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An Interpretable Deep Learning Approach for

Alzheimer’s Disease Diagnosis Using Gene

Expression Data

Abstract—With the global ageing population, the diagnosis of1

Alzheimer’s disease (AD) has become an urgent public health2

priority. Gene expression techniques offer the advantages of being3

less invasive and cost-effective, but their high dimensionality4

and small sample sizes make them prone to the curse of5

dimensionality in AD diagnosis. This study proposes a novel6

interpretable deep learning approach to address these challenges.7

We introduce a shallow sparse autoencoder for dimensionality8

reduction and combine it with XGBoost for classification, achiev-9

ing an Area Under the Receiver Operating Characteristic curve10

(AUROC) of up to 95.13%. Additionally, we develop a fast, low-11

cost feature selection algorithm that dynamically adjusts feature12

elimination to enhance model efficiency. Comprehensive cross-13

dataset evaluation demonstrates the model’s strong generalisa-14

tion performance on the public datasets: Alzheimer’s Disease15

Neuroimaging Initiative (ADNI), AddNeuroMed1 (ANM1), and16

ANM2. Our method also provides biological interpretability17

through enrichment analysis, offering insights into the mech-18

anisms underlying AD and potential therapeutic targets. This19

makes our approach a promising tool for early, accurate diagnosis20

and clinical application.21

Index Terms—feature selection, dimensionality reduction, en-22

richment analysis, gene expression, alzheimer’s disease, deep23

learning24

I. INTRODUCTION25

A
LZHEIMER’S disease (AD) is a progressive neurode-26

generative disorder that affects millions of people around27

the world. It is characterised by gradual loss of memory and28

cognitive functions, leading to a decline in the ability to per-29

form daily activities. From 2000 to 2019, the recorded deaths30

attributed to Alzheimer’s disease increased by 145%, more31

than doubling in number [1]. The World Health Organization’s32

report indicates that currently, there are more than 50 million33

individuals globally who have dementia, and this number is34

projected to nearly triple by the year 2050 [2]. In contrast,35

deaths from the leading cause of death, which is heart disease,36

decreased by 7.3% [1]. This indicates that as the population37

ages, Alzheimer’s disease has become a more prevalent cause38

of death. The early stage of the disease presents a crucial op-39

portunity to implement interventions aimed at modifying and40

preventing the progression of the disease, achieving maximum41

effectiveness. Despite significant advances in understanding42

the pathology of AD, early diagnosis remains a challenge.43

This is largely due to the complex nature of the disease, which44

involves multiple genetic and environmental factors.45

As researchers delve deeper into Alzheimer’s disease, while46

clinical core based on impairment of episodic memory are47

currently the main diagnostic criterion, other biomarkers are48

gradually being introduced into the AD diagnostic process as49

well. In a 2007 study, Dubois et al. recommended that in50

addition to the clinical core of early and significant episodic 51

memory impairment, the NINCDS-ADRDA and DSM-IV-TR 52

criteria, which are the most popular diagnostic criteria, should 53

also take into account at least one or more biomarkers that 54

have been shown to be effective in the diagnosis of AD, 55

such as magnetic resonance imaging (MRI), positron emission 56

tomography (PET) and cerebrospinal fluid (CSF) [3]. MRI, 57

FDG-PET, amyloid PET, and CSF biomarkers can detect early 58

brain and body changes related to Alzheimer’s disease. MRI 59

shows brain tissue shrinkage in the medial temporal lobe. 60

FDG-PET shows brain cell glucose use. Amyloid PET shows 61

amyloid plaque accumulation in the brain. CSF biomarkers 62

show Aβ and tau protein levels and ratios in the cerebrospinal 63

fluid. These proteins and plaques are signs of Alzheimer’s 64

disease. Due to the complex pathology of Alzheimer’s disease, 65

multi-omics data-based AD diagnostic studies [4]–[7] have 66

become a hot topic in recent years. However, each of these 67

diagnostic methods has some drawbacks, such as cognitive 68

scales that rely on subjective diagnosis by clinicians, CSF 69

being an invasive approach, and MRI and PET being expen- 70

sive. The World Health Organisation (WHO) projects that the 71

population of individuals aged 80 years or older will triple 72

by 2050, reaching 426 million [8]. Among them, two-thirds 73

are expected to reside in lower- and middle-income nations 74

[8]. Therefore, a more affordable and less invasive method 75

of objective diagnosis is needed to make early diagnosis of 76

Alzheimer’s disease widely available. 77

Gene expression testing represents a more affordable and 78

cost-effective approach to the early detection of Alzheimer’s 79

disease (AD) compared to neuroimaging techniques. While 80

gene expression testing typically costs under £100, neuroimag- 81

ing tests such as magnetic resonance imaging (MRI) range 82

from £500 to £1,500, and positron emission tomography (PET) 83

tests can cost £1,400 to over £4,900. The lower cost of 84

gene expression testing makes it a more accessible diagnostic 85

option, particularly in resource-limited settings, and its ability 86

to identify early biomarkers of AD has significant potential 87

to promote early diagnosis. Early detection facilitates timely 88

intervention, which is critical for improving patient outcomes 89

and potentially slowing the progression of the disease. Recent 90

research has highlighted the potential of gene expression 91

data in improving the accuracy of AD diagnosis [9]–[12]. 92

Gene expression is the process by which genes are tran- 93

scribed to produce active proteins. Gene expression data, also 94

known as transcriptomics data, refers to data reflecting mRNA 95

abundance based on DNA microarray experiments. This in- 96

formation can be used to identify patterns and correlations 97

that may be indicative of disease states. However, the high 98
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dimensionality and complexity of gene expression data present99

