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Abstract

Deep learning has revolutionized medical and biological imaging, particularly in segmentation tasks. However,
segmenting biological cells remains challenging due to the high variability and complexity of cell shapes.
Addressing this challenge requires high-quality datasets that accurately represent the diverse morphologies
found in biological cells. Existing cell segmentation datasets are often limited by their focus on regular
and uniform shapes. In this paper, we introduce a novel benchmark dataset of Ntera-2 (NT2) cells, a
pluripotent carcinoma cell line, exhibiting diverse morphologies across multiple stages of differentiation,
capturing the intricate and heterogeneous cellular structures that complicate segmentation tasks. To
address these challenges, we propose an uncertainty-aware deep learning framework for complex cellular
morphology segmentation (MorphoSeg) by incorporating sampling of virtual outliers from low-likelihood
regions during training. Our comprehensive experimental evaluations against state-of-the-art baselines
demonstrate that MorphoSeg signiĄcantly enhances segmentation accuracy, achieving up to a 7.74% increase
in the Dice Similarity Coefficient (DSC) and a 28.36 reduction in the Hausdorff Distance. These Ąndings
highlight the effectiveness of our dataset and methodology in advancing cell segmentation capabilities,
especially for complex and variable cell morphologies. The dataset and source code is publicly available at
https://github.com/RanchoGoose/MorphoSeg.

Keywords: Biomedical Segmentation, Cell Segmentation, Machine Learning, Deep Learning, Ntera-2 Cells,
Data Repository, Complex Cell Shapes, Vision Transformer

1. Introduction

The advent of deep learning has signiĄcantly advanced the Ąeld of medical imaging, particularly in
segmentation tasks. While substantial progress has been made in segmenting well-deĄned objects such as
organs in computed tomography (CT) scans [1, 2, 3, 4], cell segmentation presents unique challenges due to
the complexity and variability of cell shapes [5, 6, 7, 8]. Existing datasets for cell segmentation [9, 8, 10, 11]
often fall short in covering the full spectrum of cell types, hindering the effective training of deep learning
models for diverse research applications.

In the broader context of medical image analysis, cell segmentation is crucial yet challenging, particularly
due to the high variability in cell stages and the resolutions of medical images. Current state-of-the-art
(SOTA) deep learning models, including advanced architectures such as Convolutional Neural Networks
(CNNs) [6, 12] and Transformers [1, 3], typically require large, well-annotated datasets, which are resource-
intensive to acquire. Beyond focusing on model algorithms, some researchers have shifted towards developing
methods for rapid, easy data annotation or advancing weak, semi, or unsupervised learning algorithms to
address data insufficiency [13, 14]. However, irregular cell shapes and the need for multi-stage observation
remain signiĄcant challenges.

In this paper, we present a novel benchmark dataset featuring Ntera-2 cells (NT2) cells [15]. NT2 is a
pluripotent carcinoma cell line known for its ability to differentiate into neuro-ectodermal lineages [16]. NT2
cells have previously been shown to transform into neurons, after exposure to all-trans-retinoic acid [17]
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Figure 1. Undifferentiated and Differentiating NT2 Cell Example Images From the Training Set. (A) Undifferentiated
Ntera-2 cells. (B) shows the original bright-Ąeld images of cells exposed to 10

−5 M ATRA every 48 hours for 2 weeks. (C)
displays the mask created from manual annotations. The images highlight the diverse data set used for training.

(ATRA). During differentiation, NT2 cells exhibit a range of heterogeneous morphologies, as shown in
Figure 1, which poses challenges for reliable segmentation. The dataset includes images of NT2 cells at
numerous stages of differentiation, spanning from day 7 to day 12, and captures the diverse and complex cell
morphologies formed during this period. The complexities can make it difficult to accurately annotate cells,
with some cellular features barely discernible even to trained experts. Furthermore, the variability in shape
across different stages complicates the segmentation process, necessitating robust deep-learning solutions
capable of adapting to such heterogeneity.

