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A B S T R A C T

The effectiveness of complete multi-modal neuroimaging data in the diagnosis of Alzheimers

disease has been extensively demonstrated and applied. Dealing with incomplete modalities

poses a common challenge in multi-modal neuroimaging diagnosis. The mainstream approaches

aim to synthesise missing neuroimaging data in order to make full use of all available samples.

However, these methods treat image synthesis and disease diagnosis as two independent tasks,

overlooking the potential feature of cross-modality image synthesis for downstream tasks. To

this end, we propose the Joint Image Synthesis and Classification Learning method to jointly

optimize image synthesis and disease diagnosis using incomplete neuroimaging modalities. Our

approach comprises a submodule for synthesising missing neuroimaging data and a decision

fusion submodule that integrates features from different modalities and the high-level/converted

features generated during synthesis. Experimental results demonstrate that our joint optimization

approach outperforms conventional two-stage methods. Our method is capable of handling

arbitrary neuroimaging modality missing scenarios and achieves state-of-the-art performance in

both Alzheimers Disease identification and mild cognitive impairment conversion classification

tasks. Finally, we further explored the importance of different converted features. This highlights

the effectiveness of our approach in addressing the challenges of Alzheimers Disease diagnosis

and provides insights for future research in multi-modal medical image analysis.

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disorder [1, 2, 3, 4]. It is characterized by

symptoms including memory loss, cognitive function deterioration, as well as language and behavioral issues. These

symptoms significantly impact patients’ daily lives, causing distress and challenges.

Multi-modal neuroimaging data, such as structural MRI and Fluorodeoxyglucose PET, have demonstrated their

effectiveness in enhancing the diagnostic performance for AD [5, 6, 7, 8]. In practice, the availability of specific

modalities for each subject is often limited due to various challenges, including high costs, lengthy acquisition times,

image corruption, and privacy concerns. For instance, in the Alzheimer’s Disease Neuroimaging Initiative (ADNI-1)

dataset [9], only 360 out of 709 subjects have fully paired PET and MRI data.

When addressing the issue of missing modalities, two predominant machine learning methods are commonly

employed. Traditional methods often discard incomplete samples from modalities [10, 5, 11]. This practice can result

in a high-dimensional small sample problem and a consequent reduction in diagnostic performance. Additionally,

researchers have introduced machine learning-based data imputation methods to overcome this limitation, aiming to

estimate missing data based on complete subject features. For example, Marlin et al. [12] covers different types of

missing data and their causes, as well as various approaches to handle missing data, including deletion and imputation

methods. Thung et al. [13] proposes a method that combines matrix shrinkage and completion techniques to diagnose

neurodegenerative diseases using incomplete multi-modality data. Notably, the aforementioned methodologies rely
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on manually extracted features, potentially failing to encompass all disease-relevant characteristics and thereby

constraining diagnostic accuracy.
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Figure 1: Comparison of the conventional method and the method in this paper.

In recent years, with the advancement of Generative Adversarial Networks (GAN), several cross-modality synthesis

algorithms have emerged. Huang et al. [14] proposes a method for cross-modality image synthesis in MRI using

joint dictionary learning, which incorporates a geometric constraint to improve the synthesis process. Additionally,

Maspero et al. [15] focuses on the evaluation of a fast synthetic-CT generation method using a pix2pix [16] method.

Moreover, Pan et al. [17] utilizes a Cycle-Consistent GAN (CycGAN) to synthesise missing PET images from MRI

data, leveraging the cycle-consistency constraint to learn the mapping between MRI and PET images and generate

synthetic PET images.

The above strategies have some limitations. Firstly, they primarily focus on cross-modality synthesis without

thoroughly evaluating the effectiveness of the synthesised images for downstream tasks. Secondly, these approaches

are tailored to address particular missing modalities but lack the capacity to handle arbitrary modality gaps within the

data. This implies that individual image generators must be trained for each modality. To mitigate these drawbacks,

Hu et al. [18] proposed a method that utilizes two GAN: one for MRI-to-PET synthesis and another for PET-to-

MRI synthesis. These GANs consist of generator and discriminator networks trained in an adversarial manner to

generate realistic images and distinguish real from synthesised images. This approach still treats image synthesis and

downstream classification tasks as two separate tasks.

In light of these considerations, we propose a unified framework called Joint Image Synthesis and Classification

Learning (JISCL) to address the challenge of incomplete multi-modal neuroimaging data. The JISCL framework is

trained and tested on incomplete modalities, as illustrated in Figure 1(b). It combines cross-modality synthesis and

multi-modal fusion learning to improve diagnostic performance. The cross-modality synthesis component of the JISCL

framework employs two Multi-Scale Generative Adversarial Network (MGAN) architectures. These architectures

are responsible for transforming between the MRI and PET modalities and extracting converted features during the

image generation process. These converted features play a crucial role in disease diagnosis. The multi-modal fusion

component integrates private features extracted from the MRI and PET modalities with the public/converted features

obtained from the image generation process. These features are fused at the decision level to enhance the classification

task. For more detailed information on the network architectures employed in the JISCL framework, please refer to

Section 3.2 of the paper.

To address the challenges of missing modalities and multi-modal data heterogeneity in Alzheimer’s disease

diagnosis, this paper makes the following key contributions:

• We propose the JISCL framework, which unifies cross-modality image synthesis and multi-modal fusion

learning within a single pipeline, rather than treating them as separate tasks.

• Unlike existing cross-modality synthesis methods that primarily focus on generating images, our framework

extracts transformed features during the synthesis process to directly enhance diagnostic performance.
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Table 1

Statistical information on the four categories of study subjects.

Label CN AD sMCI pMCI

Dataset modality COM ICOM ALL COM ICOM ALL COM ICOM ALL COM ICOM ALL

ADNI-1
MRI

93
111

213 84
86

183 116
94

222 67
82

157
PET 9 13 12 8

ADNI-2
MRI

245
3

293 136
2

148 243
6

255 85
1

86
PET 45 10 6 0

COM: Paired MRI and PET samples. ICOM: Samples with only MRI or PET.
ALL: Total samples after synthesizing missing neuroimaging data.

• We design a multi-modal fusion mechanism that effectively integrates private features (from individual

modalities) and public/converted features (from image synthesis) at the decision level, improving classification

accuracy.

• The proposed method does not rely on pre-trained modality-specific generators but instead provides a gener-

alizable approach to synthesizing missing modalities, making it adaptable to various incomplete neuroimaging

datasets.

• We introduce a joint optimization strategy that simultaneously trains the synthesis and classification compo-

nents, ensuring that the synthesized images are optimized for downstream diagnostic tasks rather than just visual

realism.