significant challenges. Traditional statistical methods often100

lack the ability to capture complex patterns and interactions101

among genes. Therefore, if conventional statistical methods102

or machine learning algorithms are applied directly, they103

often encounter the ’curse of dimensionality’, particularly in104

contexts where the number of features (e.g., genes) far exceeds105

the number of samples. While this issue is more pronounced106

in single-cell gene expression data due to the interplay of107

cells, genes, individuals, and time points, it remains relevant in108

bulk gene expression analysis for Alzheimer’s disease (AD).109

Genome-wide expression profiling for AD often involves tens110

of thousands of genes, necessitating dimensionality reduction111

techniques to identify informative biomarkers, improve model112

performance, and enhance interpretability. It means that as113

the number of features increases, the performance and in-114

terpretative capability of the model may instead decrease.115

Furthermore, these methods often require a priori knowledge116

of the disease, which may not always be available.117

In the context of processing high-dimensional data, both118

deep learning and traditional machine learning methods offer119

distinct advantages and limitations. Deep learning techniques,120

such as neural networks and their variants (e.g., convolutional121

neural networks and recurrent neural networks), excel in122

dimensionality reduction due to their ability to automatically123

learn complex representations and features from raw data124

[13], [14]. These methods leverage hierarchical architectures125

to capture intricate patterns in high-dimensional spaces, often126

resulting in superior performance for tasks such as image and127

speech recognition [15]. However, this performance comes128

at the cost of interpretability, as deep learning models are129

often described as ”black boxes” due to their complex and130

opaque internal mechanisms [16], [17]. In contrast, traditional131

machine learning methods, such as linear regression, support132

vector machines (SVMs), and decision trees, offer greater in-133

terpretability and transparency [18], [19]. These models allow134

for a clearer understanding of how input features influence135

predictions, which is crucial in domains requiring explanations136

for decision-making, such as healthcare and finance [20].137

Nonetheless, traditional methods may struggle with high-138

dimensional data due to their limited capacity to capture139

complex relationships, often leading to lower predictive perfor-140

mance compared to their deep learning counterparts [21], [22]141

In recent years, for the high-dimensional small sample size142

problem in the field of AD diagnosis, there have been research143

attempts to solve it by combining the high performance of deep144

learning with the high interpretability of traditional machine145

learning or statistical learning [23]. The choice between deep146

learning and traditional machine learning approaches involves147

a trade-off between performance and interpretability, with each148

method offering unique benefits suited to different types of149

problems and data characteristics.150

The main contributions and novelties of this work are151

summarised as follows:152

1) Proposed an interpretable deep learning framework153

for Alzheimer’s disease diagnosis: A shallow sparse154

autoencoder was developed to extract biologically in-155

terpretable high-level features from gene expression156

data. This approach demonstrated superior diagnostic 157

performance compared to traditional deep learning mod- 158

els, achieving an Area Under the Receiver Operating 159

Characteristic curve (AUROC) of up to 95.13%. The 160

interpretability of the extracted features enhances the 161

model’s potential utility in clinical and research contexts. 162

2) Designed a novel, computationally efficient feature 163

selection algorithm for gene expression data: A 164

fast and low-cost feature selection algorithm was in- 165

troduced, capable of dynamically adjusting the number 166

of eliminated features to efficiently identify high-weight 167

features. This method reduces computational overhead 168

while maintaining diagnostic accuracy, making it partic- 169

ularly suitable for processing large-scale datasets. 170

3) Conducted extensive cross-dataset generalisation 171

analysis: The proposed framework was rigorously eval- 172

uated for cross-dataset generalisability. Trained on the 173

ADNI gene expression dataset, the model achieved 174

strong classification performance on external datasets, 175

including ANM1 and ANM2, demonstrating its adapt- 176

ability and broad applicability to different gene expres- 177

sion datasets in Alzheimer’s research. 178

The rest of the paper is organised as follows: the ’METH- 179

ODS’ section describes the details of the dataset and an 180

overview of the methodology, the ’EXPERIMENTAL RE- 181

SULTS AND ANALYSIS’ section presents and discusses the 182

results of the experiments, and the ’CONCLUSION’ section 183

summarises the outcomes and points out the future work. 184

II. RELATED WORK 185

The use of gene expression data for disease diagnosis has 186

been extensively studied in recent years [24], [25]. Various 187

feature selection methods have been proposed to identify 188

relevant genes from high-dimensional gene expression data. 189

Booij et al. conducted a study to develop a blood-based gene 190

expression test for the early detection of Alzheimer’s Disease 191

[26]. They utilized oligonucleotide microarray analysis on 192

blood samples from 94 AD patients and 94 healthy controls, 193

employing a Jackknife gene selection method and Partial 194

Least Square Regression (PLSR) to create a disease classifier 195

algorithm. This algorithm, based on 1239 probes, achieved 196

an accuracy of 87%, sensitivity of 84%, and specificity of 197

91%. Lunnon et al. (2013) proposed a blood gene expression 198

marker for early diagnosis of Alzheimer’s Disease (AD) 199

using data from HT-12v3 BeadChips [27]. They developed 200

an AD diagnostic classifier in a training cohort of 78 AD 201

and 78 control blood samples, achieving 75% accuracy in a 202

validation group. The classifier was compared with structural 203

MRI measures, showing 70% accuracy for gene expression 204

versus 85% for MRI. The study highlighted the potential of 205

blood expression markers to detect AD earlier in the prodromal 206

phase. Li et al. conducted a comprehensive analysis to identify 207

differentially expressed genes (DEGs) in blood and brain 208

tissues of Alzheimer’s Disease (AD) patients [28]. They uti- 209

lized microarray gene expression profiles from large datasets, 210

applying the limma R package for DEG identification. For 211

feature selection, they employed the Least Absolute Shrinkage 212
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and Selection Operator (LASSO) regression, combined with213

