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Abstract

Objective: This study aimed to predict the risk of requiring a primary hip or knee replacement 

1 and 5-years in advance, using Clinical Codes.

Methods: Primary care clinical codes, sourced from ResearchOne Electronic Health Records 

(EHRs) between 1999-2014, were used to represent patient pathways prior to hip or knee 

replacement. Patient records were used to train and test models for hip or knee replacement, 

1 and 5-years in advance. Temporal graphs were constructed from clinical codes to predict 

hip and knee replacement risk, where nodes are clinical codes, and edges are the time 

between primary care visits. Hip and knee replacement cases were matched to controls by 

age, sex, and Index of Multiple Deprivation (IMD). The model was validated on unseen data, 

with performance measured using area under the receiver operator curve (AUROC), 

calibration, and area under the precision recall curve (AUPRC), recalibrating for class 

imbalance. 

Results: For knee replacement prediction, AUROC was 0.915 (95% CI: 0.914, 0.916) (1-year) 

and 0.955 (95% CI: 0.954, 0.956), (5-year) with AUPRCs of 0.353 (95% CI: 0.302, 0.403) and 

0.442 (95% CI: 0.382, 0.503), respectively. For hip replacement prediction, AUROC was 0.919 

(95% CI: 0.918, 0.920) (1-year) and 0.967 (95% CI: 0.966, 0.968) (5-year), with AUPRCs of 0.409 

(95% CI: 0.366, 0.451) and 0.879 (95% CI: 0.833, 0.924), respectively.

Conclusion: Hip and knee replacement risk can be predicted up to 5-years in advance, with a 

temporal-graph based artificial intelligence (AI) model achieving the best performance. This 

may be used for planning preventative treatment or triaging patients.

Key words: Hip, knee, joint replacement, risk prediction, electronic health records, graphs

Key messages:

• Primary care visit records can be used to predict an individual’s future joint 

replacement risk.

• Hip and knee replacement risk can be predicted 5 years in advance using patient 

data.
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• The temporal graph-based model provided the best calibration for hip and knee 

replacement risk prediction.

Graphical abstract

Introduction

Osteoarthritis (OA) is associated with decreased physical activity, pain, and increased 

morbidity (1). 32.5% of those with hip OA and 16.7% with knee OA eventually require joint 

replacement (2). OA presents a major challenge for healthcare, with musculoskeletal (MSK) 

issues accounting for 20% of primary care consultations (3,4). In 2015, £10 billion was spent 

on MSK treatment and care (5). 

In 2014, the United Kingdom (UK) National Joint Registry (NJR) recorded 83,125 hip 

replacements, with £438.9 million being spent by the UK National Health Service (NHS) on 

primary hip replacements (6,7). In 2009, OA was the fourth most common reason for 

hospitalisation (8). 25% of adults are expected to develop symptomatic OA (8). Pressure on 

hospitals will rise and with more people in pain as OA prevalence increases with ageing 
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populations (6,9). From 2003-2014, 708,311 primary total hip replacements and 772,818 

primary knee replacements were performed in the UK, with OA accounting for 93% and 96% 

of these procedures, respectively (6). 

Clinical prediction models can estimate an individual’s risk of future medical events, prior to 

any physical tests. Predicting the need for future joint replacement is valuable for resource 

planning, and clinician decision-making. For example, exercise therapy can reduce hip 

replacements by 44% (10), and early interventions can improve patient quality of life and 

lower surgery rates. 

Previously, the Temporal Graph Convolutional Neural Network (TG-CNN) methodology was 

introduced for the prediction of hip replacement risk 1-year in advance using Clinical Terms 

Version 3 (CTV3) Codes and demographics from ResearchOne data (13), which includes code 

used in this study. In this paper, four separate models are created for hip and knee prediction, 

predicting replacement risk 1 and 5-years in advance.

The Index of Multiple Deprivation (IMD) score was included as an indicator of 

sociodemographic status, based on research showing that individuals with less deprivation 

were less likely to have hip replacements (2). Additionally, age is a critical predictor, with knee 

replacement risk peaking in 60-70 year olds, and hip replacements peaking at 55 (6,14). Sex 

is also significant, women account for 60% of hip replacements and 57% of knee replacements 

(6).