The remainder of this paper is organized as follows. Section 1 introduces the motivation and the innovation points

of the experiment. Section 2 presents content related to cross-modality neural image synthesis and joint optimization.

Section 3 presents the data, pre-processing methods, and the proposed approach. In Section 4, we first compare the

performance of the proposed approach with three other generative models in cross-modal neuroimaging synthesis.

Then, we compare the performance of the two-stage method with the JISCL diagnostic task and further compare our

method with previous research. In Section 5, we analyze the limitations of the current work.

2. Related Work

Cross-modality neural image synthesis has garnered significant attention in recent years due to its ability to generate

missing neuroimaging modalities. Several approaches have been developed to improve the quality and reliability of

synthetic neuroimages. For instance, Hu et al. [19] propose a cross-modality MRI image synthesis framework utilizing

neural architecture search, which automatically identifies the optimal network structure for synthesizing heterogeneous

MRI modalities. Wang et al. [20] introduce an auto-context model that integrates both local and global contextual

information, employing a multi-modality GAN with adversarial training and a locality-adaptive strategy to generate

high-quality PET images from MRI inputs. These methods have demonstrated substantial improvements in image

synthesis; however, they primarily focus on generating visually plausible images without explicit optimization for

downstream diagnostic tasks.

2.1. Cross-Modality Image Synthesis for Neuroimaging
A common approach to evaluating the effectiveness of synthesized neuroimaging data involves a two-stage training

paradigm (as illustrated in Figure 1(a)). In the first stage, a generative model synthesizes the missing neuroimaging

modality. In the second stage, the generated images are incorporated into the dataset to facilitate multi-modal

classification. For example, Sajjad et al. [21] introduce a deep convolutional GAN-based framework that generates

synthetic PET images to augment limited training data, thereby enhancing model performance. Similarly, Sikka et al.

[22] utilize the BPGAN framework to synthesize PET images from MRI scans, aiming to capture disease-specific

features for multi-modal AD diagnosis. Kao et al. [23] further explore cross-modality synthesis by aligning the

representations of T1-MRI and 𝐹𝐷𝐺18-PET images in a shared latent space, ensuring high-quality image translation.
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While these methods improve image synthesis fidelity, they treat image generation and classification as independent

tasks, potentially leading to suboptimal diagnostic performance. The lack of an end-to-end optimization mechanism

means that the synthesized images are not explicitly optimized for downstream clinical tasks, limiting their applicability

in real-world diagnostic settings.

2.2. Joint Optimization of Image Synthesis and Classification
Recent research efforts have sought to integrate image synthesis with multi-modal classification in a unified

framework. Liu et al. [24] propose an approach that leverages MRI and PET features during the image synthesis

process to enhance multi-modal classification. However, their method only incorporates transformed features extracted

during synthesis, neglecting the original private features of each modality. Similarly, Pan et al. [25] introduce a Feature

Consistency GAN for missing neuroimaging data generation while simultaneously optimizing classification tasks.

Nevertheless, their approach does not fully exploit the complementary information between different modalities, which

could further improve diagnostic performance. Kläser et al. [26] present an imitation learning method for PET/MRI

attenuation correction, training a deep neural network to mimic expert-labeled attenuation maps, thus improving

accuracy and robustness.

Despite these advancements, existing methods still face limitations. Many studies primarily focus on synthesizing

missing PET scans while neglecting the equally critical problem of missing MRI scans. Moreover, separating

cross-modality image synthesis from multi-modal classification tasks fails to maximize the synergy between these

components. Our approach addresses these shortcomings by introducing an end-to-end Joint Image Synthesis and

Classification Learning (JISCL) framework that optimally integrates the generation and classification processes. By

leveraging transformed features as a bridge, our method ensures that synthesized images contribute directly to improved

diagnostic accuracy, providing a more holistic solution for handling incomplete neuroimaging data.

3. Meterials and Methods

3.1. Materials and image pre-processing
We preprocessed two subsets of the ADNI [9] dataset, namely ADNI-1 and ADNI-2. The ADNI is a collaborative

research project focused on biomarkers and early detection of AD. It collects data on clinical, neuroimaging, genetics,

and biomarkers to advance our understanding of the disease and support clinical trials and treatment evaluation. ADNI

drives research for improved diagnostics and therapies. The dataset consists of four categories of subjects: Alzheimer’s

Disease (AD), Cognitively Normal (CN), progressive Mild Cognitive Impairment ( pMCI) which progresses to AD

within 36 months after baseline, and stable Mild Cognitive Impairment (sMCI) which does not progress to AD within

36 months after baseline. After removing duplicate subjects from ADNI-1 and ADNI-2, the dataset is summarized in

Table 1. It is evident that there is a significant amount of missing modalities in ADNI-1. Out of 775 subjects, only 360

have paired MRI and PET data, while 415 subjects have data for only one modality. In ADNI-2, out of 782 subjects,

73 subjects have data for only one modality. Completing the missing modalities would result in a significant increase

in the number of samples for each category in ADNI-1. The CN class increases from 93 to 213, the AD class from 84

to 183, the sMCI class from 116 to 222, and the pMCI class from 67 to 157. A similar trend can also be observed in

ADNI-2.

These findings emphasize the crucial significance of cross-modality neuroimaging synthesis. By facilitating the

generation of missing modalities, we can significantly enhance the dataset, thereby improving the resilience and

applicability of models trained on such data. The increased sample size enables more thorough analysis and enhances

the precision of neuroimaging diagnosis and classification tasks. This advancement contributes to the progress of

neuroimaging research and its practical applications.

During the data pre-processing stage, we initially performed skull stripping on the MRI scans using the FreeSurfer

software [27]. Subsequently, the PET and MRI scans were linearly aligned in pairs. To ensure spatial consistency

between the paired MRI and PET, we employed SPM12 [28] for affine mapping of the MRI and PET onto a common

MNI template. Following the pre-processing steps, all MRI and PET scans were resized to match the size of the MNI

template (182 × 218 × 182) with isotropic voxels of 1 × 1 × 1 mm. During training, we further resized the images to

128×128×128 with isotropic voxels of 1.42×1.70×1.42 mm to facilitate network construction and reduce the model

parameters.
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Figure 3: Illustration of different missing modality scenarios in neuroimaging data. The figure presents cases where MRI
and PET images are either available or absent during training and testing phases.

We conducted two sets of comprehensive experiments using the ADNI-1 and ADNI-2 datasets. In the first set of

experiments, our model was trained on the ADNI-2 dataset, and its performance was evaluated on the ADNI-1 dataset.