Support Vector Machine (SVM), Random Forest (RF), and214

logistic Ridge Regression (RR) models. The study revealed215

significant overlaps in DEGs between blood and brain tissues.216

However, they may encounter challenges in high-dimensional217

and complex gene expression datasets, as evidenced by the218

results of this study. The average AUC values for the ADNI,219

ANM1, and ANM2 datasets were 0.657, 0.874, and 0.804,220

respectively, with further performance degradation observed221

during external validation across datasets. These findings sug-222

gest potential overfitting due to the curse of dimensionality,223

which can limit generalisability.224

Deep learning techniques have shown promise in han-225

dling high-dimensional data and capturing complex patterns.226

Ahmed et al. explore various deep learning algorithms for227

the classification of gene expression data, which is crucial in228

bioinformatics, particularly for cancer classification [29]. The229

study evaluates the performance of Deep Neural Networks230

(DNN), Recurrent Neural Networks (RNN), Convolutional231

Neural Networks (CNN), and an improved DNN with a pre-232

processing technique to handle overfitting. The improved DNN233

incorporates Dropout to enhance accuracy. The authors also234

discuss several feature selection methods, including Sequential235

Random k-Nearest Neighbours (SRKNN), Single Sequential236

Feature Selection (SSFS), Incremental Wrapper-based feature237

subset selection with Markov Blanket (IWSSMB), and a hy-238

brid genetic algorithm and learning automata (GALA). While239

these methods show promising results, they often suffer from240

high computational complexity and sensitivity to noisy data,241

which can impact the robustness and generalizability of the242

models. Xie et al. developed a regression-based predictive243

model using a MultiLayer Perceptron and Stacked Denoising244

Auto-encoder (MLP-SAE) to assess the impact of genetic245

variants on gene expression [30]. The model was trained with246

a stacked denoising auto-encoder for feature selection and a247

multilayer perceptron framework for backpropagation, incor-248

porating dropout to prevent overfitting. The results demon-249

strated that the MLP-SAE model with dropout outperformed250

other models such as Lasso and Random Forests. However,251

the study noted that the high-dimensional nature of genomic252

data and the low signal-to-noise ratio posed significant chal-253

lenges, potentially limiting the model’s ability to identify trans254

associations and necessitating further improvements. Dincer et255

al. (2020) introduced the Adversarial Deconfounding AutoEn-256

coder (AD-AE) to address the challenge of disentangling con-257

founders from true biological signals in gene expression data258

[31]. The AD-AE model comprises two neural networks: an259

autoencoder to generate embeddings that reconstruct original260

measurements and an adversary trained to predict confounders261

from these embeddings. By jointly training these networks, the262

model aims to produce embeddings that encode significant263

biological information while excluding confounding signals.264

However, the method has limitations, including potential over-265

fitting due to the unregularized autoencoder and the complexity266

of training adversarial networks, which may require substantial267

computational resources and careful tuning of hyperparame-268

ters. However, while these methods offer good performance269

in dimensionality reduction, they often lack interpretability,270

which is crucial in medical applications for understanding 271

disease mechanisms and making informed clinical decisions. 272

Enrichment analysis using KEGG and GO has been widely 273

used to interpret the biological relevance of selected features 274

[32]. These analyses provide insights into the biological pro- 275

cesses, molecular functions, and cellular components associ- 276

ated with the selected genes, thereby validating their relevance 277

to the disease under study. 278

In this paper, we build upon these previous works by propos- 279

ing a novel approach that integrates deep learning techniques 280

with traditional statistical methods for feature selection from 281

gene expression data. Our approach aims to leverage the 282

strengths of both techniques to improve AD diagnosis accuracy 283

while maintaining interpretability. 284

III. METHODS 285

The proposed method is divided into four steps: prepro- 286

cessing the data, reducing the dimensionality of the sparse 287

autoencoder, XGBoost classification and interpretability anal- 288

ysis. In the data pre-processing, we constructed a dataset 289

based on ADNI by selecting probes common to the ANM1 290

and ANM2 datasets. The vectorized probe data was then fed 291

into the sparse autoencoder as input for feature selection. 292

At the same time, dimensionality reduction is achieved by 293

limiting the number of nodes in the hidden layer of the sparse 294

autoencoder. Hence, the nodes in the hidden layer of the 295

sparse autoencoder were used as selected features and input 296

to the XGboost classifier, which was trained and performs the 297

classification task. Finally, we performed an interpretability 298

analysis. We first ranked the features in terms of importance 299

using XGBoost, and then filtered out the high weight nodes 300

and high weight probes, which were used for enrichment 301

analysis to verify the interpretability of the extracted probes. 302

The general framework is shown in Fig. 1. 303

A. Data Pre-Processing 304

The experiments in this study used peripheral blood gene 305

expression data. We introduced the gene expression dataset 306

from ADNI to train and validate our feature selection and 307

classification model. In addition to the data in ADNI, we also 308

used gene expression data from AddNeuroMed1 (ANM1) and 309

AddNeuroMed2 (ANM2) to validate the generalisability of our 310

model across databases. To classify participants, the samples 311

from the three databases were classified using Mini Mental 312

State Examination (MMSE) as diagnostic criteria. MMSE 313

is a joint effort of the National Institute of Neurological 314

and Communicative Disorders and Stroke (NINDS) and the 315

Alzheimer’s Disease and Related Disorders Research Associa- 316

tion (ADRDA). MMSE is a measure of general cognitive status 317

that includes 30 areas of ability, including memory, orientation, 318

comprehension, attention, reading, writing, learning, etc. In 319

this study we included 744 samples from ADNI (containing 320

246 NC, 382 MCI and 116 AD), 329 samples from ANM1 321

(containing 104 NC, 80 MCI and 145 AD) and 382 samples 322

from ANM2 (containing 134 NC, 109 MCI and 139 AD). 323

Details of the dataset are given in Table I. 324
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Fig. 1: The Architecture of the proposed Sparse Autoencoder-XGBoost model for AD Classification. Step 1: Select the probes

common to the three datasets to build our dataset; Step 2: Use the sparse autoencoder to reduce the dimensionality and extract

the features of the data; Step 3: Use the hidden layer nodes of the sparse autoencoder as features, and use XGBoost to classify

these features. Step 4: Select high contribution probes using feature importance ranking and feature selection methods, and

perform enrichment analysis on the probes to validate the interpretability of the proposed method.

