and the existence of the KLT-splitting, but we prefer to give a direct proof.

Lemma 2. For any $h \in \{1, ..., i-1\}$ there exists a regular nilpotent $i \times i$ matrix X such that $X_{\leq h, \leq h}$ is invertible.

Proof. Let (e_1, \ldots, e_i) be the standard basis of k^i . Then the regular nilpotent matrix X given by $X(e_j) = e_{j-1}$ for $2 < j \le i$, $X(e_2) = e_1 + e_{h+1}$ and $X(e_1 + e_{h+1}) = 0$ has the desired property. \Box

Remark 2.1. Of course it follows from Lemma 2 that there exists a regular $i \times i$ matrix X such that $X_{\leq h, \leq h}$ is invertible for all $h \in \{1, \ldots, i-1\}$, but we won't need this.

Lemma 3. There exists $X \in \mathcal{O}_{\lambda}$ such that $X_{\leq i,\leq i}$ has stable rank $d_{\lambda,i}$.

Proof. First choose any $Y \in \mathfrak{g}$ nilpotent with partition λ and decompose k^n into Y-Jordan blocks with sizes $\lambda_1, \lambda_2, \ldots, \lambda_r$, where r is the length of λ . It suffices to find an ordered basis \mathcal{B} of k^n such that the upper left $i \times i$ -block Z of the matrix of Y relative to this basis has stable rank $d_{\lambda,i}$.

Determine $s \leq r$ maximal with $\sum_{j=1}^{s} (\lambda_j - 1) \leq i$ and put $h = i - \sum_{j=1}^{s} (\lambda_j - 1)$. Using Lemma 2 choose for each $j \leq s$ a basis of the *j*-th block such that the upper left $(\lambda_j - 1) \times (\lambda_j - 1)$ block of the matrix of Y relative to this basis is invertible, if s < r and h > 0 choose a basis of the (s + 1)-th block such that the upper left $h \times h$ block of the matrix of Y relative to this basis is invertible, and for the remaining blocks choose any basis.

We now form \mathcal{B} as follows. First consider the case $i \leq n-r$. For each $j \leq s$ we pick the first $\lambda_j - 1$ basis vectors from the *j*-th block, if s < r we append the first *h* basis vectors from the (s+1)-th block, and finally we append all remaining n-i basis vectors. Now Z is in block diagonal form with invertible diagonal block of sizes $\lambda_1 - 1, \ldots, \lambda_s - 1, h$, where h has to be omitted if h = 0. Now consider the case i > n-r. For each $j \leq n-i$ we pick the first $\lambda_j - 1$ basis vectors from the *j*-th block, then we append the basis vectors from the next r - (n-i) blocks, and finally we append all remaining n-i basis vectors. Now Z is in block diagonal form with diagonal block sizes $\lambda_1 - 1, \ldots, \lambda_{n-i} - 1, \lambda_{n-i+1}, \ldots, \lambda_r$ where the first n - i blocks are invertible, and the others nilpotent. In both cases we obtain that Z has stable rank $d_{\lambda,i}$ (when $i \leq n - r$ we have $d_{\lambda,i} = i$). \Box

Below we will denote a function $X \mapsto E(X)$ on a closed subvariety of \mathfrak{g} just by the expression E(X).

Theorem 1. The degree $(p-1) \dim(G/P)$ component of the KLT splitting of $G \times^P \mathfrak{u}_P$ is the top degree component and equals the (p-1)-th power of the pullback of $\prod_{i=1}^{n-1} s_{d_{\lambda,i}}(X_{\leq i,\leq i}) \in k[\overline{\mathcal{O}_{\lambda}}]$ along the resolution $\varphi : G \times^P \mathfrak{u}_P \to \overline{\mathcal{O}_{\lambda}}$. This pullback vanishes on the exceptional locus of φ .

