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A FROBENIUS SPLITTING AND COHOMOLOGY
VANISHING FOR THE COTANGENT BUNDLES OF THE
FLAG VARIETIES OF GL,

RUDOLF TANGE

ABSTRACT. Let k be an algebraically closed field of characteristic p > 0, let
G = GL,, be the general linear group over k, let P be a parabolic subgroup
of G, and let up be the Lie algebra of its unipotent radical. We show that
the Kumar-Lauritzen-Thomsen splitting of the cotangent bundle G x¥ up
of G/P has top degree (p — 1) dim(G/P). The component of that degree is
therefore given by the (p — 1)-th power of a function f. We give a formula
for f and deduce that it vanishes on the exceptional locus of the resolution
G xP up — O where O is the closure of the Richardson orbit of P. As a
consequence we obtain that the higher cohomology groups of a line bundle
on G x¥ up associated to a dominant weight are zero. The splitting of
G x% up given by fP~! can be seen as a generalisation of the Mehta-Van
der Kallen splitting of G xZ u.

INTRODUCTION

Let G be a reductive group over an algebraically closed field k of positive
characteristic p. For a parabolic P containing the positive Borel and P-module
M, we denote by H*(G/P, M) the i-th chomology group of the sheaf La/p(M)
on G/P associated to M. It is an open problem whether we have for all para-
bolic subgroups P and all dominant characters A of P that

HY(G/P,S(up)®@k_)\)=0 foralli>0, (%)

where the most important case is A = 0, see e.g. [2, Introduction to Ch 5].
In characteristic 0 this is an easy consequence of the Grauert-Riemenschneider
Theorem, see [4, Thm 2.2]. In characteristic p (*) is known for P = B, for
arbitrary P and “P-regular” dominant A, see [12], and for P corresponding to
sets of pairwise orthogonal short simple roots and A = 0, see [16].!

It is easy to write a formula for the Euler character

S (~1)ich H(G/P, S(up) @ k).,
i>0
see [10, Sect 8.14-8.16] and [3, Prop 2.1], so if (*) holds we get a formula for
ch HY(G/P, S(u*) @ k_y).
For computing cohomology of Frobenius kernels of G, (*), or a special case
of it, is often used, see [9, 11.12.12-15], [12, Thm 8], [1, Sect 7] and [13, Sect 7].

2020 Mathematics Subject Classification. 14F17, 14M15, 14L30.
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IThe case P = B and A = 0 is [9, Lem 11.12.12].
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2 R. TANGE

When L, p(A) = Lg/p(k_y) is ample, i.e. A “P-regular” dominant, one gets
(*) from the fact that G x* up is Frobenius split. One can also use Frobenius
splittings to prove (*) for A = 0 via a characteristic p-version of of the Grauert-
Riemenschneider Theorem [14, Thm 1.2], since the canonical bundle of G xup
is trivial. But then the map from G x* up to the Richardson orbit closure has
to be birational and the splitting has to be a (p — 1)-th power of a section o of
the anti-canonical bundle which vanishes on the excptional locus. This is the
approach we will follow.

When I asked Thomsen about the case G = GL,, he told me he expected
that the pushforward to G' x* up of the splitting of G x? up induced by the
“MVdK-splitting” of G x?u from [15] is the homogeneous component of degree
(p —1)dim(G/P) of the “KLT-splitting”, see Section 1.2, from [12]. Although
we can not prove this conjecture, we can show that the above component is in
fact the top degree component and therefore a (p — 1)-th power. From this we
can then deduce that this homogeneous splitting vanishes on the exceptional
locus of the resolution ¢ : [g, X] — gXg~' : G xP up — O, where O is the
closure of the Richardson orbit corresponding to P, see Theorem 1 in Section 2.
Finally, we then deduce that (*) holds in type A, see Theorem 2. In fact we
can formulate this as a result for arbitrary reductive groups.

The main idea of the proof is as follows. The “KLT-splitting” from [12] is
the (p — 1)-th power of the pullback along ¢ of the function which maps an
n X n matrix X to

n—1
1 det ((7n + X)<i<i) (1)
=1

where Y<; <; denotes the submatrix of Y given by the first < rows and columns,
see [2, Example 5.1.15].2 Unlike in the case P = B, the degree of the i-th factor
may be less than ¢. In Lemma’s 1(ii) and 3 we determine the degree of the i-th
factor and from that it follows that the product (1) has degree dim(G/P).