TABLE I: Details of participants from ADNI, ANM1 and ANM2

ADNI ANM1 ANM2
NC AD MCI NC AD MCI NC AD MCI

Number of Cases 246 116 382 104 145 80 134 139 109
Gender, % Males 47.6% 63.8% 56.5% 37.1% 30.0% 47.3% 31.5% 36.4% 32.8%
Age 76.2±6.5 77.3±7.7 72.9±8.0 73.7±7.5 76.0±6.6 74.9±5.3 75.7±6.1 78.6±5.4 77.2±3.2
MMSE 29.1±1.2 21.3±4.4 28.1±1.7 29.1±1.1 20.9±4.7 26.8±1.7 28.4±1.7 19.9±4.6 28.1±1.1

Regarding the collection chip of gene expression data,325

ADNI uses Affymetrix Human Genome U219, while ANM1326

and ANM2 use Illumina HumanHT-12 Expression BeadChip327

v3 and v4, respectively. As the genes and probes targeted328

by the Affymetrix Human Genome U219 and the Illumina329

HumanHT-12 Expression BeadChip are not identical, we per-330

formed data pre-processing on the three datasets to enable331

controlled experiments between the datasets. The first step332

was to remove probes that were not common to the three 333

datasets: we removed genes that were unique to each of 334

the three datasets, leaving 14,498 genes, which reduced the 335

number of probes from 49,386 to 38,947 for ADNI, from 336

48,804 to 29,485 for ANM1, and from 47,231 to 20,177 337

for ANM2. We selected the probes common to all three 338

datasets, so the final number of probes selected was 16,482. 339

The second step is to normalise the three datasets. Although 340
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all three datasets provided normalised probe data, the median341

RNA expression values for ADNI, ANM1 and ANM2 were342

calculated to be 3.897, 7.584 and 6.154 respectively. This343

indicated that the gene expression intensity of ADNI dataset is344

significantly lower than that of ANM1 and ANM2. To ensure345

the quality of the cross-dataset experiments by mitigate the346

influence of batch effect and difference between the datasets,347

we renormalised the three datasets by performing Robust348

Multi-chip Average (RMA) [33].349

B. Shallow Sparse Autoencoder for Dimensionality Reduction350

The autoencoder (AE) is an unsupervised learning model351

based on artificial neural networks [34], designed to extract352

hidden features from input data and efficiently reconstruct the353

original data. One of its key advantages is the ability to learn354

both linear and nonlinear features, making it particularly well-355

suited for complex data. By employing deep neural network356

structures and nonlinear activation functions, autoencoders357

excel at capturing intricate patterns and relationships in data.358

Gene expression data is characterised by a complex non-359

linear relationship among genes, influenced by transcription360

factors, pathway memberships, and other biological properties.361

Traditional linear dimensionality reduction methods, such as362

principal component analysis (PCA), rely on linear mappings363

and often fail to capture these nonlinear associations. In364

contrast, autoencoders are capable of learning nonlinear mani-365

folds, enabling them to better model the intricate relationships366

inherent in gene expression data.367

An autoencoder typically consists of two main stages:368

encoding and decoding. Each stage uses specific activation369

functions tailored to the task. The encoding stage is repre-370

sented as follows:371

h(x) = s(W1x+ b1), (1)

where x is the input vector, h(x) represents the activations372

in the hidden layer, W1 is the weight matrix, b1 is the bias373

vector, and s denotes the sigmoid activation function.374

The decoding stage is expressed as:375

x′ = s(W2x+ b2), (2)

where x′ is the reconstructed output vector, W2 represents the376

weight matrix connecting the hidden and output layers, and b2377

is the bias vector for the output layer.378

The training of an autoencoder requires a loss function to379

evaluate its performance. The loss function typically includes380

a reconstruction error term, which measures the mean squared381

error (MSE) between the reconstructed and original inputs,382

and an L2 regularisation term to mitigate overfitting:383

J(w, b) =
1

N

N∑

n=1

(xn − x̂n)
2
+

λ

2

L∑

l=1

N∑

j=1

k∑

i=1

(
w

(l)
ji

)2

, (3)

where L is the number of hidden layers, N is the number of384

samples, k is the number of variables in the dataset, and w
(l)
ji385

represents the weights in the hidden layers.386

Sparse autoencoders extend standard autoencoders by incor-387

porating a sparsity constraint on the hidden layer neurons [35].388

This constraint ensures that only a limited number of neurons 389

are activated, enhancing feature extraction and noise immunity. 390

Given input x, the average activation of hidden neuron j is 391

calculated as: 392

ρ̂i =
1

n

n∑

j=1

hi(xj), (4)

where n is the number of training samples, and xj represents 393

the j-th sample. The sparsity penalty is defined using the 394

Kullback-Leibler (KL) divergence: 395

D(1)∑

j=1

KL(ρ ∥ ρ̂j) =

D(1)∑

j=1

(
ρ log

ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j

)
,

(5)

where D(1) denotes the number of neurons in the hidden layer, 396

ρ is the desired sparsity level, and ρ̂j is the actual average 397

activation. When ρ and ρ̂j are similar, the penalty approaches 398

zero. Incorporating this term into the loss function results in 399

the sparse autoencoder loss function: 400

JSAE(w, b) = J(w, b) + β
D(1)∑

i=1

KL(ρ ∥ ρ̂i), (6)