To address the aforementioned challenges, we propose a novel uncertainty-aware enhancement algorithm
based on the SOTA medical segmentation framework TransUNet [1]. Our approach involves sampling virtual
outliers from the low-likelihood regions of the class-conditional distributions during the training stage to
improve the decision boundaries of the segmented objects. This strategy enhances the robustness of the deep
learning models, making them effective solutions in such complex scenarios. By incorporating uncertainties
into the training objective, our proposed deep learning model achieves strong segmentation of cells with
random shapes. When compared against several benchmarks, we demonstrate signiĄcant improvements with
our proposed dataset: the mean Dice Similarity Coefficient (DSC) increased from 80.35% to 86.57% and the
mean Hausdorff Distance (HD95) decreased from 21.98 to 15.75. These results conĄrm that our approach
not only mitigates data scarcity but also enhances the modelŠs generalization capabilities across varied cell
morphologies. We have provided the full code and pre-trained models with simple inference instructions to
facilitate easy implementation and further research by Ąeld researchers.

The key contributions of this paper are:

1. Development of a Novel Cell Repository: We introduce a pluripotent carcinoma cell repository
speciĄcally curated to support the development and validation of advanced biological cell segmentation
models. Unlike conventional datasets that predominantly feature cells with regular, round morphologies,
our dataset encompasses cells with complex morphologies and transitional stages, presenting a more
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challenging segmentation task.

2. An Innovative Cell Segmentation Algorithm MorphoSeg: We propose MorphoSeg, a novel
approach designed to address the challenges posed by our dataset. Our method leverages synthetic
outliers from low-likelihood regions in the latent space to signiĄcantly enhance the training performance
of state-of-the-art cell segmentation models, especially in scenarios with limited data availability. This
approach demonstrates superior performance compared to existing methods that often struggle under
similar conditions.

3. Open-Source Implementation and Comprehensive Evaluation: We release the complete
code and detailed data processing procedures as open-source, enabling researchers in the biological
Ąeld to readily apply our method to raw images and obtain segmentation masks directly. Our
extensive quantitative and qualitative evaluations conĄrm that the proposed model outperforms current
techniques.

The remainder of this paper is organized as follows: Section 2 reviews the literature on deep learning
methods for biological cell segmentation, and outlier generation methods. Section 3 details our proposed
modelŠs methodology and framework. Section 4 elaborates on the dataset and preprocessing techniques.
Section 5 presents experimental setup, results, analyses, and ablation studies, as well as inference and
visualization techniques. Finally, Section 6 concludes the paper, summarizing key Ąndings and future research
directions.

2. Related Work

2.1. Medical and Biological Image Segmentation.

In recent years, deep learning techniques in computer vision have achieved promising performance in
medical image segmentation. Encoder-decoder-based CNN structures have been widely applied, with U-Net
and its variants signiĄcantly advancing the Ąeld [2, 12, 18, 19, 20]. Building upon this structure, UNet++
incorporates densely connected links to enhance the fusion of multi-scale features, improving the analysis of
medical images across CT, MRI, and EM modalities [21]. Furthermore, nnU-Net, a self-conĄguring U-Net, has
shown remarkable performance across various segmentation tasks with minimal manual parameter tuning [22].
In terms of segmenting cell structures, a framework named Cellpose representing the CNN-based Unet serires
performance with the enhancement . The Cellpose model utilizes a two-headed output architecture to predict
cell probabilities and spatial organization, effectively handling cells of regular shapes [6].

Semantic segmentation is pivotal for clinical tasks such as disease detection, differential diagnosis, survival
prediction, therapy planning, and treatment response assessment. Besides deep learning methods based on
CNN structures, attention mechanisms [23] are extensively employed in semantic segmentation to prioritize
salient features. The integration of Vision Transformers (ViTs) into medical segmentation networks has
enhanced performance by leveraging self-attention mechanisms [24]. Some research focuses on combining the
strengths of transformers with traditional CNN architectures, creating hybrid encoder structures. TransUNet
combines CNNs for spatial information extraction with transformers for capturing long-range dependencies,
featuring a U-Net structure with self-attention mechanisms to ensure comprehensive image analysis [1]. This
integration makes TransUNet particularly effective for detailed medical and biological image segmentation,
where preserving spatial hierarchies is crucial. Building upon this concept, SwinUNet [25] incorporates Swin
TransformerŠs shifted-window approach, effectively capturing Ąne-grained features in small-scale targets.
Additionally, ScaleFormer [26] further enhances performance by adopting a more powerful Transformer-based
mixer, demonstrating superior capability in handling complex segmentation tasks.