Throughout this process, we synthesised missing MRI and PET images. In the second set of experiments, we trained our

model on the ADNI-1 dataset and assessed its performance on the ADNI-2 dataset. Alongside synthesising missing

MRI and PET images, we also performed brain disease diagnosis. To evaluate the generalization capability of our

proposed JISCL model, we additionally tested the performance of the two-stage method using the dataset augmented

with the synthesised modalities.
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3.2. Method
The JISCL framework comprises two sub-networks: the Image Synthesis sub-network and the Classification

Learning sub-network. These sub-networks share converted features, as depicted in Figure 2.

Image Synthesis Sub-network: This network is designed to handle the four different modality missing scenarios:

Missing training modality only; Both training and testing modalities missing; Extreme testing modality missing (with

only MRI or PET modality available). The image synthesis sub-network consists of two MGAN cross-modality image

generators, which correspond to the cross-modality generation from MRI scans to PET scans and from PET scans to

MRI scans. When both modalities are present in the sample, generator 𝐺𝑃 generates PET scans from MRI scans, and

generator 𝐺𝑀 generates MRI scans from PET scans. When only one modality is present, for example, when the PET

modality is missing, generator 𝐺𝑃 first generates the missing PET scan, and then the generated PET scan serves as

input for generator 𝐺𝑀 to generate the MRI scan. The process is similar when the MRI modality is missing. When

both modalities are complete, each generator performs the modality transformation task. The purpose of this approach

is twofold: first, to enhance the capability of the image generators to produce more useful images when modality

is missing; second, to generate transformation features for classification learning, providing more shared information.

When only one modality is present, the two image generators form a structure similar to CycleGAN. Unlike CycleGAN,

however, this model does not specify source and target modalities, and can build the network based on the actual

situation, thus enhancing the effectiveness of image generation. In this case, in addition to synthesizing the missing

modality, the source modality is also reconstructed. This approach allows us to investigate how much information from

the source modality is preserved in the generated missing modality and enhances the generalization ability of the model

by synthesizing missing images. Based on this strategy, this paper presents a clever solution to the incomplete modality

problem. It effectively utilizes the complete modality to address the issue of incomplete modality and improves the

effectiveness of the synthesized images for downstream classification tasks. This joint optimization method considers

the complexity of missing modalities within a unified framework, offering a new approach for incomplete modality

and opening new paths for research and applications in medical imaging and neuroscience.

Classification Learning Sub-network: The main difference between this network and conventional networks

is that it incorporates high-dimensional transformed features, which contain shared information from cross-modal

neuroimaging synthesis, in the decision-making process. This has not been considered in previous works. The

advantage of this approach is that it can effectively extract shared information for decision-making. On this basis,

the construction of each modality network no longer needs to consider the extraction of shared features, making

the model construction easier and improving classification performance. The image synthesis sub-network and the

classification learning sub-network are not independent; the transformation features from the MRI-to-PET cross-

modal image generator and the classification learning sub-network are shared, as are the transformation features from

the PET-to-MRI cross-modal image generator and the classification learning sub-network. These two transformation

features are involved in both image synthesis and classification learning tasks. During image synthesis, the gradient

feedback from the classification learning sub-network can guide the image generation of more disease-related missing

modality images. During classification learning, the transformation features involved in cross-modal image generation

can provide shared information from the modality transformation process to participate in decision-making, thereby

enhancing the model’s generalization ability.

By extracting disease-related features from both MRI and PET modalities, the network captures modality-specific

information related to disease diagnosis and classification. These modality-specific features provide valuable informa-

tion for disease diagnosis and contribute significantly to the overall performance of classification tasks. Furthermore,

the transformation features obtained through the image synthesis process serve as an important bridge between the

synthesis and classification tasks. These transformation features represent cross-modality shared information and

guide the fusion process. By enhancing classification learning performance with these transformation features, the

Classification Learning (CL) sub-network incorporates both shared and private information, thereby improving the

accuracy of the model’s classification task. Considering both private features and transformation features enables a

more comprehensive and effective analysis of the complex relationships between different modalities, thus enhancing

the diagnostic ability of the JISCL framework.

3.2.1. Problem formulation:

Let I𝑀 denote the domain of MRI modality and I𝑃 be the domain of PET images. We denote a set of subjects

(with all MRI and PET scans, missing modality is replaced with 0) as 𝐷 =
{(

X𝑀 ,X𝑃

)
∣ X𝑀 ∈ I𝑀 ,X𝑃 ∈ I𝑃

}
. The

generator 𝐺𝑃 takes an MRI X𝑀 as input and generates the synthesised PET X𝑃𝑠𝑦𝑛
and the converted feature C𝑀2𝑃 .
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Similarly, the generator𝐺𝑀 takes a PET X𝑃 as input and generates the synthesised MRI image X𝑀𝑠𝑦𝑛
and the converted

feature C𝑃2𝑀 . If X𝑀 = 0, we use X𝑀𝑠𝑦𝑛
as the input for generator𝐺𝑃 . If X𝑃 = 0, we use X𝑃𝑠𝑦𝑛

as the input for generator

𝐺𝑀 .

By adopting this strategy, we can effectively utilize the synthesised modality information in the case of modality

missing and incorporate it into the subsequent image generation process. This approach helps improve the performance

of the generators and allows us to flexibly perform image synthesis in different modality missing scenarios. Both

generators follow the MGAN generator structure shown in Figure 4. Specifically, each image generator consists of 10

downsampling blocks, as described in Table 2. Through the downsampling blocks, the input image size is reduced from

128 × 128 × 128 to 4 × 4 × 4 (converted feature), while the channel size is increased to 𝑛𝑔𝑓 × 16 × 2. The upsampling

blocks use Upsample-conv3d-InstanceNorm3d-Relu, and the final output layer uses Tanh instead of Relu. In the

architecture, features are concatenated along the channel dimension and used for upsampling.

In our framework, feature fusion is performed using the extracted converted features C𝑀2𝑃 and C𝑃2𝑀 . Instead of

directly using synthesized MRI or PET images for fusion, we leverage the high-dimensional feature representations

extracted from the generative networks. The converted features are concatenated along the channel dimension and input

into a shared feature fusion module, which consists of a series of convolutional layers followed by batch normalization

and ReLU activation. This ensures that the extracted features from different modalities are aligned in the feature space

before classification.

To prevent the feature fusion process from degrading the quality of the synthesized images, we restrict the fusion

operation to the classification branch and do not use the fused features to generate images. By designing the network in

this way, we ensure that the converted features contribute only to the downstream classification task while maintaining

the integrity of the synthesized images for cross-modality tasks.