The aim of this paper is to predict hip or knee replacement risk 1 and 5-years in advance, 

using CTV3 Codes constructed as temporal graphs for prediction using the TG-CNN model. 

The results from this model are compared against current state-of-the-art models. 

Methods

An electronic health record (EHR) was defined as an individual patient’s record, consisting of 

primary care CTV3 Codes with timestamps. Each visit (time step k) was defined as a unique 

date. Sequences of CTV3 Codes were transformed into individual patient graph 

representations, that were used to predict hip and knee replacement risk. 
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CTV3 Codes were used as graph nodes, while edges captured time intervals between code 

occurrences, measured in months. Each of the 512 most frequently used CTV3 codes and 6 

prescription types (acute and repeat prescriptions of: opioids, non-opioid analgesics (NOAs), 

and non-steroid anti-inflammatory drugs (NSAIDs)) were mapped to a unique node.

These graphs were then inputted into the TG-CNN model to process CTV3 Codes and time 

intervals from EHRs. For full technical details of the TG-CNN model and methodology, refer 

to previous work (13) or for the model architecture see Supplementary Figure S1.

A systematic search was carried out which answered the following question: ‘What predictive 

methods are used to assess an individual's future risk of primary hip or knee replacement 

before secondary care referral?’. Further methodology can be found in the Supplementary 

Material. 

Dataset

NHS primary care data from ResearchOne was used, comprising clinical and administrative 

data from 151,565 patients who attended healthcare practices in England using the SystmOne 

primary care EHR system. Patients had their first record of joint pain clinically coded between 

April 1st, 1999, and March 31st, 2014 (16). Included patients had a combined total of 243,700 

primary care visits, with patients having an average of 1.36 visits and a maximum of 10 CTV3 

Codes recorded per visit.

Patient Inclusion Criteria

Patients were aged 40–75 at the start of the analysis period (average age 56.67±9.37). This 

range was chosen as these patients are likely to present with MSK symptoms. Younger 

patients usually have less joint wear and only need replacements due to rare conditions or 

accidents. Focusing on those over 40 years old enhances the accuracy and clinical utility of 

prediction models by targeting the population most at risk for joint replacements and who 

are most likely to benefit from early identification and intervention. This approach reduces 

variability and improves generalisability. 
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Patients were required to have had at least two primary care visits within either 1 or 5 years 

prior to undergoing a hip or knee replacement (partial or full). Without two visits an EHR TG-

CNN graph-representation cannot be established. Clinician-selected CTV3 Codes for primary 

hip and knee replacements were used to identify the outcome, with the incident date defined 

as the first occurrence of one of these codes (Supplementary Material Tables S1-2). The 

dataset exhibited an imbalanced case-control split, reflecting a common challenge in clinical 

research where, despite the high prevalence of the underlying condition, the proportion of 

patients undergoing hip or knee replacement is relatively small.

Patients were removed if they had a CTV3 Code referring to a revision/modification of a hip 

or knee replacement before a Code suggesting primary replacement. If a patient had a 

revision of a joint but no primary joint replacement they were removed from the control 

group. CTV3 hospital referral codes associated to hip or knee replacement, were excluded to 

prevent target leakage. See Supplementary Figure S2 for the inclusion flowchart for patients 

included the hip 1-year in advance dataset.

Training and Test Set Formation

A Dell Precision 3650 machine, with an 11th generation intel 8 core i7-11700, DDR4 main 

memory with 64GB of RAM, a NVIDIA GeForce RTX 3090 24GB GPU was used to train these 

models.

Test datasets were created for each of the four models, with a random 10% selected for the 

test data. The remaining data was assigned to the training set, where each joint replacement 

patient was matched to a control. 1:1 exact matching was performed for age, sex, and IMD to 

mitigate their confounding influence on joint replacement risk prediction. Matching was 

limited to three variables to ensure sample size was not significantly affected by the 

combinatorics, which would reduce model performance. While exact matching ensures 

balanced distributions of these variables between cases and controls, it can also limit model 

generalisability by restricting variability within the training data. To address this, model 

recalibration was performed after training and optimisation, each model was recalibrated 

using a Logistic regression generalised linear model to adjust risk probabilities for the shift 