1. PRELIMINARIES

1.1. Notation. Let k be an algebraically closed field of characteristic p > 0
and let G be a reductive group over k. We fix a Borel subgroup B < G and
maximal torus T' < B. We denote by R the set of roots of T" in the Lie algebra
g = Lie(G) of G, and we denote the unipotent radical of B by U. We call the
roots of T in u = Lie(U) positive and we denote the corresponding set of simple
roots by S. For a subset I of S we denote the root system spanned by I by
Ry. Furthermore, we denote the corresponding parabolic subgroup containing
B and its Levi subgroup containing T" by P; and L;. Denote the character
group of an algebraic group H by X(H). For I C S we identify X (P;) and
X(Ly) with {\ € X(T) | (\,a¥) =0 for all « € T}.

For P a parabolic of G and M a P-module we write £(M) for the G-linearised
sheaf on G/P associated to M. For A € X(P) < X(T') we put L(A) = L(k_)),
it is the sheaf of sections of the line bundle G x* k_y on G/P. We use the same

2Apart from the degree computation, the arguments there work for any parabolic.
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symbol £(\) to denote the sheaf of sections of the pullback of this line bundle
to G xP V for any P-variety V. We also write H'(G/P, M) for

HY(G/P,L(M)) ~ Riind% (M),
see [9, 1.5.12]. We have that
HY(G <" up,L(\)) = H'(G/P. k[up] @ k),

see [2, Lem 5.2.2].
If p = char k is good for G, then we have g/p ~ u} as P-modules and G xPup
is the cotangent bundle TV (G/P) of G/P, see [2, 5.1.8-11].

1.2. Frobenius splittings. By [2, Lem 5.1.1] the canonical bundle of G x” up
is trivial, so we can choose a nowhere zero global section: a volume form. It is
easy to see that such a section is unique up to a scalar multiple, see [2, 5.1.2].
This means that we can think of Frobenius splittings (up to a scalar multiple)
of G xP up as certain regular functions on G x* up.

In [12, Thm 1] it was proved that, when p is good for G, the cotangent bundle
TV(G/P) of G/P is Frobenius split, see also [2, Thm 5.1.3]. We will refer to the
B-canonical splitting ¢p(f- @ f1) as the “KLT-splitting” of TV (G/P), where
Yp, f—, f+ are as defined in [2, Ch 5]. Actually this is only a splitting up to a
scalar multiple, but in the case G = GL, we assume that the chosen volume
form on TV(G/P) is such that the pullback along ¢ of the function given by
(1), ¢ defined as in the introduction, defines a splitting. That formula is all we
need to know about the KLT-splitting in this paper.

The standard grading of k[up] = S(ub) gives a grading on k[G x¥ up],
and in [2, 5.1.14] it is explained that the homogeneous component of degree
(p — 1) dim(G/P) of a splitting o of G x up is again a splitting of G x up.
This component is B-canonical if ¢ is B-canonical.

1.3. A result on cohomology vanishing. The following result may be well-
known, but for lack of reference we give a proof.

Proposition 1. Asume p is good for G, let P be a parabolic of G, let A € X (P)
be dominant, let Q be the parabolic of G containing P such that X\ € X(Q)
and EG/Q()\) is ample, and let L be the Levi subgroup of QQ containing T. If
HY(L/LNP,S({I/tNp)) =0 for all i > 0, then H'(G/P,S(g/p) @ k_y) for all
1> 0.

Proof. By [12, Cor 3 to Thm 4] or [2, Thm 5.3] G x¥ up is Frobenius split, so
by [2, Lemma 1.2.7(i)] it is enough to show the vanishing for mA, m > 0 (in
fact we only need it for p™ X and some m > 0).

Some of the arguments below are adaptations of arguments from the proof
of [2, Lem 5.2.7].