For classifiers 1 and classifiers 2, we use the same classification structure. Specifically, each classifier consists of

4 downsampling blocks. In each downsampling step, a Conv3d is applied with a kernel size of 3, a stride of 1, and

padding of 1. Subsequently, a 3×3×3 AvgPool3d layer is used, and the output from the fourth layer is fed into a Linear

layer for classification. For classifiers 3 and 4, we directly employ a Linear layer for classification.

In the JISCL framework, the classifier 𝐶 plays a crucial role in determining the stage of Alzheimer’s disease

for patients. The true stage information of the patients is represented by the label 𝑦. During the classification task,

the generated images are utilized for classification purposes only when either the MRI or PET modality is missing.

In contrast, if both the MRI and PET modalities are complete and available, the classification task is performed

using the real MRI and PET images instead of the generated ones. This design ensures that when complete modality

data is accessible, the classification is carried out using real images, which enhances the accuracy and reliability of

the classification task. By utilizing the generated images exclusively when modality data is missing, the framework

leverages the benefits of cross-modal image synthesis while relying on real images for more comprehensive and

accurate classification predictions.

Zhaodong Chen et al.: Preprint submitted to Elsevier Page 7 of 16



Engineering Applications of Artificial Intelligence

Table 2

Network structure of the generator.

name Layer Kernel Size Stride Padding Bias Relu attention bias

down1-5 Conv3d 3 2 1 InstanceNorm3d LeakyReLU - -
down01 Conv3d 3 2 1 InstanceNorm3d - SpatialAttention3d InstanceNorm3d
down02 Conv3d 7 4 2 InstanceNorm3d - SpatialAttention3d InstanceNorm3d
down03 Conv3d 25 7 1 InstanceNorm3d - SpatialAttention3d InstanceNorm3d
down04 Conv3d 31 15 4 InstanceNorm3d - SpatialAttention3d InstanceNorm3d
down05 Conv3d 55 27 4 InstanceNorm3d - SpatialAttention3d InstanceNorm3d

3.2.2. Joint Image Synthesis and Classification Learning:

As shown in Figure 2, our IS model is based on the MGAN, which is designed to address the challenges of

generating missing modalities and extracting converted features. The model consists of two generators (𝐺𝑀 , 𝐺𝑃 ) and

two discriminators (𝐷𝑀 , 𝐷𝑃 ). The discriminator 𝐷𝑃 takes a pair of images, including real image:
(
X𝑀 ,X𝑃

)
and

fake image ( Use [M⋅] instead of
[
X𝑀 if X𝑀 ≠ 0 else X𝑀𝑠𝑦𝑛

]
):
(
[M⋅] , 𝐺𝑃 ([M⋅])

)
, 𝐷𝑃 aims to distinguish between

real and synthesised images. The structure of the discriminator is designed based on pix2pix [16], using a Conv3d-

BatchNorm3d-LeakyReLU-Conv3d structure and outputting a single channel for classification. The objective of the

adversarial loss function is to minimize the difference between the real and synthesised images, encouraging the

synthesised images to be more realistic. Additionally, we use a reconstruction loss function to measure the similarity

between the synthesised images and the input images. By combining these loss functions, we are able to train the

IS model to generate high-quality missing modality images and their corresponding converted features. We use the

following adversarial loss to make the synthesised and real images distribution consistent.0..

𝐿
(
𝐷𝑃

)
=

∑

{𝑋𝑀∈𝐼𝑀 ,𝑋𝑃∈𝐼𝑃}

(
𝛼 ⋅ 𝛽 ⋅ log

(
1 −𝐷𝑃

(
𝑋𝑀 , 𝑋𝑃

))
+ 𝛼 ⋅ log𝐷𝑃

(
[M⋅] , 𝐺𝑃 ([M⋅])

))
,

(1)

𝛼 = 0 when X𝑀 = 0, 𝛼 = 1 when X𝑀 ≠ 0, 𝛽 = 0 when X𝑃 = 0, and 𝛽 = 1 when X𝑃 ≠ 0. When X𝑀 ≠ 0 and

X𝑃 ≠ 0, both loss terms are calculated normally. When X𝑀 = 0 and X𝑃 ≠ 0 (𝛽 = 1 and 𝛼 = 0), the loss is set to 0,

and no gradient backward. When X𝑀 ≠ 0 and X𝑃 = 0 (𝛽 = 0 and 𝛼 = 1), only the loss of 𝐺𝑃 ([M⋅]) is computed. The

𝐷𝑀 loss function is defined as equation (2).

𝐿
(
𝐷𝑀

)
=

∑

{X𝑀∈I𝑀 ,X𝑃∈I𝑃}

(
𝛼 ⋅ 𝛽 ⋅ log

(
1 −𝐷𝑀

(
X𝑃 ,X𝑀

))
+ 𝛽 ⋅ log𝐷𝑀

(
[P⋅] , 𝐺𝑀 ([P⋅])

))
,

(2)

[P⋅] is
[
X𝑃 if X𝑃 ≠ 0 else X𝑃𝑠𝑦𝑛

]
. When X𝑀 ≠ 0 and X𝑃 ≠ 0, both losses are calculated, when X𝑀 = 0 and X𝑃 ≠ 0

(𝛽 = 1 and 𝛼 = 0), only the loss of 𝐺𝑀 ([P⋅]) is calculated and when X𝑀 ≠ 0 and X𝑃 = 0 (𝛽 = 0 and 𝛼 = 1), the loss

is 0 and no gradient backward. The 𝐺𝑃 loss function is defined as equation (3).

𝐿
(
𝐺𝑃

)
=

∑

{X𝑀∈I𝑀 ,X𝑃∈I𝑃}

(
𝛼 ⋅ 𝛽 ⋅ ‖𝐺𝑃

(
X𝑀

)
− X𝑃 ‖1 + 𝛾 ⋅ 𝛽‖𝐺𝑃

(
X𝑀𝑠𝑦𝑛

)
− X𝑃 ‖1+

𝛼 ⋅ log
(
1 −𝐷𝑃

(
𝐺𝑃

(
X𝑀

)))
+ 𝛾 ⋅ 𝛽 ⋅ log

(
1 −𝐷𝑃

(
𝐺𝑃

(
X𝑀𝑠𝑦𝑛

))))
,

(3)

Where ‖ ⋅ ‖1 (denoting the 𝑙1 norm) is the synthetic image loss, and the log (⋅) is adversarial loss. When X𝑀 ≠ 0 and

X𝑃 ≠ 0, 𝛾 = 0, else, 1. Calculate the 1st and 3rd terms when X𝑀 ≠ 0 and X𝑃 ≠ 0 (𝛼 = 1, 𝛽 = 1, 𝛾 = 0), the 2nd and

4th terms when X𝑀 is missing (𝛼 = 0, 𝛽 = 1, 𝛾 = 1), and the 3rd term when X𝑃 is missing (𝛼 = 1, 𝛽 = 0, 𝛾 = 1). The

𝐺𝑀 loss function is defined as equation (4).