where β controls the weight of the sparsity penalty. 401

While deep autoencoders with multiple hidden layers can 402

extract higher-level features, only the first hidden layer directly 403

relates to the original features, limiting their interpretability. 404

Therefore, this study employs a shallow sparse autoencoder 405

with a single hidden layer to ensure interpretability while 406

achieving dimensionality reduction. 407

C. XGBoost for Multi-Class Classification 408

XGBoost is a machine learning system based on boosted 409

trees proposed by Chen et al. [36] based on the work of 410

gradient boosting algorithm (GBDT). The algorithm consists 411

of a collection of iterative residual trees, i.e., the Nth decision 412

tree learns the residuals of the previous N-1 trees, and the 413

predicted outputs of each tree are summed up to be the final 414

output of the sample. At the same time, the splitting strategy 415

adopted by XGBoost in constructing residual trees can be used 416

to evaluate the importance of features by metrics. It has been 417

proved that XGBoost achieves excellent results compared with 418

other classifiers in classifying small samples and unbalanced 419

data. 420

Assume that in the sample dataset D = (xi, yi), xi is the 421

feature data of the i-th sample, and yi is the label output value. 422

XGBoost consists of K CART trees, which assign scores 423

to each leaf node, and finally the predicted scores of each 424

CART are summed up to obtain the final total score, which is 425

evaluated by K additive functions as shown in the following: 426

ŷι =
K∑

k=1

fk(xi), fk ∈ F (7)

where fk denotes the independent tree structure with leaf node 427

weights, and fk(xi) denotes the weight value of the i-th sample 428

xi that falls on a leaf node in the k-th tree. F is the overall 429
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space of the K trees. To optimise the function objective Obj(θ)430

is:431

Obj(θ) =

n∑

i

l(yi, ŷι) +

K∑

k

Ω(fk) (8)

432

Ω(f) = γT +
1

2
λ

T∑

j=1

w2
j (9)

where ι(·) is the differential loss function,which measures433

the error between the true value and the predicted value of434

the model. Ω(·) is the regularisation term, which represents435

the complexity of each CART tree, T represents the number436

of leaf nodes in each CART tree, and wj represents the437

fraction of each leaf node, and in this way it is used to438

constrain the objective function to prevent overfitting. γ and439

λ are the constants that control the degree of regularisation440

of the constants. Since the algorithm uses additive training to441

generate trees one by one, then for round t the predicted value442

ŷι and the loss function Obj(θ) can be expressed as:443

ŷ(t)ι = Σt
k=1fk(xι) = ŷ(t−1)

ι + fι(xι) (10)
444

Obj(θ)(t) = Σn
i l(yi, ŷ

(t−1)
l + ft(xi)) + Ω(ft) (11)

Gradient boosting decision tree using first order derivative445

information in optimisation. While XGBoost transforms ι(·)446

using second order Taylor’s formula for faster convergence of447

the objective function. The second order Taylor expansion is448

given as:449

f(x+∆x) ∼= f(x) + f ′(x)∆x+ 1
2f

′′(x)∆x2 (12)

Let ft(xi) be ∆x in Taylor’s formula, and a Taylor second450

order expansion of the loss function Obj(θ)(t) has:451

Obj(θ)(t) ∼= Σn
i (l(yi, ŷi

(t−1)) + gift(xi)

+ hif
2
t (xi)) + Ω(ft)

(13)

where giand hi denote the first and second order deriva-452

tives of l(yi, ŷi
(t−1)) with respect to ŷi

(t−1)
. The function453

l(yi, ŷi
(t−1)) in round t can be treated as a constant term.454

Hence, substituting Eq. 9 into Eq. 13, the following equation455

is obtained:456

Obj(θ)(t) = Σn
i

(
gift(xi) + hif

2
t (xi)

)

+ γT +
1

2
λΣT

j=1w
2
j

(14)

Let w ∈ RT , w be the sequence of weights of the leaf457

nodes, q : Rd → {1, 2, ...T}, q be the tree structure. Therefore458

q(x) is denoted as the position of the sample x falling in the459

leaf node. ft(xi) can be expressed by the following equation:460

ft(xi) = wq(x), w ∈ RT , q : Rd → {1, 2, ...T} (15)

Convert the loss function for traversing the sample data to461

a loss function for traversing the leaf nodes:462

Obj(θ)(t) = ΣT
j=1

(
Gjwj +

1
2 (Hj + λ)w2

j

)
+ γT (16)

where Ij is the set of samples belonging to the leaf node j,and463

subsequently its derivative on Obj(θ)(t) yields the extreme464

points with extreme values of:465

w∗

j = −
Gj

Hj + λ
(17)

Obj∗ = −
1

2
ΣT

j=1

c 2
j

Hj + λ
+ γT (18)

XGboost uses equation 19 to evaluate whether or not a node 466

splits, and ultimately determine the structure of the tree: 467

Gain =
1

2

[
GL

2

HL + λ
+

GR
2

HR + λ
−

(GR +GL)
2

HR +HL + λ

]
− γ (19)

The number of times a feature acts as a split node through- 468

out the construction of the model is weight and the average 469

gain of the feature as a split node is gain: 470

gain =
∑

Gain

/weight (20)