from balanced to unbalanced case-control data. The model was trained on the balanced 

dataset, using 5-fold cross-validation, with one fifth of the patients iteratively used as 
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holdout/validation data to evaluate model performance by splitting the patients randomly 

into five groups. Training on a balanced dataset, where each class was equally represented, 

ensured that the model learned to give equal importance to all classes, preventing majority 

class bias. Complete case analysis was employed to estimate the marginal effect of hip or 

knee replacement (18), under the assumption of no mortality to reduce competing risks as 

the mortality rate was 0.007%. If a patient dies before undergoing joint replacement, 

including them could introduce noise or bias as the true replacement outcome is unknown. 

Similarly, risk estimates could be skewed if mortality is included, particularly if death is 

associated with factors linked to joint replacement risk, such as serve comorbidities.

Model Predictors

To forecast replacements, patient records from 1999 until 1 or 5 years before the primary 

replacement date were collected, depending on the prediction timeframe.

Code usage in the ResearchOne dataset was analysed, counting occurrences across patients 

and visits. The top 512 CTV3 codes, representing 99.46% of recorded events and 21.76% of 

unique codes (512/2,353), were used for graph construction. Medications were appended as 

6 predictors using British National Formulary (BNF) codes, grouping drugs into opioids 

(04.07.02), NOAs (04.07.01), and NSAIDs (10.01.01), subgrouped into acute and repeat 

prescriptions. Age, sex, and IMD demographic predictors were used. With the inclusion of 6 

prescription types and 3 demographics, the total number of predictors was 521. No standard 

method exists for calculating the sample size, so it was maximised from the available dataset, 

and overfitting checks were performed.

In previous work, an ablation study was carried out to test various component effects on the 

model’s performance (13). The best model from this study (TG-CNN w/o ℓ2) was used and 

prescription records included. Including repeat and non-repeat drug prescriptions of NSAIDs, 

opioids and NOAs was useful, because although they could be prescribed for numerous 

reasons, they are a good indication of pain levels in patients.

Events occurring further in the past may have a diminishing impact on recent events. 

Previously analysis was limited to the 100 most recent primary care visits per patient to 

manage computational load. In this paper, the number of visits (kmax) used in this model was 
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explored, it was hypothesised that increasing the number of visits would enable the model to 

learn more as the prescription data would not outnumber the other nodes in the graphs. To 

determine the optimum number of visits, the distribution of time covered by the full patient 

history within the analysis period was investigated, observing the difference between the 

number of years covered in the full history versus the last 100, 150 and 200 primary care 

visits. 

Model Evaluation

The hip and knee prediction models were tested, both 1 and 5-years prediction in advance, 

with and without prescriptions. Random Forests, Logistic regression, and recurrent neural 

network (RNN) models were used as comparison models. Time was not included in 

comparison models due to their limitations. 

Calibration can be used to assess risk estimate reliability, by comparing the agreement of the 

true number of hip/knee replacements to the predicted number. It is calculated by fitting a 

Logistic regression model of the observed replacement outcomes against the predicted 

probabilities. A slope (C-slope) of 1 indicates perfect calibration, while values less than or 

greater than 1 suggest overfitting or underfitting, respectively.

Discriminative performance was assessed using Area Under the Receiver Operating 

Characteristic Curve (AUROC), which evaluates how well the model assigns higher risks to case 

patients and lower risks to controls. A perfect model has an AUROC of 1, while a poorly 

performing model scores near 0.5. Area Under the Precision-Recall Curve (AUPRC) is better 

suited for imbalanced datasets. With low positive class prevalence, AUPRC is a more suitable 

metric than AUROC, as it focuses on identifying positive cases rather than balancing both 

classes. Meaningful performance is indicated when AUPRC exceeds the positive class 

prevalence; for instance, an AUPRC above 0.05 suggests reasonable prediction if 5% of the 

population undergoes hip replacement surgery. 

Confidence intervals for C-slope, AUROC and AUPRC were calculated using Wald’s confidence 

interval calculation. 
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Data not used in training was used to compare recalibrated model results. Due to the lack of 

primary care location information, cluster analysis was not performed. AUPRC, AUROC, and 

calibration curves for sex and IMD quintile subgroups and descriptive analysis were provided 

for the TG-CNN models.