𝐿
(
𝐺𝑀

)
=

∑

{X𝑀∈I𝑀 ,X𝑃∈I𝑃}

(
𝛼 ⋅ 𝛽 ⋅ ‖𝐺𝑀

(
X𝑃

)
− X𝑀‖1 + 𝛾 ⋅ 𝛼‖𝐺𝑀

(
X𝑃𝑠𝑦𝑛

)
− X𝑀‖1+

𝛽 ⋅ log
(
1 −𝐷𝑀

(
𝐺𝑀

(
X𝑃

)))
+ 𝛾 ⋅ 𝛼 ⋅ log

(
1 −𝐷𝑀

(
𝐺𝑀

(
X𝑃𝑠𝑦𝑛

))))
,

(4)
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Calculate the 1st and 3rd terms when X𝑀 ≠ 0 and X𝑃 ≠ 0 (𝛼 = 1, 𝛽 = 1, 𝛾 = 0), the 3rd terms when X𝑀 is missing

(𝛼 = 0, 𝛽 = 1, 𝛾 = 1), and the 2nd and 4th term when X𝑃 is missing (𝛼 = 1, 𝛽 = 0, 𝛾 = 1). our modal classification

model is formulated in equation (5):

𝑦 = 𝐶
(
[M⋅] , [P⋅] , 𝐶𝑀2𝑃 , 𝐶𝑃2𝑀

)
, (5)

Where 𝑦 is the predicted class label (eg. CN∖AD or sMCI∖pMCI), and 𝐶 is a classifier that can identify a patients stage.

Use synthesised images for classification when MRI or PET is missing. Taking into consideration the unavoidable loss

some features in synthesised images, we incorporated three sets of weights during the training of the classifier. For

cases where both X𝑀 ≠ 0 and X𝑃 ≠ 0, the weight for [M⋅] is set to 0.34, and the weight for [P⋅] is set to 0.36. When

X𝑀 = 0 and X𝑃 ≠ 0, the weight for [M⋅] is adjusted to 0.2, while the weight for [P⋅] is set to 0.5. Similarly, when

X𝑀 ≠ 0 and X𝑃 = 0, the weight for [M⋅] is set to 0.5, and the weight for [P⋅] is set to 0.2. The weights for 𝐶𝑀2𝑃 and

𝐶𝑃2𝑀 are set to 0.15 in all three cases.

In order to jointly optimize image synthesis and classification tasks, we integrated the image synthesis loss and

classification loss. The total loss of JISCL is defined as 𝐿 (𝐺𝐶), see equation (6):

𝐿 (𝐺𝐶) = 𝐿
(
𝐺𝑀

)
+ 𝐿

(
𝐺𝑃

)
+ 𝐿 (𝐶) . (6)

During the training process, the optimization is performed in two steps.

First, the two discriminators (𝐷𝑃 and 𝐷𝑀 ) are optimized. The discriminators aim to distinguish between real and

synthetic images. The optimization process involves updating the parameters of the discriminators to improve their

ability to classify the images accurately. After optimizing the discriminators, the next step involves jointly optimizing

the IS and CL networks while keeping the discriminators fixed. This means that during this phase, the parameters of

the discriminators remain unchanged, and only the parameters of the IS and CL networks are updated.

By optimizing the IS and CL networks together, the model aims to improve the quality of the synthesised images

and the accuracy of the classification task. The shared converted features play a crucial role in guiding the synthesis

process and facilitating multi-modal fusion for classification. This joint optimization process helps to enhance the

overall performance and accuracy of the JISCL framework.

Our approach incorporates several strategies that contribute to the diagnosis of AD. Firstly, the JISCL framework

integrates the IS and CL sub-networks into a unified framework. This integration allows for joint optimization of

cross-modality image synthesis and multi-modal classification, leveraging the benefits of both tasks to improve overall

performance.

In the CL sub-network, we adopt a dynamic multi-modal image fusion strategy. When a modality is complete,

we combine the complete modality with the converted features for classification prediction. This strategy maximizes

the utilization of available modalities and enhances the accuracy of the classification task. On the other hand, when a

modality is missing, we utilize the generated modality instead of the missing modality for image classification learning.

This approach enables us to effectively handle the missing modality scenario and continue the learning process without

discarding valuable information.

Additionally, the IS and CL sub-networks share the converted features. Instead of using separately extracted

MRI/PET features, the CL network takes the converted features obtained from the IS network during image generation

as inputs. By incorporating the converted features learned by the IS network, the CL network can better capture and

retain the underlying relationships between multiple modalities from the same subject. This improves the accuracy of

classification by leveraging the Synthesised information.

4. Experiments

4.1. Evaluation of generated images
We conducted a comparative analysis of different generative models, including conventional GAN with Resnet-6,

CycGAN [29] using Resnet-6, pix2pix [16] using U-Net-128, and our proposed MGAN. To ensure a fair comparison,

we set the number of channels in the first layer of the generator (𝑛𝑔𝑓 ) to 32. We trained a total of 8 GAN models

using the ADNI-2 dataset for training, which had a larger number of paired subjects, and evaluated their performance

on the ADNI-1 dataset, which had fewer paired subjects. Three metrics, namely peak signal-to-noise ratio (PSNR)

[30], structural similarity index measure (SSIM) [31], and normalized root-mean-square error (NRMSE) [32], were

employed to assess the quality of the synthesized images.
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Table 3

Results of Image Synthesis Achieved by four Different Methods for MRI and PET of Subjects in ADNI-1, With the Models
Trained on ADNI-2.

Method
synthesis MRI synthesis PET

PSNR SSIM (%) NRMSE PSNR SSIM (%) NRMSE

GAN 27.85 87.47 1.24 25.48 91.47 0.46
CycleGAN 27.57 85.34 1.03 23.48 87.55 0.58

Pix2pix 27.24 86.12 1.25 25.69 91.72 0.46
MGAN(ours) 28.41 86.03 0.98 25.82 91.82 0.45
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Figure 5: MRI and PET scans synthesis by four methods for four typical subjects in ADNI-1, along with corresponding
ground-truth images. All four synthesis models are trained on ADNI-2.