D. Fast Recursive Feature Elimination for Feature Selection 471

Medical tasks place more emphasis on interpretability than 472

traditional machine learning tasks. This requires not only gen- 473

erating classification results, but also interpreting these results 474

in a biologically meaningful way. Since the sparse autoencoder 475

has only the first layer of nodes directly connected to the 476

probes, and the deeper nodes represent a high-dimensional 477

mapping of the upper features, which poses a challenge in 478

recognising the relationship between the representations and 479

the probes, the dimensionality of the features was not reduced 480

in this study by using a stacked autoencoder. Nonetheless, the 481

dimensionality of the features after dimensionality reduction 482

using a sparse autoencoder with a single hidden layer, while 483

allowing the classifier to achieve optimal classification, is still 484

too high for interpretable biological analysis. Therefore, to 485

achieve interpretable analyses, we need to perform further 486

feature selection on these features. 487

One advantage of using the gradient boosting algorithm is 488

that after the boosting tree has been created, the importance 489

score of each feature can be obtained relatively for effective 490

feature selection. The importance score, in general, measures 491

the value of features in the model for boosting decision tree 492

construction. The more a feature is used for node segmentation 493

in the model, the higher its relative importance. Feature 494

importance is obtained by calculating and ranking each feature 495

in the sample dataset. The importance of a feature is calculated 496

in the decision tree by the amount of each feature’s split- 497

point improvement performance measure (typically the Gini 498

index). The larger a feature’s performance measure for split- 499

point improvement, i.e., the closer it is to the root node, the 500

larger its importance weight is. Also, the more features are 501

selected by more boosting trees the higher the importance 502

degree. Finally, the results of a feature in all the boosting 503

trees are weighted and summed and then averaged to get the 504

importance score. 505

Inspired by the Recursive Feature Selection (RFE) feature 506

selection algorithm proposed by Guyon et al [37], we proposed 507

an improved version of RFE optimised for high-dimensional 508

data called Fast-RFE. Recursive feature selection is a feature 509

selection algorithm based on the importance of model features, 510

eliminating a number of end features at each iteration based 511

on the feature importance ranking, and using the dataset 512

containing the retained features as the training samples for 513
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the next round until the features are reduced to a certain514

dimension. RFE is effective for small-sample classification515

tasks, but its computational complexity and costs are high516

when the feature dimensions are high.517

We proposed Fast Recursive Feature Selection to accom-518

modate the high-dimensional nature of the gene expression519

data classification task. The XGBoost model can be used to520

rank feature importance by the feature importance metric, and521

in this work, the normalised weight score of gain in Eq.522

20 is used as the metric for feature importance ranking. The523

Fast-RFE algorithm, as presented in Algorithm 1, employs a524

two-phase approach to identify significant features efficiently.525

Initially, features are sorted based on their gain values, and526

the mean (µ) and standard deviation (σ) of these gains are527

calculated. The algorithm begins with an initial threshold528

δ = µ and iteratively refines it. In the first phase, features529

with gain exceeding δ are selected to construct an XGBoost530

classifier. If the resulting model’s accuracy decrease is less531

than 0.01 compared to the original model, δ is incremented by532

σ. This process continues until a significant accuracy drop is533

observed, establishing an interval [a, b] for further refinement.534

The second phase employs a binary search within [a, b] to535

optimise the feature selection. At each iteration, features with536

|w| > δ, where δ = (a+b)/2, are chosen to train an XGBoost537

classifier. Based on the model’s performance, either a or b is538

updated to δ. This binary search persists until the interval [a, b]539

contains only one feature, at which point features with |w| > a540

are selected as the optimal feature subset.541

IV. EXPERIMENTAL RESULTS AND ANALYSIS542

To validate the effectiveness of our proposed approach in543

classifying Alzheimer’s disease and to verify the biological544

significance of the extracted features. First, we used feature545

extraction algorithms and classifiers that have previously been546

shown to be effective for AD classification in the literature as a547

control group to demonstrate the effectiveness of our proposed548

method. The detailed flow of the control experiment is shown549

in the Fig. 2. We introduced feature extraction algorithms550

and classifiers that have previously been shown to be effec-551

tive in the literature as a control group to demonstrate the552

effectiveness of our proposed method. Three feature extraction553

algorithms are included: Principal Component Analysis (PCA)554

Least Absolute Shrinkage and Selection Operator (LASSO)555

regression and Differential Gene Expression Analysis (DGE).556

Four classifiers are included: Support Vector Machine (SVM)557

Random Forest (RF), L1 regularisation Logistic Regression558

(L1-LR) and Deep Neural Network (DNN). Then, using559

the feature selection method proposed in Section III-D, we560

selected the high contributing nodes from the hidden layer561

of the sparse autoencoder. Further, we filtered out the high562

contributing gene expression probes from the high contributing563

nodes. Last but not least, Gene Ontology (GO) biological564

enrichment analysis and Kyoto Encyclopedia of Genes and565

Genomes (KEGG) pathway enrichment analysis uncovered the566

biological significance of the high contributing probes.567

Algorithm 1 Fast Recursive Feature Selection

1: Sort features by gain values

2: Calculate µ and σ of all features’ gain values

3: Set initial threshold δ = µ
4: a← 0, b←∞
5: while true do

6: Select features with gain > δ
7: Build XGBoost classifier with selected features

8: Calculate classification accuracy

9: if accuracy drop < 0.01 compared to original model

then

10: a← δ
11: δ ← δ + σ
12: else

13: b← δ
14: break

15: end if

16: end while

17: while a < b do

18: δ ← (a+ b)/2
19: Select nodes with |w| > δ
20: Train XGBoost classifier with selected features