The TRIPOD-AI statement was followed for reporting of model methodology and evaluation 

(see the Supplementary Material for the completed checklist).

Ethics

Approval for the study was obtained from the School of Medicine Research Ethics 

Committee (SoMREC) at the University of Leeds (reference: SoMREC/13/079), and the 

Research Project Committee at ResearchOne (project number: 201428378A).

Results

Study Population

The hip models used 33,074 patient records (10,206 hip replacements, 30.9%), while the knee 

models used 30,492 records (8,723 knee replacements, 28.6%).

Patients living in more deprived regions (IMD 1) visited primary care on average less 

frequently (54.6 ± 56.5) than people living in less deprived regions (IMD 5) (82.9 ± 73.9).

Table 1 displays further characteristics of the included cohort data. Supplementary Table S3 

provides details of characteristics grouped by training and testing dataset, with and without 

prescriptions.

EHR Coverage

Figure 1 shows that kmax=200 provided optimal coverage, with all patients having at least 25% 

of their records covered and less than 1% with incomplete EHR coverage (1999–2014). Figure 

2 indicates patients had, on average, over 6 years of EHRs during this period.
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Using the last 200 visits, coverage was 98.71% for hip 1-year data, 98.38% for hip 5-year data, 

98.55% for knee 1-year data, and 98.50% for knee 5-year data.

Model Performances

Table 2 shows the performance metrics for each of the TG-CNN and comparison models. 

Figure 3 shows the calibration curves for all the models in Table 2. Calibration curves are 

important to plot to show accuracy of predicting model correctness (19). The calibration 

curves showed that the TG-CNN models fitted the population well, whilst the comparison 

models had poor calibration. All TG-CNN models without prescriptions, except the hip 5-year 

advance model, predicted no patients would need a replacement (positive predictive value 

(PPV) = 0). The hip 5-year advance model had the highest sensitivity among all models. Logistic 

regression outperformed all models except the hip 5-year advance model. The Logistic 

Regression and Random Forest models underestimated the risk of needing hip or knee 

replacement, whilst the RNN model overestimated the risk. The hip 5-year in advance 

prediction Logistic regression model had good calibration, however the other comparison 

models with C-slope values close to 1 were largely due to non-linear calibration. 

Supplementary Figures S3-4 show sensitivity and specificity scores for each probability 

threshold for the TG-CNN and Logistic regression models.

All TG-CNN models had non-overlapping confidence intervals when comparing AUPRC with 

and without prescriptions, suggesting a significant difference when including prescriptions in 

the model. However, C-slope confidence intervals slightly overlapped in 5-year advance 

models for hip and knee replacement risk. Two-sample t-tests yielded p-values of 0.0 (95% 

confidence) when comparing AUPRCs and AUROCs with and without prescriptions, and 

between Logistic regression and TG-CNN models with prescriptions, confirming significant 

differences. See Supplementary Table S4 for details.

Subgroup analysis showed females had higher AUPRC scores (0.030–0.097) than males across 

all TG-CNN models. IMD 4 groups performed best, while IMD 1 and 2 scored lower. The hip 

5-year model had the best generalisability, with all subgroups scoring above 0.864. AUPRC 

ranges were smallest in the knee 1-year model (0.288–0.430). See Figure 4 and 

Supplementary Figures S5 and S6 for details.
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Five papers were identified as relevant to the systematic search research question (20–24). 

The model with the best performance for hip and knee replacement risk was the Oxford Knee 

and Hip Score (OKHS) model (20), with AUROCs of 0.87 and 0.83 for hip and knee prediction. 

The TG-CNN model outperformed the current state of the art risk prediction tools for hip and 

knee replacement by AUROCs of 0.1 and 0.13, respectively. Further details of the search 

results can be found in the discussion and Supplementary Materials.

Discussion

This work shows that hip and knee replacement risk can be predicted 1 to 5 years in advance 

using routine primary care data from up to 200 patient visits. Predicting replacement risk 5 

years in advance outperformed 1-year predictions in all models except the RNN knee model. 