Table 3 reveals interesting findings. Firstly, the MRI-to-PET synthesis task exhibits lower PSNR values but higher

SSIM values compared to the PET-to-MRI task. This suggests that MRI excels in preserving structural information,

while PET faces challenges due to misalignment with tissue structures. Among the four approaches, our method

demonstrates superior performance in image quality metrics for synthesised PET, whereas the SSIM metric for

synthesised MRI is comparatively lower compared to the GAN and pix2pix methods. This disparity can be attributed

to the fact that our multi-scale generative adversarial network did not leverage guided converted features at this stage.

To further refine the effectiveness of our synthesis approach, we emphasize the importance of feature selection

after feature fusion. While multi-modal feature fusion enhances the synthesis process by combining complementary

information, not all features contribute equally to the final image quality. We adopt a feature selection strategy that

prioritizes the most informative features, reducing redundancy and mitigating noise introduced during the fusion

process. This targeted selection ensures that only the most relevant features guide the synthesis, improving both the

realism and diagnostic utility of the generated images.
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Figure 5 presents a visual comparison of real and synthesised images for AD (Roster ID: 1171), CN (Roster

ID: 0672), sMCI (Roster ID: 0485), and pMCI (Roster ID: 0513) on ADNI-1. The enlarged red/green regions

on the right side allow for better observation of image details. Our MGAN (5th column) demonstrates superior

performance in generating synthesised images that closely resemble the real images (1st column), particularly in

terms of ventricle size, compared to other GANs (2nd-4th columns). This improvement can be attributed to the multi-

scale information extraction capability of our MGAN, which goes beyond voxel-level correspondence and encourages

structural similarity.

Upon closer examination of the image details, we notice that the synthesised PET images retain certain characteris-

tics from the original MRI images and exhibit differences from real PET images. This discrepancy arises from the fact

that metabolic conditions detected by PET do not align precisely with tissue structures. Additionally, the synthesised

MRI images appear slightly blurred and less structurally clear compared to the original images. This may be attributed

to the inherent lack of well-defined boundaries in PET scans. These observations underscore the inherent challenges

involved in cross-modality synthesis.

Our findings indicate that a well-defined feature selection mechanism within the fusion process is crucial for

ensuring the robustness of cross-modality synthesis. By selectively extracting the most relevant features from both

modalities, we can enhance the fidelity of generated images while preserving disease-specific biomarkers, leading to

improved diagnostic accuracy.

4.2. Evaluation of incomplete modality disease diagnosis
4.2.1. Competing Methods:

To evaluate the performance of the JISCL model, we conducted experiments on two classification tasks: AD

recognition and MCI conversion prediction. We compared the JISCL model with a traditional approach that involves

generating missing images followed by multi-modal fusion. For image generation, we utilized the MGAN model,

which achieved the best results in our experiments. For fusion, we employed three fusion methods: (1) decision-level

fusion (DF) [33]. DF: Aggregates predictions from individual models at different stages or levels to effectively capture

complementary information and improve classification performance. (2) feature-level fusion (FF) [34]. FF: Integrates

information from different modalities by combining or merging extracted features to obtain a more comprehensive and

accurate representation. and (3) low-rank multi-modal fusion (LWF) [35]. LWF: Exploits the low-rank structure of

data matrices to capture shared information across modalities and extract a common low-dimensional representation

for fused information.

To ensure fairness, we performed separate experiments on complete and incomplete modalities to assess the

effectiveness of modality completion and joint optimization. We compared the performance of the JISCL model with

the traditional approach using task-specific evaluation metrics.

4.2.2. Experimental Setup:

In terms of prediction experiments, we performed classification tasks for AD versus CN and pMCI versus sMCI

to predict conversion in patients with MCI. To evaluate the performance of disease diagnosis, we used six metrics:

(1) Area Under the Curve (AUC), (2) Accuracy (ACC), (3) Sensitivity (SEN) [36], (4) Specificity (SPE) [36], (5)

F1-Score (F1S) [37], and (6) Matthews Correlation Coefficient (MCC) [38]. These metrics were employed to assess

the performance of each method in the task of disease diagnosis.

4.2.3. Disease diagnostic results on ADNI-2:

The disease classification results obtained by different classification methods, trained on the ADNI-1 dataset and

tested on the ADNI-2 dataset, are presented in Table 4. When trained on paired data, our JISCL achieves optimal

performance in most cases. In the diagnosis of AD and CN, our JISCL achieves the best performance (except for

AUC). In the diagnosis of pMCI and sMCI, it achieves the highest F1S (58.95%) and SPE (83.76%). This indicates that

introducing converted features in JISCL improves the diagnostic performance of the model, Although in the presence

of complete modalities. This indicates that the introduced converted features in JISCL also have the advantage of

improving model performance in the presence of complete modalities.

After completing the missing modalities, there is a notable decrease in diagnostic performance for the two-stage

methods (DF, FF, LWF). All evaluation metrics demonstrate a significant decline compared to the scenario without

using synthesised neuroimaging data. In the AD/CN diagnostic task, the ACC shows a minimum decrease of 7.33%

(FF) and a maximum decrease of 20.79% (LWF). For the MCI conversion diagnostic task, the ACC experiences a
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Table 4

Disease classification results (%) by four different classification methods trained on ADNI-1 and tested on ADNI-2

Method
AD/CN Classification pMCI/sMCI Classification

ACC AUC F1S SPE SEN MCC ACC AUC F1S SPE SEN MCC

DF-C 90.29 94.41 86.25 93.06 85.29 78.75 76.83 75.82 58.70 81.48 63.53 42.96
FF-C 90.55 95.27 87.05 91.43 88.97 79.66 74.09 70.01 49.7 82.72 49.41 32.25

LWF-C 89.50 93.57 84.96 93.06 83.09 76.95 73.48 65.64 48.52 82.3 48.24 30.66
ours-C 90.71 93.92 88.11 90.35 91.30 80.64 76.07 72.32 58.95 83.76 60.87 42.13

*mDSNet-C 90.64 96.31 89.42 91.39 89.70 81.03 76.23 81.84 61.68 76.95 74.16 46.52

DF 77.55 82.44 68.17 80.55 71.62 51.03 71.55 65.15 45.20 80.00 46.51 26.03
FF 83.22 85.13 75.50 86.35 77.03 62.77 73.31 60.35 40.52 85.88 36.05 23.97

LWF 68.71 67.12 56.05 73.38 59.46 32.01 67.16 60.71 44.55 72.16 52.33 22.44
ours 95.02 95.59 92.99 94.48 96.05 89.25 80.12 72.22 59.52 90.32 53.19 47.18