Each S7(g/p) has a filtration with sections S”(q/p) ® S*(g/q), r + s = j, so
it is enough to show that R'ind%(S(q/p) ® S(g/q) ® k_») = 0 for all i > 0. We
have P = (LN P)Ug and q/p ~ [/INp. Note that Ug acts trivially on q/p.
Combining [9, 1.6.11] and our assumption with a standard spectral sequence
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argument, we have
R'ind$(S(a/p) ® S(g/9) @ k_») ~ R'ind§(ind2S(a/p) ® S(g/9) @ k_») . (2)

We have p = [Np S ug, up = urnp dug, (g/p)* ~ up, (g/9)* ~ ug, and
(q/p)* ~ upnp. By the arguments of [10, p94] there exists an affine Q-variety
Vo such that k[Vo] ~ k[Q xT urnp] = inng(q/p), Q-equivariantly (Ug acting
trivially). Put V = Vp x ug. Then k[V] = ind25(q/p) ® S(g/q). Now the
morphism G x? V — G/Q is affine, so by [7, Ex I11.8.2] the RHS of (2) is
isomorphic to

H{(G <PV, L(N). (3)

By [6, 5.1.12] £()\) is ample on G x? V, since G x? V — G/Q is affine. The
morphism Vy — @ -urqp is finite, see [10, p94], so the same is true for the
morphisms V. — Q-urnp x u and G xQV — G x@ (Q-urAp X ug). So
composing the latter with the projective morphism G x® (Q - urnp x uQ) — g,
given by the embedding of @ -urnp X ug in g, we obtain a proper morphism
G x9V — g. Now [7, IIL5.3] tells us that (3) is 0 if we replace A by m,
m > 0. ]

2. THE MAIN RESULTS

Throughout this section, except in Theorem 2 and its proof, G = GL,, =
GL(k™) and T is the subgroup of diagonal matrices in G. As simple roots we
choose the usual characters ¢; — g;4.1, 1 < ¢ < n — 1, where we used additive
notation for characters, and ¢; is the i-th coordinate function on 7. Then B
consists of the upper triangular matrices in G. As is well-known, the conjugacy
classes of parabolic subgroups of G are labelled by the compositions of n, see
e.g.[8, 3.2]. By v we denote a composition of n and P = P, O B is the
standard parabolic whose block sizes are given in order by v. If A, is the
set {vi,v1 +1vo,..., Zj;} vj}, s the length of v, then P, = Pj,, the parabolic
associated to the set of simple roots I, = {e;—¢ei41|i € {1,...,n—1}\ A, }. We
denote by A the transposed partition of the weakly descending sorted version
of v. It is well-kown that the Richardson orbit of P, is O, the nilpotent orbit
whose Jordan block sizes are given by A, see e.g. [8, Thm 3.3(a)].

It is well-known that the map ¢ : [g,X] — ¢gXg ' : G xPup — O, is
birational. Indeed the group centraliser G x of any X € g is the set of invertible
elements in the Lie algebra centraliser gx, so is connected. Now see [10, 4.9
and 8.8 Remark]. It is also well-known that O, is normal, see e.g. [5] or [15,
Sect 4.7].

Fori € {1,...,n—1} we denote by d) ; the number of nonzero positions on the
(n—i)-th upper codiagonal of up. So for v = (2,1, 2) we have dy 1,dx2,d)3,dr 4 =
1,2,3,2, see the figure of u, below.

|

[e]lelelele)

0
0
0
0
0

OO * % %
| IS

OO * *
OO* % %
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Since each diagonal j x j block of P takes away j — ¢ nonzero positions from
the i-th upper codiagonal, we have, if j occurs m; times in v,

dyni=n—i=Y (j-i)mj=n—i=Y N=- Y N-1)=) (N-1).
J>i J>i j=i+1 j=1

Therefore, dy ; = i_2j>n—i Aj = E;:li()\j —1). So indeed the dy ; only depend
on A, moreover, they determine .

For a square matrix X we denote by X<; <; the submatrix of X given by
the first ¢ rows and columns. For an ¢ x i matrix ¥ we denote by s;(Y’) the
trace of the j-th exterior power of Y, i.e. the sum of the diagonal j x j minors
of Y. As is well-known, det(al; —Y) = a’ + Z}Zl(—l)jai*jsj(Y), where I; is
the ¢ x ¢ identity matrix. So the largest j with s;(Y) # 0 is the number of
nonzero eigenvalues of Y, counted with (algebraic) multiplicity. This number

also equals the rank of Y for I sufficiently big. We will call it the stable rank
of Y.