The 5-year hip model may have performed better due to a higher hip replacement prevalence 

(0.227) compared to the 1-year group (0.069). The TG-CNN produced the best calibration 

curves for risk prediction.

The 5-year prediction models outperformed expectations despite less data and fewer 

patterns, possibly due to reduced noise, stronger long-term predictors, less overfitting, or a 

clearer signal from long-term health deterioration.

Subgroup analysis showed the models performed slightly worse on males, possibly due to the 

higher prevalence of joint replacements in females. Subgroup analysis revealed that patients 

in the IMD 4 group generally had better model performance, while those in more deprived 

regions showed worse performance, despite higher replacement prevalence in these groups. 

The data showed more frequent visits and larger numbers of records in less deprived 

populations, possibly due to limited access to primary care in more deprived areas, resulting 

in less EHR data (27,28). 

While subgroup analyses were conducted across age, sex and IMD, other biases may be 

present in the training data that could affect the fairness of the model across populations. 

These biases can arise from data collection methods, representation of different groups, and 

model characteristics. The distribution of age in the training data may not reflect the true 

population. If age groups are over or underrepresented the model may perform differently 

across age subgroups, leading to biased predictions. If sex imbalance exists, the model may 
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be biased and favour the overrepresented sex. If certain deprivation levels are 

underrepresented, or the diversity of socio-economic status is not captured sufficiently, the 

model may struggle to predict fairly across IMD groups. Further work is required to monitor 

and address model prediction biases, particularly in new out-of-sample data.

Resampling to correct for class imbalance can over-estimate risk and may not improve re-

calibration in some models. However, the TG-CNN model showed improved performance 

after re-calibration on out-of-sample imbalanced data, despite being trained on balanced 

data. 

Logistic regression was used to recalibrate the model, as this model is simple and effective to 

transform predicted values into calibrated probabilities, even when applied to more complex 

models such as TG-CNN. However, recalibration with Logistic regression assumes that the 

predicted probabilities are linearly related to the logits which may not always capture 

complex data relations. Additionally, while re-calibration can enhance calibration, it does not 

affect discrimination (29).

Related Work

The Oxford Knee and Hip Score (OKHS) screens patients for surgical or non-surgical hip and 

knee referrals using brief surveys on pain and mobility, achieving AUROCs of 0.83 for knee 

referrals and 0.87 for hip referrals (20). 

A Fine and Gray competing risk model estimates the 5-year risk of total knee replacement 

using factors like age, previous knee replacement, non-replacement knee surgery, OA 

prescriptions, comorbidity index, and mental health, achieving an AUROC of 0.67 (21). 

Cumulative incidence equations estimated the 10-year risk of hip or knee replacement in 

individuals with OA and/or pain, yielding an AUROC of 0.72 for hip replacement and 0.78 for 

knee replacement. Key predictors for knee replacement included oral NSAIDs, opioid 

prescriptions, intra-articular injections, and prior arthroscopic knee surgery, while a history 

of hip injury was a strong indicator for future hip replacement risk (22).

A knee replacement risk model for OA patients using Random Survival Forests achieved an 

AUROC of 0.807, incorporating predictors like sex, age, education, body mass index (BMI), 

occupational activity, smoking, medical history, pain medication, knee injury and surgery, 
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knee pain and stiffness, and use of a walking aid. Interpretability methods identified pain 

medication, age, surgery, diabetes, and BMI as the top risk factors for knee replacement (23).

Total knee replacement risk was modelled using Cox proportional hazards with primary and 

secondary care predictors in patients with recent knee pain. The secondary care model, based 

on demographics, knee pain, analgesics, Western Ontario and McMaster Universities 

Osteoarthritis Index (WOMAC) pain score, and Kellgren-Lawrence grade, outperformed the 

primary care model, which included additional features like BMI and knee arthroscopy 

history, achieving an AUROC of 0.87 versus 0.79 (24).

The TG-CNN models improved hip and knee replacement risk prediction by incorporating a 

broad range of predictors, including IMD score, CTV3 codes, and mental health factors, 

extending beyond OA patients or those with recent joint pain. Unlike previous models, it 

covers both partial and total replacements and captured temporality using graphs, allowing 

repeated predictors like painkiller prescriptions to estimate pain severity. TG-CNN models 

also offer patient-specific trajectory importance, enhancing explainability and supporting 

clinical decision-making. This comprehensive approach reduces the likelihood of missing 

patients with atypical pathways to replacement.