Proof. The KLT splitting is the pullback along φ of the function given by (1). Furthermore, we have $\det(I_i + Y) = \sum_{j=0}^{i} s_j(Y)$ for any $i \times i$ matrix Y, and, of course, $s_j(X_{\leq i,\leq i}) \neq 0$ on $\mathcal{O}_{\lambda} \iff s_j(X_{\leq i,\leq i}) \neq 0$ on $\overline{\mathcal{O}_{\lambda}}$. So by Lemma's 1(ii) and 3 the top degree component of the *i*-th factor in (1) is $s_{d_{\lambda,i}}(X_{\leq i,\leq i})$. So the KLT-splitting has top degree p-1 times $\sum_{i=1}^{n-1} d_{\lambda,i} = \dim \mathfrak{u}_P = \dim(G/P)$, and the top degree component is the (p-1)-th power of the pullback along φ of the function given by the stated formula.

To prove the second assertion, put $f_{\lambda,i}(X) = s_{d_{\lambda,i}}(X_{\leq i,\leq i})$ and $f_{\lambda} = \prod_{i=1}^{n-1} f_{\lambda,i}$. The exceptional locus is $\varphi^{-1}(\overline{\mathcal{O}_{\lambda}} \setminus \mathcal{O}_{\lambda})$, so it suffices to show that f_{λ} vanishes on any $\mathcal{O}_{\mu} \subseteq \overline{\mathcal{O}_{\lambda}} \setminus \mathcal{O}_{\lambda}$. We have dim $(\mathfrak{u}_Q) = \frac{1}{2} \dim(\mathcal{O}_{\mu}) < \frac{1}{2} \dim(\mathcal{O}_{\lambda}) = \dim(\mathfrak{u}_P)$, where Q is a standard parabolic whose Richardson orbit is \mathcal{O}_{μ} , see [10, 4.9]. So for some i we must have $d_{\mu,i} < d_{\lambda,i}$ which means that $f_{\lambda,i}$ and therefore f_{λ} vanishes on \mathcal{O}_{μ} . \Box **Theorem 2.** Let G be any reductive group for which p is good, let $\lambda \in X(T)$ be dominant, put $I = \{\alpha \in S \mid \langle \lambda, \alpha^{\vee} \rangle = 0\}$. Then $H^i(T^{\vee}(G/P_J), \mathcal{L}(\lambda)) = 0$ for all $J \subseteq I$ such that R_J contains all irreducible components of R_I not of type A.

Proof. By Proposition 1 we may assume that $\lambda = 0$ and that all irreducible components of R have type A. Since we are dealing with cotangent bundles we may assume that Gis semisimple and simply connected. By the Künneth formula [11, Prop 9.2.4] we may then assume $G = SL_n$ and finally we may assume $G = GL_n$. Now the result follows from Theorem 1 and [14, Thm 1.2], bearing in mind that the canonical bundle of $T^{\vee}(G/P)$ is trivial, see [2, Lem 5.1.1], and that $R^i\varphi_*(\mathcal{O}_{T^{\vee}(G/P)})$ is the sheaf associated with the cohomology group $H^i(T^{\vee}(G/P), \mathcal{O}_{T^{\vee}(G/P)})$, since φ is affine. \Box

We remind the reader that a proper birational morphism $\psi : X \to Y$ is called a *rational resolution* if $\psi_* \mathcal{O}_X = \mathcal{O}_Y$ and the higher direct images of \mathcal{O}_X and ω_X are 0, see [2, Def 3.4.1]. We assume again that $G = \operatorname{GL}_n$.

Corollary. The resolution $\varphi : G \times^P \mathfrak{u}_P \to \overline{\mathcal{O}_{\lambda}}$ is rational.

Proof. This follows from a standard argument, see e.g. [9, Lem 14.5], and Theorem 2. \Box

Remarks 2.2. 1. If P = B, then $d_{(n),i} = i$ for all *i*, so the splitting from Theorem 1 equals the (p-1)-th power of the pullback of $\prod_{i=1}^{n-1} \det(X_{\leq i,\leq i})$ along $\varphi : G \times^B \mathfrak{u} \to \mathcal{N}$. This is the MVdK splitting of $G \times^B \mathfrak{u}$, see [15].