*mDSNet 93.05 97.23 92.02 94.74 90.91 85.88 79.71 84.44 65.69 81.25 75.28 52.47

ours-𝐶𝑀2𝑃 95.48 96.15 93.42 96.55 93.42 89.97 78.95 78.79 57.14 84.09 61.54 43.48
ours-𝐶𝑃2𝑀 93.21 96.93 89.66 95.27 89.04 84.61 79.53 75.53 63.92 84.68 65.96 49.70

ours-
(
𝐶𝑀2𝑃 + 𝐶𝑃2𝑀

)
93.67 95.45 91.14 93.1 94.74 86.37 77.78 75.67 63.46 80.65 70.21 48.16

-C: experiments conducted on fully aligned and paired MRI and PET scans. -𝐶𝑀2𝑃 : The converted feature 𝐶𝑀2𝑃 is not utilized
in the classification network. -𝐶𝑃2𝑀 : The converted feature 𝐶𝑃2𝑀 is not utilized in the classification network. -

(
𝐶𝑀2𝑃 + 𝐶𝑃 2𝑀

)
:

The converted feature 𝐶𝑀2𝑃 and 𝐶𝑃2𝑀 is not utilized in the classification network. *:The experimental results are cited from the
paper [25], with a small difference in the number of datasets (in the single digits), and the incomplete modality was supplemented
only with PET data.

decrease of at least 0.78% (FF) and up to 6.32% (LWF). These results indicate that treating cross-modality image

generation and multi-modal fusion as separate tasks is inefficient and impairs diagnostic performance by hindering the

learning of synthesised images aligned with downstream tasks. The decline in performance can be attributed to the loss

of diagnostic features in the synthesised images and the lack of distinction between synthesised and real images in the

two-stage approach, significantly affecting the model’s learning process. In our model, there is only a slight decrease

in the AUC and SEN metrics for the sMCI and pMCI classification tasks, while all other evaluation results show

significant improvements. This indicates that our proposed method effectively addresses the problem of incomplete

modalities, and the supplemented data is effectively used for diagnosis.

In the conducted ablation study, it was interesting to observe that the optimal results were not always achieved when

both converted features (𝐶𝑀2𝑃 and 𝐶𝑃2𝑀 ) were used. In the diagnosis of AD and CN, utilizing 𝐶𝑃2𝑀 alone showed

a slight advantage over using both converted features. The model achieved the highest performance with an ACC of

95.48%, F1S of 93.42%, SPE of 96.55%, and MCC of 89.97% when utilizing the converted feature 𝐶𝑃 2𝑀 alone. One

possible explanation is that the PET-to-MRI synthesis task can achieve satisfactory results even without considering

the diagnostic outcomes. Moreover, the MRI-to-PET task consistently demonstrated higher PSNR values compared

to the PET-to-MRI task 4.1. The AD/CN diagnosis task exhibited a higher discriminative capacity compared to the

MCI conversion task, leading to more significant differences in the synthesised neuroimaging results between these

two groups. In the diagnosis of sMCI and pMCI, using both converted features achieved the highest ACC and SPE,

but with lower SEN values. This could be attributed to the difficulty in distinguishing MCI cases and the challenges

of simultaneously learning both converted features. Overall, the JISCL model proves to be effective in addressing the

issue of incomplete modalities while achieving good diagnostic performance, making it highly valuable for solving

real-world medical problems.

4.2.4. Exploration of Converted Feature Selection:

In Table 4, we observed that excluding the converted feature 𝐶𝑀2𝑃 led to a slight improvement in AD/CN

classification performance. This raises the question of whether a single-feature model might be more effective or if

specific converted features should be tailored to different classification tasks.

Additionally, we compared our method with DSNet to assess its feature extraction capabilities. While DSNet

achieves competitive performance in AD/CN classification, it underperforms in pMCI/sMCI classification. This

suggests that although DSNet effectively captures spatial disease-relevant features, our method benefits from cross-

modal feature conversion, making it more robust in handling incomplete modalities.
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Table 5

Disease classification results (%) modality dropout is at 20% trained on ADNI-1 and tested on ADNI-2

Dropout Rate Method
AD/CN Classification pMCI/sMCI Classification

ACC AUC F1S SPE SEN MCC ACC AUC F1S SPE SEN MCC

MRI(-20%)

ours-F 95.02 95.59 92.99 94.48 96.05 89.25 80.12 72.22 59.52 90.32 53.19 47.18
ours 92.31 94.14 88.74 94.46 88.16 82.90 80.07 75.72 62.07 89.52 57.45 49.53

ours-𝐶𝑀2𝑃 91.40 93.44 87.42 93.79 86.84 80.89 78.95 75.14 61.70 85.48 61.70 47.19
ours-𝐶𝑃2𝑀 91.86 93.75 88.00 94.48 86.84 81.85 77.78 68.69 51.28 85.61 51.28 36.89

ours-
(
𝐶𝑀2𝑃 + 𝐶𝑃2𝑀

)
91.40 94.19 87.90 91.72 90.79 81.34 77.78 73.66 52.50 84.85 53.85 38.03

PET(-20%)

ours 92.31 94.55 88.99 93.79 89.47 83.01 78.36 71.45 53.16 85.61 53.85 39.10
ours-𝐶𝑀2𝑃 91.40 94.24 87.42 93.74 86.84 80.89 76.61 77.72 56.52 79.55 66.67 41.93

ours-𝐶𝑃2𝑀 90.05 93.11 85.71 91.72 86.84 78.09 77.19 79.16 56.18 81.06 64.10 41.66
ours-

(
𝐶𝑀2𝑃 + 𝐶𝑃2𝑀

)
90.95 93.13 86.67 93.69 85.53 79.84 78.36 71.50 51.95 86.36 51.28 37.99

ours-F: The classification results when the test set is complete. -𝐶𝑀2𝑃 : The converted feature 𝐶𝑀2𝑃 is not utilized in the
classification network. -𝐶𝑃2𝑀 : The converted feature 𝐶𝑃2𝑀 is not utilized in the classification network. -

(
𝐶𝑀2𝑃 + 𝐶𝑃2𝑀

)
: The

converted feature 𝐶𝑀2𝑃 and 𝐶𝑃2𝑀 is not utilized in the classification network.

To further evaluate the impact of missing modalities, we conducted experiments with a 20% dropout rate for both

MRI and PET modalities, as shown in Table 5. These results indicate that DSNet, relying solely on spatial features,

lacks the adaptability of our method when handling missing modalities, whereas explicit feature conversion enhances

classification robustness.