Limitations

This model has not undergone external validation as it has not been tested on external 

datasets for generalisability, though re-calibrated out-of-sample data suggests good 

performance on new cases. The dataset lacked ethnicity, a valuable predictor for hip 

replacement, which could improve explainability for clinicians and patients. Only CTV3 codes 

and limited demographics were used, while including imaging data might enhance predictions 

(24,30). However, using CTV3 codes minimises reliance on costly methods, enabling earlier 

predictions for intervention at the primary care level. Prior to speciality joint clinic referral, a 

patient will unlikely have joint images in their EHR, limiting that data type inclusion, however 

other clinical data such as pain scores could be beneficial to improving joint replacement risk 

accuracy. The dataset's regional coverage and size were limited compared to datasets such 

as Clinical Practice Research Datalink (CPRD). These models were also trained on recorded 

replacement dates, rather than optimum surgery times, this meant that waiting times were 

not considered. CTV3 codes are no longer used, however this model could be retrained or 
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revalidated in future research with alternative clinical codes using the same methodology as 

provided in this paper.

While the 512 CTV3 codes covered 99.46% of recorded clinical events, we did not assess the 

impact of using fewer codes. However, given the high coverage, rerunning the analysis was 

unlikely to provide additional insights.Conducting a meta-analysis of various interventions 

could help assess their costs and associated risks, potentially identifying more cost-effective 

approaches. Involving patients and public for risk grouping, alongside performing decision 

curve analysis, could further demonstrate whether these strategies are viable for reducing 

healthcare costs. The TG-CNN model could assist in triaging patients for follow-up care by 

integrating into primary care systems to provide hip or knee replacement risk scores based 

on joint pain CTV3 codes. Efforts are also underway to develop explainable methods that 

visually highlight which parts of the EHR contribute to the model's risk score. This paper 

focuses on the development of the TG-CNN model, while the optimisation of computational 

resources and runtime performance required for deployment falls outside the scope of this 

study. As clinical information systems such as EMIS web are cloud based, computational 

resources should not be an issue for primary care implementation.

Clinical Utility

Early prediction increases clinical utility for treatment and care planning. However, the 1 year 

in advance model may also be useful for short term risk, for example in patients experiencing 

severe pain or reduced mobility, their clinician may wish to observe the likelihood of them 

needing a replacement sooner. 

Integrating this model into clinical workflows can enhance decision-making in primary care by 

improving referral pathways and optimising resource use. It could assist General Practitioners 

(GPs) by identifying patients needing specialist referrals based on longitudinal health data, 

reducing unnecessary referrals, and acting as an early warning system similar to that of the 

eFalls tool by detecting frailty earlier via risk thresholding (31). This may pick up on cases that 

the GP may not have otherwise noticed. For successful implementation, the model must be 

embedded in EHRs, be interpretable and continuously monitored for accuracy. 

In conclusion, the TG-CNN models developed in this work demonstrate potential for 

forecasting the likelihood of hip or knee replacement in 1 or 5 years. By identifying individuals 
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at risk, these tools could support proactive clinical interventions aimed at preventing or 

delaying joint replacement through targeted management strategies. Implementation could 

enhance operational planning by anticipating future surgical demands and resource 

allocation. Integrating such predictive models into clinical workflows represents an 

opportunity to improve patient outcomes and optimise healthcare delivery.
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Tables/Figures 

Tables

Table 1: Replacement prediction model cohort characteristics. The BMI statistics are derived from the last recorded BMI 
measurement of each patient. The first recorded index of multiple deprivation (IMD) value for each patient was used, given 
its stability over time.