21: Calculate classification accuracy

22: if accuracy drop < 0.01 compared to original model

then

23: a← δ
24: else

25: b← δ
26: end if

27: if only 1 node satisfies a < |w| < b then

28: Select features with |w| > a to construct the

optimal feature subset

29: break

30: end if

31: end while

A. Evaluation Matrixes for Classification 568

When evaluating the classification performance of a classi- 569

fier, common metrics that can be used include: Accuracy, Pre- 570

cision, Sensitivity, Specificity and Receiver Operating Charac- 571

teristic (ROC). Accuracy can be expressed as the ratio of the 572

number of samples correctly classified by the classifier to the 573

total number of samples. Precision can be expressed as the 574

ratio of the number of positive samples correctly classified by 575

the classifier to the number of all positive samples predicted 576

by the classifier. Sensitivity, also known as the True Positive 577

Rate (TPR), is the ratio of the number of predicted results 578

for positive samples to the actual number of positive samples. 579

Specificity, also known as the False Positive Rate (FPR), is the 580

ratio of the number of results that were incorrectly predicted 581

as positive samples but were actually negative samples to 582

the actual number of negative samples.The ROC (Receiver 583

Operating Feature) curve is used to evaluate the performance 584

of the classifier, the horizontal axis indicates the proportion of 585

negative samples that are incorrectly classified as positive sam- 586

ples, and the vertical axis indicates the proportion of positive 587
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Fig. 2: The pipeline of the control experiment. We utilise three

of the most commonly employed feature selection methods in

the field of gene expression research, namely DEG, LASSO,

and PCA, in conjunction with four commonly used classifiers,

namely RF, SVM, and L1-LR. The various feature selection

algorithms were combined with the classifiers one by one in

order to train the model, and their performance was com-

pared with that of the proposed algorithms using SSAE as

the feature selection method and XGBoost as the classifier.

The performance on three datasets of each model was then

compared with that of the proposed algorithm using SSAE as

the feature selection method and XGBoost as the classifier.

DEG, Differently expressed gene; LASSO, Least absolute

shrinkage and selection operator; PCA, principal component

analysis; RF, random forest; SVM, support vector machine;

L1-LR, L1-regularised LR; SSAE, Sparsed Autoencoder; XG,

XGboost.

samples that are correctly classified as positive samples. The588

AUC value is the area under the ROC curve, which ranges589

from 0 to 1. The closer the AUC is to 1, the better the590

performance of the classifier. The traditional ROC curve is591

for a binary classification approach, whereas this experiment592

needs to evaluate the multiclass-classification tasks for AD,593

TABLE II: Parameters of the Sparse Autoencoder

Parameter Value

Active Function Sigmoid
Batch Size 256

Decay 0.99
Sparsity Parameter 0.001

Penalty factor 1.00

TABLE III: Parameters of XGBoost

Parameter Value

Booster gbree
eta 0.003

max depth 6
gamma 0.3

objective multi:softprob
subsample 1
num class 3

MCI, and NC. For ROC to be used in this study, we plotted 594

ROC curves for each of the three classification tasks for each 595

experiment and then averaged the three to obtain the ROC 596

curve for the given task. 597

B. Optimal Hyperparameter Selection for the Models 598

The experimental environment of this study is: Intel i9- 599

13900k, Nvidia RTX 3090, 64gb Ram, windows 11. In order to 600

obtain appropriate hyperparameters for SSAE, we use 10-fold 601

cross-validation to train each combination of hyperparameters 602

of the model, while avoiding over-training that leads to over- 603

fitting. Finally, the hyperparameter combination that minimises 604

the average reconstruction error is selected. For the XGBoost 605

classifier, we randomly divided the ADNI dataset into training 606

and testing sets with a ratio of 7:3. Then we optimise the 607

model hyperparameters by learning curve and grid search. The 608

model hyperparameters are also adjusted to avoid overfitting 609

by 10-fold cross-validation on the training set. The parameter 610

settings for the Sparse Autoencoder and XGBoost are shown 611

in Table II and Table III respectively. 612

C. Comparison of Different Models 613

We use the preprocessed ADNI dataset to train SSAE and 614

XGBoost for classification tasks on AD, MCI and NC. The 615

experiments are compared with three dimensionality reduction 616

algorithms and four classifiers commonly used in the gene 617

expression field. Fig. 3 shows the comparison of Average Area 618

Under the Receiver Operating Characteristic (AUROC) curve. 619

As shown in the Fig. 3, the proposed method outperforms 620

other comparative methods. 621

D. Analysis of Bioinformatics Interpretability 622

In order to obtain biologically significant gene expression 623

probes, we firstly used the proposed Fast-RFE algorithm to 624

extract high weight nodes from the high weight features 625

obtained by SSAE, and then we used the algorithm to extract 626

high weight probes from the high weight nodes. 627

As shown in Fig. 4, the gain value of the nodes is heavily 628

clustered around 0, and the contribution of these nodes to the 629
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Fig. 3: Average AUROC of all comparison and the proposed

model.

Fig. 4: Histogram of the normalised gain score of the nodes

(features)