2. Thomsen mentioned to me another proof of Lemma 1(ii): One can easily deduce it from the following result which can be proved by induction on n. For $X \in \mathfrak{u}_P$ let $y_{ij} = \delta_{ij} + x_{ij}$ be the (i, j)-th entry of $I_n + X$. Then any monomial $y_{i_1j_1}y_{i_2j_2}\cdots y_{i_sj_s}$ with the i_l all distinct and the j_l all distinct has degree $\leq d_{\lambda,s}$ in the x_{ij} .

3. In [15, Sect 4.9] there is also a proof of the above corollary for certain parabolics, but that relies on the existence of a principal effective divisor D which is a subdivisor of (σ) (σ^{p-1} is the MVdK splitting) and contains the exceptional locus. This is claimed in [15, Prop 4.5], but the proof of that result is incomplete and it seems rather unlikely that such a divisor exists for the set of parabolics in question. The proof of the above corollary sketched in [2, Exercise 5.3.E(b)] is also problematic: after pushing the splitting of Exercise 5.1.E.6 forward from $G \times^B \mathfrak{u}_P$ to $G \times^P \mathfrak{u}_P$ it's no longer clear that the splitting is a (p-1)-th power, so one can't apply [2, Thm 1.3.14].

Conjecture (Thomsen). The pushforward to $G \times^P \mathfrak{u}_P$ of the splitting of $G \times^B \mathfrak{u}_P$ induced by the MVdK splitting is the top degree component of the KLT splitting.

Acknowledgment

I would like to thank Jesper Funch Thomsen for helpful discussions.

Data availability

No data was used for the research described in the article.

References

- C. Bendel, D. Nakano, B. Parshall, C. Pillen, Cohomology for quantum groups via the geometry of the nullcone, Mem. Am. Math. Soc. 229 (1077) (2014).
- [2] M. Brion, S. Kumar, Frobenius Splitting Methods in Geometry and Representation Theory, Progress in Mathematics, vol. 231, Birkhäuser Boston, Inc., Boston, MA, 2005.
- [3] A. Broer, Line bundles on the cotangent bundle of the flag variety, Invent. Math. 113 (1) (1993) 1–20.
- [4] A. Broer, Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle of the flag variety, in: Lie Theory and Geometry, in: Prog. Math., vol. 123, Birkhäuser, Boston, 1994, pp. 1–19.
- [5] S. Donkin, The normality of closures of conjugacy classes of matrices, Invent. Math. 101 (3) (1990) 717-736.
- [6] A. Grothendieck, Eléments de géométrie algébrique II, Étude globale élémentaire de quelques classes de morphismes, Publ. Math. Inst. Hautes Études Sci. 8 (1961).
- [7] R. Hartshorne, Algebraic Geometry, GTM, vol. 52, Springer-Verlag, New York-Heidelberg, 1977.
- [8] W.H. Hesselink, Polarizations in the classical groups, Math. Z. 160 (3) (1978) 217–234.
- [9] J.C. Jantzen, Representations of Algebraic Groups, second edition, American Mathematical Society, Providence, RI, 2003.
- [10] J.C. Jantzen, Nilpotent orbits in representation theory, in: Lie Theory, in: Progr. Math., vol. 228, Birkhäuser Boston, 2004, pp. 1–211.
- [11] G.R. Kempf, Algebraic Varieties, London Math. Soc. Lecture Note Ser., vol. 172, Cambridge University Press, Cambridge, 1993.
- [12] S. Kumar, N. Lauritzen, J.F. Thomsen, Frobenius splitting of cotangent bundles of flag varieties, Invent. Math. 136 (3) (1999) 603–621.
- [13] Z. Lin, D. Nakano, Realizing rings of regular functions via the cohomology of quantum groups, preprint.
- [14] V.B. Mehta, W. van der Kallen, On a Grauert-Riemenschneider vanishing theorem for Frobenius split varieties in characteristic p, Invent. Math. 108 (1) (1992) 11–13.
- [15] V.B. Mehta, W. van der Kallen, A simultaneous Frobenius splitting for closures of conjugacy classes of nilpotent matrices, Compos. Math. 84 (2) (1992) 211–221.
- [16] J.F. Thomsen, Normality of certain nilpotent varieties in positive characteristic, J. Algebra 227 (2) (2000) 595–613.