Hip 1 Year Hip 5 Years Knee 1 Year Knee 5 Years

Characteristic (N=33,074) (N=24,732) (N=30,492) (N=24,370)

Sex: female (N (%)) 20,562 (62.2) 15,252 (61.7) 18,482 (60.6) 14,837 (60.9)

Hip/Knee replacements (N (%) 10,206 (30.9) 5,857 (23.7) 8,723 (28.6) 5,543 (22.7)
Age, y 

mean(std) 72.5 (9.9) 71.4 (10.2) 72 (9.8) 71 (9.9)
median(min,max) 73 (53,89) 71 (53,89) 72 (53,89) 71 (53,89)
mode 88 88 88 66

Age at replace, y 
mean(std) 69.2 (8.5) 70.6 (8.5) 68.9 (8.1) 69.6 (8.2)
median(min,max) 70 (43,90) 71 (48,90) 69 (46,89) 70 (47,89)
mode 77 77 75 75

BMI (N (%))
Severely obese 1,017 (3.1) 792 (3.2) 1,205 (4.0) 943 (3.9)
Obese 9,480 (28.7) 7,062 (28.6) 9,538 (31.3) 7,474 (30.7)
Overweight 12,208 (36.9) 9,101 (36.8) 10,948 (35.9) 8,775 (36.0)
Healthy weight 8,193 (24.8) 6,052 (24.5) 6,855 (22.5) 5,578 (22.9)
Underweight 544 (1.6) 416 (1.7) 437 (1.4) 367 (1.5)
Missing 1,632 (4.9) 1,309 (5.3) 1,509 (4.9) 1,233 (5.1)

IMD, quintile (replacements / total 
(%))

1 (most deprived) 2,749/8,301 (33.1)
1,588/6,104 
(26.0)

2,021/7,007 
(28.8)

1,280/5,611 
(22.8)

2 2,546/7,836 (32.5) 1,452/5,753 
(25.2)

2,035/6,966 
(29.2)

1,282/5,515 
(23.2)

3 2,246/7,125 (31.5) 1,267/5,128 
(24.7)

1,937/6,544 
(29.6)

1,234/5,172 
(23.9)

4 1,493/5,116 (29.2) 852/3,876 
(22.0)

1,435/5,002 
(28.7)

919/4,057 
(22.7)
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5 (least deprived) 1,172/4,696 (25.0) 698/3871 (18.0) 1295/4973 
(26.0)

828/4,015 
(20.6)

Events Recorded 
mean(std) 58.0 (91.8) 61.9 (97.5) 66.5 (99.8) 63.9 (95.4)
median(min,max) 23.0 (2,1,890) 24.0 (2,1,255) 29.0 (2,1,494) 29.0 (2,1,890)
mode 2 2 2 2
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Table 2: AUPRC, C-slope and AUROC results for the models on the unseen test data set. Random Forests and Logistic Regression models contained demographics, prescriptions and CTV3 Codes 
as predictors. RNN models contained prescriptions and CTV3 Codes. AUPRC thresholds based on prevalence for each dataset are as follows: hip 1 year = 0.069, hip 5 years = 0.227, knee 1 year 
= 0.059, knee 5 years = 0.041 (AUPRC scores lower than their respective threshold can be deemed as uninformative models). Where for example, the AUPRC threshold for the hip 1 year model 
was selected at 0.069 as 6.9% of the patient’s data used in this model had a hip replacement procedure. Positive predictive value (PPV). 

Model AUPRC [95% CI] C-slope [95% CI] AUROC [95% CI] PPV Sensitivity Specificity
Hip 1 year in advance

TG-CNN with prescriptions 0.409 [0.366, 0.451] 0.976 [0.970, 0.983] 0.919 [0.918, 0.920] 0.474 0.232 0.981

TG-CNN w/o prescriptions 0.192 [0.164, 0.219] 1.075 [1.065, 1.084] 0.734 [0.732, 0.736] 0.000 0.000 1.000
RNN with prescriptions 0.293 [0.260, 0.325] 1.050 [1.040, 1.061] 0.895 [0.894, 0.896] 0.100 0.002 0.999
Random Forest with prescriptions 0.431 [0.389, 0.472] 0.996 [0.990, 1.001] 0.933 [0.932, 0.933] 0.497 0.194 0.986
Logistic Regression with prescriptions 0.477 [0.428, 0.525] 0.995 [0.989, 1.001] 0.938 [0.937, 0.938] 0.586 0.255 0.987
Hip 5 years in advance
TG-CNN with prescriptions 0.879 [0.833, 0.924] 1.047 [1.034, 1.061] 0.967 [0.966, 0.968] 0.822 0.836 0.947