Fig. 5: Distribution of probe weight density curve inside node

2

classification is negligible. Further, as shown in Fig. 5, we plot630

the weight density curve of the nodes, which shows that the631

Fig. 6: ROC curves of high contributing nodes and high

contributing probes

TABLE IV: Evaluation of the model’s performance with

different features (%) for classifying between CN, AD, and

MCI

Features Accuracy Specificity Sensitivity Precision

Nodes 93.23 94.51 93.12 90.51

Probes 85.18 86.10 85.12 81.48

weights of all probes on a single node approximately follow 632

a normal distribution with mean 0. In other words, in a node, 633

the weights of all probes on a single node are distributed in 634

the same way as the weights of all probes on a single node. 635

That is to say, in a node, there are always a large number of 636

probes whose weights are enriched around 0, and the influence 637

of these probes on the value of the node is very small, while 638

the probes distributed at the two ends of the weight density 639

curve affect the value of the node to a great extent, and these 640

probes with larger weights are called high weight probes. 641

We finally selected 37 high contributing nodes from 5000 642

nodes, and then filtered 4790 high weight probes from these 37 643

high weight nodes. We constructed XGBoost classifiers using 644

high weighted nodes and high weighted probes respectively. 645

Table IV shows the performance metrics of the two classifiers 646

after cross-validation, and Fig. 6 plots their ROC curves. 647

Combining the classification performance of Table IV and Fig. 648

6, the effect of the classifier constructed by the high weight 649

probe is only slightly decreased compared with that of the 650

high weight node, which indicates that the feature nodes have 651

largely retained the information of the high weight nodes, and 652

further proves that the selection of the high weight probe is 653

effective. At the same time, it can be seen that the classifier 654

constructed by the feature nodes is stronger than the high 655

weight probe in every aspect, which may be due to a series of 656

nonlinear transformations performed by the feature nodes on 657

the high weight probe to improve its feature expressiveness, 658

and thus it is more suitable for the AD classification problem. 659

Compared with the original 5000 nodes classification, the 660

accuracy decreases less than 2%, which shows that the feature 661

nodes can represent the original nodes well. In conclusion, 662
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Fig. 7: Enriched Pathways dot plot. This dot plot illustrates the results of the gene enrichment pathway analysis, with each dot

representing an enriched pathway. The horizontal axis displays the gene ratio, calculated as the number of genes in a pathway

divided by the total number of genes analysed, where a higher ratio indicates a greater proportion of genes from the dataset

present in that pathway. The size of each dot corresponds to the number of genes from the dataset found in the pathway, with

larger dots signifying pathways containing more genes. The colour of the dots represents the statistical significance of the

enrichment, shown as -log10(p-value), transitioning from blue (less significant) to red (more significant).

from the ADNI dataset alone, the feature nodes we constructed663

can significantly enhance the AD classification effect.664

We then performed GO bioprocess enrichment and KEGG665

pathway enrichment analyses on the high weight probes and666

plotted the Enriched Pathways dot plot, in order to find out667

which biochemical pathways with relevant biological functions668

are more likely to be distributed in the two types of data. 669

We used p≤0.05 as the significance threshold to screen for 670

significant GO entries or KEGG pathways. As shown in Fig. 671

7, according to the GO enrichment results, the high weight 672

probes were not directly enriched in biological processes 673

related to Alzheimer’s disease, but as shown by the KEGG 674
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Fig. 8: AD-associated pathways in high weight probes

enrichment results, the high weight probes were significantly675

enriched in three metabolic pathways, namely Alzheimer’s676

disease, Parkinson’s disease and Huntington’s disease. The677

results demonstrate that high weight probes exhibit superior678

biological performance in Alzheimer’s disease.679

To further validate the biological interpretability of the680

selected high weighted probes, we used the KEGG Cluster681

tool provided by Database for Annotation, Visualisation and682

Integrated Discovery (DAVID) to cluster enriched pathways683

with similar genes in AD-related pathways. Fig. 8 show684

that there is a strong correlation between Alzheimer’s dis-685

ease, Parkinson’s disease and Huntington’s disease, which686

are neurological disorders and may share similar metabolic687

processes. In addition, we found that Non-alcoholic fatty liver688

disease (NAFLD) and oxidative phosphorylation pathways are689

also strongly associated with Alzheimer’s disease, which is690

consistent with some of the current findings. Liver disease has691

been reported to be a risk factor for cognitive decline in the692

elderly [38], and that NAFLD accelerated the emergence of693

AD pathology in a rat model of AD [39]. From these results,694

it is clear that high weighted probes have better biological695

interpretability in Alzheimer’s disease.696

E. Evaluation of Model Generalisability Performance697

In order to validate the generalisability of the proposed698

method and to test whether it can be generalised to other699

Alzheimer’s disease gene expression datasets, we carried out700

this work using the gene expression datasets of ANM1 and701

ANM2. We first preprocessed all the datasets using the method702

in Chapter III, and then used SSAE and XGBoost to extract703

and classify features from the data of ANM1 and ANM2,704

and plotted the ROC curves respectively. From the results,705

it can be seen that the classification performance of the706

proposed method on ANM1 and ANM2 datasets is only707

slightly degraded compared with ADNI, and the feature nodes708

have proved to be effective for the AD classification problem,709

considering that the high weight probes on ANM1 and ANM2710

datasets are partially missing.711

V. CONCLUSION712

In conclusion, this study presents a novel and interpretable713

deep learning approach for the diagnosis of Alzheimer’s714

disease using gene expression data. By employing a shallow 715

sparse autoencoder, our model achieves high diagnostic ac- 716

curacy, with an AUROC of up to 95.13%, while extracting 717

biologically interpretable features. Additionally, we developed 718

a fast and low-computational-cost feature selection algorithm, 719

capable of dynamically adjusting feature elimination, fur- 720

ther enhancing the model’s efficiency. Our comprehensive 721

experimental analysis demonstrates the model’s strong cross- 722

dataset generalisation, achieving consistent performance on 723

the ANM1 and ANM2 datasets, which supports its broader 724

applicability to diverse gene expression datasets. 725

Our method offers a promising solution for early, non- 726

invasive diagnosis of Alzheimer’s disease, with clinical ap- 727

plications that could enhance patient outcomes by enabling 728

timely intervention. The combination of deep learning and 729

traditional machine learning techniques not only boosts model 730

performance but also ensures interpretability—critical in build- 731

ing trust in clinical decision-making. 732

Looking ahead, further improvements, such as incorporating 733

advanced techniques like multimodal data fusion, can enhance 734

both the model’s accuracy and its ability to unravel complex 735

disease processes. While this study focuses on gene expression 736

data, we recognise the importance of integrating multi-omics 737

data, such as proteomics and genomics, to provide a more 738

comprehensive understanding of Alzheimer’s disease. Future 739

work will explore the integration of multi-omics data, such as 740

proteomics and genomics, to provide a more comprehensive 741

understanding of Alzheimer’s disease. 742
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