Lemma 1. Let X € O,.

(i) Any i-dimensional subspace W of V. = k™ contains an X -invariant sub-
space U of dimension > Zj>n_i Aj.
(ii) X<i<i has stable rank < d) ;.

Proof. (i). We show this by induction on n. It is trivial when i« < n —r, r
the length of A, in particular when n = 0. Assume i > n —r. Then W has
nonzero intersection with Ker(X) for dimension reasons. Pick v nonzero in that
intersection. First note that the transformation X induced on V/kv by X has
partition p which is obtained from A by subtracting 1 from one part of A and
then sorting the result in weakly descending order. Indeed if we decompose V'
as a direct sum of X-Jordan blocks and we pick a X-Jordan block of minimal
size with the property that v has nonzero component in it, then we can replace
that X-Jordan block by an X-Jordan block of the same size which contains
v. Now we apply the induction hypothesis to V/kv and W/kv, noting that
(n—1) — (i — 1) = n — i, to obtain an X-invariant subspace U/kv of W/kv of
dimension > Zj>n_i i > Zj>n_i Aj — 1. Now U is the X-invariant subspace
we want.
(ii). The linear map (X<; ;)" coincides with X% on any X-invariant subspace
U of k' < k™ and therefore kills it. Choosing U as in (i), it induces a linear
map k'/U — k' and therefore has rank < i — disn—iNj = dag O
Lemma 3 below follows from Lemma 1(ii) and the existence of the KLT-
splitting, but we prefer to give a direct proof.

Lemma 2. For any h € {1,...,i — 1} there exists a reqular nilpotent i X i
matriz X such that X<p <p, is invertible.

Proof. Let (e1,...,e;) be the standard basis of k*. Then the regular nilpotent
matrix X given by X(e;) = ej—1 for 2 < j < i, X(e2) = e1 + epy1 and
X(e1 + epr1) = 0 has the desired property. O
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Remark 2.1. Of course it follows from Lemma 2 that there exsists a regular
i x ¢ matrix X such that X<j <, is invertible for all h € {1,...,7 — 1}, but we
won’t need this.

Lemma 3. There exists X € Oy such that X<; <; has stable rank dy ;.

Proof. First choose any Y € g nilpotent with partition A and decompose k"
into Y-Jordan blocks with sizes A1, Ag,...,A., where r is the length of A. It
suffices to find an ordered basis B of k™ such that the upper left ¢ x i-block Z
of the matrix of ¥ relative to this basis has stable rank d) ;.

Determine s < 7 maximal with 3%, (A\;j—1) <dandput h =i—377_; (A\;—1).
Using Lemma 2 choose for each j < s a basis of the j-th block such that the
upper left (A\; — 1) x (A\; — 1) block of the matrix of Y relative to this basis is
invertible, if s < r and h > 0 choose a basis of the (s + 1)-th block such that
the upper left A x h block of the matrix of Y relative to this basis is invertible,
and for the remaining blocks choose any basis.

We now form B as follows. First consider the case ¢ < n — r. For each
Jj < s we pick the first \; — 1 basis vectors from the j-th block, if s < r
we append the first h basis vectors from the (s + 1)-th block, and finally we
append all remaining n — 7 basis vectors. Now Z is in block diagonal form
with invertible diagonal block of sizes A\ — 1,...,As — 1, h, where h has to be
omitted if h = 0. Now consider the case ¢ > n —r. For each j < n —1i¢ we
pick the first A\; —1 basis vectors from the j-th block, then we append the basis
vectors from the next r — (n — i) blocks, and finally we append all remaining
n — i basis vectors. Now Z is in block diagonal form with diagonal block sizes

M =1, i — 1, An—it1, .- -, A where the first n — i blocks are invertible,
and the others nilpotent. In both cases we obtain that Z has stable rank dy ;
(when i < n —r we have dy; = 1). O

Below we will denote a function X +— FE(X) on a closed subvariety of g just
by the expression E(X).