When the MRI dropout rate is set to 20%, the model using both converted features achieves the best performance

in AD/CN classification, while single-feature models exhibit a decline in overall metrics. The advantage of using both

converted features is even more pronounced in pMCI/sMCI classification, where models without converted features

perform the worst.

Similarly, when the PET dropout rate is set to 20%, the results remain consistent with the MRI dropout scenario. The

most significant drop in accuracy occurs when 𝐶𝑃2𝑀 is excluded or when no converted features are used, suggesting

that 𝐶𝑀2𝑃 alone may not be sufficient when PET dropout is high. In the pMCI/sMCI classification task, overall

performance is poorer when PET is missing compared to MRI. The accuracy remains comparable whether converted

features are used or not, with a decline in performance when only a single converted feature is utilized. These findings

highlight that in more challenging classification tasks, the absence of PET images poses a significant limitation in MCI

classification.

4.2.5. Error Analysis

While our MGAN model demonstrates superior performance in cross-modality neuroimaging synthesis, certain

limitations remain, particularly in cases involving missing data, anatomical variations, and fine-grained structural

details.

Firstly, when conducting experiments on the original dataset, we observed that in the AD/CN classification task,

the best performance was achieved when the converted feature 𝐶𝑀2𝑃 was not used. A closer analysis of the ADNI-2

dataset reveals that PET images for the CN category are missing in 45 cases, while 10 cases are missing in the AD

category. Since the missing PET data is compensated by image generation, it inevitably introduces noise, making the

converted feature less effective in capturing shared information. Additionally, due to the limited size of the training

set, the model struggles with generalization, leading to performance degradation.

To further examine this phenomenon, we controlled the modality dropout rate in our experiments. The results

indicate that, overall, using both converted features (𝐶𝑀2𝑃 and 𝐶𝑃 2𝑀 ) provides the best performance. This suggests

that while individual converted features might introduce inconsistencies in certain tasks, their combined use enhances

robustness by leveraging complementary information.

Another key challenge is that PET images synthesized from MRI scans sometimes fail to accurately capture

subtle metabolic variations crucial for early-stage disease detection. This is primarily due to the inherent differences

between MRI, which provides structural information, and PET, which captures functional metabolic activity. Similarly,

synthesized MRI images tend to appear slightly blurred compared to their real counterparts, likely due to the lower

spatial resolution and less distinct boundaries of PET scans.
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Additionally, we observed that in cases with significant anatomical abnormalities, such as enlarged ventricles

or severe cortical atrophy in AD patients, the synthesized images tend to deviate more from the ground truth. This

suggests that the generative model struggles to handle extreme anatomical variations, possibly due to the limited

representation of such cases in the training dataset. The high inter-subject variability further exacerbates this issue,

leading to inconsistencies in generated images, especially for individuals with atypical brain structures.

Another notable limitation is the misalignment of fine-grained details between synthesized and real images.

Although our MGAN architecture encourages structural similarity, voxel-level inconsistencies persist. This issue could

be addressed by refining the loss function to emphasize local texture preservation or integrating anatomical priors to

improve synthesis fidelity.

Overall, our findings suggest that while MGAN effectively generates high-quality cross-modality neuroimaging

data, its performance is influenced by dataset limitations, missing modality challenges, and extreme anatomical

variations. Future work could focus on incorporating larger and more diverse datasets, leveraging hybrid loss functions

that combine pixel-wise and feature-based constraints, and introducing anatomical consistency constraints to further

improve synthesis robustness and clinical applicability.

5. Discussion and Conclusion

In this study, we propose an approach for diagnosing AD based on incomplete neuroimaging modalities. The

inherent complexities and uncertainties associated with modality incompleteness, particularly in the early stages of

AD, make this task exceedingly challenging. By jointly optimizing image synthesis and classification, our method

effectively leverages the synergy between generated features and diagnostic predictions, leading to enhanced perfor-

mance and deeper insights into AD pathology. This holistic approach fosters the generation of realistic and informative

images while ensuring alignment with diagnostic objectives, ultimately advancing the field of neuroimaging-based AD

research.

Through extensive experiments and evaluations, we demonstrated that the JISCL model outperforms traditional

approaches in AD diagnosis. By combining image synthesis and AD classification, our model addresses the challenges

posed by incomplete modalities and achieves promising results in this challenging task. We observed that the

performance of the JISCL model was superior to that of two-stage methods, reinforcing the effectiveness of a joint

learning strategy that optimizes both cross-modality image synthesis and disease classification in a unified framework.

The model successfully learned to generate neuroimaging data that aligns well with downstream diagnostic tasks,

resulting in improved diagnostic performance.

There are several considerations for future research in the field. Firstly, it would be valuable to explore more

advanced generative networks that are specifically tailored to different modality conversion tasks. For instance,

incorporating techniques like StyleGAN [39] or Diffusion GAN [40] could potentially enhance the quality and realism

of cross-modality image synthesis. These advanced models have shown promising results in various image generation

tasks and could be adapted to improve the synthesis of medical images.

Additionally, integrating genetic modalities into the diagnostic process is another avenue for future exploration.

Genetic biomarkers, such as APOE 𝜀4, are closely linked to AD progression and could provide complementary

diagnostic insights beyond neuroimaging. By incorporating genetic modalities into the analysis, we could potentially

improve the accuracy and reliability of disease diagnosis and prognosis. One promising approach is to utilize multi-

modal fusion techniques, such as attention-based deep learning models, to learn cross-domain interactions between

neuroimaging features and genetic data. This would allow for a more holistic understanding of disease progression and

risk factors.

Lastly, it is crucial to conduct extensive validation and evaluation studies on large-scale and diverse datasets to

validate the effectiveness and generalizability of the proposed methods. Robust and reliable evaluation metrics should

be utilized to assess the performance of the models accurately. Future efforts should also focus on real-world clinical

deployment, ensuring the model’s robustness in handling heterogeneous patient data from different imaging centers.

In conclusion, our study demonstrates the effectiveness of the proposed joint image synthesis and classification

framework for diagnosing Alzheimer’s disease using converted features from incomplete neuroimaging modalities.

By integrating image synthesis and classification into a unified model, we address the challenges posed by modality

incompleteness and achieve improved diagnostic performance. The introduction of converted features enhances

information preservation across modalities, facilitating more robust feature extraction for disease classification. Our

findings underscore the significance of considering both image generation and diagnostic tasks holistically rather than

treating them as independent processes. Future research directions include the refinement of feature fusion strategies,
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the development of more expressive generative models, and the incorporation of additional modalities, such as genetic

and clinical data, to further enhance the diagnostic capabilities of the proposed framework.
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