TG-CNN w/o prescriptions 0.762 [0.704, 0.820] 1.059 [1.046, 1.072] 0.913 [0.911, 0.915] 0.752 0.655 0.937
RNN with prescriptions 0.184 [0.158, 0.209] 1.073 [1.059, 1.088] 0.894 [0.893, 0.895] 0.000 0.000 0.999
Random Forest with prescriptions 0.567 [0.507, 0.627] 0.969 [0.961, 0.978] 0.969 [0.968, 0.969] 0.726 0.319 0.995
Logistic Regression with prescriptions 0.620 [0.564, 0.676] 1.021 [1.010, 1.032] 0.973 [0.973, 0.973] 0.725 0.336 0.994
Knee 1 year in advance
TG-CNN with prescriptions 0.353 [0.302, 0.403] 0.997 [0.989, 1.005] 0.915 [0.914, 0.916] 0.528 0.108 0.994

TG-CNN w/o prescriptions 0.140 [0.115, 0.165] 1.094 [1.077, 1.110] 0.661 [0.658, 0.664] 0.000 0.000 1.000
RNN with prescriptions 0.193 [0.171, 0.216] 0.901 [0.892, 0.910] 0.864 [0.863, 0.866] 0.000 0.000 0.996
Random Forest with prescriptions 0.335 [0.294, 0.376] 0.953 [0.948, 0.958] 0.925 [0.924, 0.926] 0.392 0.128 0.987
Logistic Regression with prescriptions 0.374 [0.326, 0.423] 0.965 [0.959, 0.972] 0.928 [0.927, 0.929] 0.550 0.126 0.994
Knee 5 years in advance
TG-CNN with prescriptions 0.442 [0.382, 0.503] 0.980 [0.970, 0.991] 0.955 [0.954, 0.956] 0.525 0.209 0.992

TG-CNN w/o prescriptions 0.238 [0.199, 0.277] 0.990 [0.981, 0.999] 0.856 [0.853, 0.858] 0.000 0.000 1.000
RNN with prescriptions 0.146 [0.126, 0.166] 0.951 [0.938, 0.965] 0.860 [0.859, 0.862] 0.000 0.000 1.000
Random Forest with prescriptions 0.467 [0.410, 0.524] 0.997 [0.989, 1.004] 0.963 [0.963, 0.964] 0.649 0.205 0.995
Logistic Regression with prescriptions 0.500 [0.438, 0.561] 0.975 [0.966, 0.984] 0.965 [0.965, 0.966] 0.680 0.236 0.995
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Figure legends

Figure 1: Percentage of EHR covered by including different numbers of visits (100,150 and 
200) 1 year in advance for hip replacement prediction.

Alt text: Graph showing percentage of patients (y-axis) EHR covered (x-axis) when using 
three different timestep coverage periods. Using the last 200 timesteps gave the best EHR 
coverage.

Figure 2: Observation period for one-year in advance hip replacement prediction, exploring 
coverage based on different numbers of visits. The distribution of the length of time 
observed within 15-year EHR data is shown when using the last 100, 150, and 200 primary 
care visits, compared to full coverage.

Alt text: Four boxplots showing number of visits (x-axis) and the observation period (y-axis). 
The more visits covered, the larger the observation period average.

Figure 3: Calibration curves for all TG-CNN (left) and baseline models (right) for both hip 
(top 2) and knee (bottom 2) replacement models, 1 and 5 years in advance. Random Forest 
(RF), Recurrent Neural Network (RNN), and Logistic Regression (LR).

Alt text: A grid of calibration curves showing the difference between the TG-CNN model and 
the baseline models for predicting hip and knee replacement. The TG-CNN models have 
calibration curves close to the diagonal, whilst the baseline model calibration curves show 
risk underestimation.

Figure 4: Forest plot showing AUPRC scores and 95% confidence intervals for each of the 
TG-CNN models (with prescription data included) and subgroups.

Alt text: A forest plot with AUPRC on the x-axis and model names and subgroups on the y-
axis to visualise the performance of the models and their subgroups. Each horizontal line 
represents the confidence interval for a subgroup, with a marker indicating the mean 
AUPRC.
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