Theorem 1. The degree (p — 1) dim(G/P) component of the KLT splitting of
G xP up is the top degree component and equals the (p — 1)-th power of the
pullback of T[1=} sy, (X<i<i) € k[Oy] along the resolution ¢ : G xF up — Oj.
This pullback vanishes on the exceptional locus of .

Proof. The KLT splitting is the pullback along ¢ of the function given by
(1). Furthermore, we have det(l; +Y) = Z;:o s;(Y) for any i x i matrix
Y, and, of course, s;(X<i<i) # 0 on Oy < s;(X<i<i) # 0 on Oy. So
by Lemma’s 1(ii) and 3 the top degree component of the i-th factor in (1) is
Sdy;(X<i<i). So the KLT-splitting has top degree p — 1 times Z?:_ll dy; =
dimup = dim(G/P), and the top degree component is the (p — 1)-th power of
the pullback along ¢ of the function given by the stated formula.

To prove he second assertion, put f;(X) = sa, ,(X<i <i) and f) = H?:_ll i
The exceptional locus is p~1(Oy \ O,), so it suffices to show that f) vanishes
on any O, C 0\ O,. We have dim(ug) = 1 dim(0,,) < 1 dim(0,) = dim(up),
where @ is a standard parabolic whose Richardson orbit is O,,, see [10, 4.9].
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So for some ¢ we must have d, ; < d); which means that f; and therefore fy
vanishes on O,,. ]

Theorem 2. Let G be any reductive group for which p is good, let A € X(T)
be dominant, put I = {a € S| (\, ") =0}. Then H(TV(G/Py),L(\)) =0 for
all J C I such that Ry contains all irreducible components of Ry not of type A.

Proof. By Proposition 1 we may assume that A = 0 and that all irreducible
components of R have type A. Since we are dealing with cotangent bundles we
may assume that G is semisimple and simply connected. By the Kiinneth for-
mula [11, Prop 9.2.4] we may then assume G = SL,, and finally we may assume
G = GL,,. Now the result follows from Theorem 1 and [14, Thm 1.2], bearing
in mind that the canonical bundle of TV(G/P) is trivial, see [2, Lem 5.1.1],
and that Rigp*(OTv(G /p)) is the sheaf associated with the cohomology group
H'(TY(G/P),Opv(c/p)), since ¢ is affine. O

We remind the reader that a proper birational morphism ¢ : X — Y is called
a rational resolution if 1¥,Ox = Oy and the higher direct images of Ox and
wx are 0, see [2, Def 3.4.1]. We assume again that G = GL,.

Corollary. The resolution ¢ : G xF up — Oy is rational.

Proof. This follows from a standard argument, see e.g. [9, Lem 14.5], and
Theorem 2. ]

Remarks 2.2. 1. If P = B, then d,;
Theorem 1 equals the (p—1)-th power of the pullback of H?:_ll det(X<; <i) along
¢ : G xPu— N. This is the MVdK splitting of G x5 u, see [15].

2. Thomsen mentioned to me another proof of Lemma 1(ii): One can easily
deduce it from the following result which can be proved by induction on n. For
X € up let y;j = d;; + x5 be the (i, j)-th entry of I, + X. Then any monomial
Yi1j1 Yisjo * * " Yisjs With the ¢; all distinct and the j; all distinct has degree < d) s
in the x;;.

3. In [15, Sect 4.9] there is also a proof of the above corollary for certain
parabolics, but that relies on the existence of a principal effective divisor D
which is a subdivisor of (¢) (¢P~! is the MVdK splitting) and contains the
exceptional locus. This is claimed in [15, Prop 4.5], but the proof of that result
is incomplete and it seems rather unlikely that such a divisor exists for the
set of parabolics in question. The proof of the above corollary sketched in [2,
Exercise 5.3.E(b)] is also problematic: after pushing the splitting of Exercise
5.1.E.6 forward from G xP up to G x¥ up it’s no longer clear that the splitting
is a (p — 1)-th power, so one can’t apply [2, Thm 1.3.14].

= ¢ for all ¢, so the splitting from

Conjecture (Thomsen). The pushforward to GxTup of the splitting of GxPup
induced by the MVdAK splitting is the top degree component of the KLT splitting.
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