Other research includes employing channel attention to capture boundary-aware features for enhancing
polyp segmentation [27]. CellViT replaces the CNN encoder with a transformer block in the U-Net
architecture [28]. The recent SAMed model extends the capabilities of the Segment Anything Model
(SAM) [29] to medical imaging by employing a Low-rank Adaptation (LoRA) Ąne-tuning strategy to adapt
the large-scale image encoder for medical contexts effectively [3]. This method illustrates the advantage of
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using extensive pre-trained models for specialized medical segmentation tasks. However, SAM is designed for
multi-class segmentation, posing limitations for binary segmentation scenarios.

Regarding on complex cell structure cell segmentation, some recent works have tried to use geometric-
aware approaches. Topological consistency is critical in segmentation tasks, especially for reticular images
where even slight changes can signiĄcantly affect downstream analysis [30]. For curvilinear structures such as
vasculature and road networks, a method leveraging discrete Morse theory has been proposed to capture
structural uncertainties and identify error-prone connections [31]. A topology-aware loss function that
combines skeleton-based weighting with boundary rectiĄcation further enhances segmentation accuracy by
emphasizing topologically critical regions [32]. In digital pathology, a semi-supervised approach employs a
noise-aware topological consistency loss to learn robust representations from unlabeled images, reducing errors
in gland and nuclei segmentation [33]. In contrast to these methods, our approach integrates uncertainty
estimation directly into the training loss via an outlier synthesis technique, making it compatible with and
complementary to existing topological segmentation frameworks.

2.2. Virtual Outliers Synthesis

Outlier detection plays a crucial role in data mining and statistics, where outliers are deĄned as abnor-
malities or deviations from expected patterns [34]. In deep learning, these outliers are often interpreted as
anomalies relative to inlier data, and various methods have been developed to identify them [35]. Unlike
traditional approaches that focus on outlier detection, recent works in computer vision have explored syn-
thesizing outliers to enhance the accuracy and robustness of deep learning models, particularly in scenarios
where datasets are insufficient, such as the medical image classiĄcation [36].

Synthetic data has also been employed to quantify model uncertainty, especially for out-of-distribution
(OOD) detection. One study leverages synthetic data to better deĄne the boundaries between known and
unknown samples [37], which is particularly relevant for detecting unseen cells or cells at transitional stages.
OOD detection methods often struggle with the subtle differences among foreground elements in medical
images [38].

Synthesis methods have shown promise in various domains, yet their application to medical and biological
image segmentation remains relatively underexplored, with few approaches targeting deep learning model
training. A recent work combines image synthesis, Gaussian mixture models, and one-class support vector
machines to robustly detect hyperintense lesions in cerebral small vessel disease without being limited by
pathology or location [39]. Another research introduces a synthetic data generation pipeline, SinGAN-
Seg, which leverages a single training image to produce realistic medical images and corresponding masks,
thereby enhancing segmentation performance in scenarios with limited data [40]. Additionally, an adversarial
conĄdence learning framework integrates voxel- and region-wise conĄdence information into supervised
segmentation and synthesis models, resulting in improved visual perception and quantitative precision on
clinical datasets [41].

In contrast to these methods, our proposed approach dynamically estimates class-conditional Gaussian
distributions during training, shaping the uncertainty surface over time with a specially formulated loss. In
our cell segmentation task, segmentation targetsŮspeciĄcally NT2 cells at various developmental stagesŮare
treated as OOD data. The demonstrated effectiveness of virtual outlier synthesis in enhancing OOD detection
[37] motivates our approach to incorporate synthesized outliers during training to improve segmentation
accuracy.

3. Methodology

In this section, we detail our proposed approach and outline the overall model architecture. First,
Section 3.1 provides background information and an overview of the TransUNet framework for image
segmentation. Next, Section 3.2 describes our enhancement of cell segmentation via virtual outlier sampling.
Finally, Section 3.3 introduces the uncertainty-aware training objective used in MorphoSeg.
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Figure 2. Overview of the MorphoSeg. MorphoSeg employs the TransUNet architecture [1] as an example. The red dotted
lines illustrate the virtual outlier sampling process, where feature representations are modeled as class-conditional Gaussians
and virtual outliers v are sampled from regions of low likelihood. These outliers contribute to an uncertainty loss for
regularization, and the synthetic segmentation mapŮwith an uncertainty estimation branch LuncertaintyŮis trained jointly
with the mixed segmentation loss Lseg as deĄned in Eq. (12).

3.1. TransUNet for Cell Segmentation

Given an image x ∈ R
H×W ×C with a spatial resolution of H × W and C channels, our objective is to

predict the corresponding pixel-wise label map of the same dimensions. For a pure Transformer encoder
structure, following [24], we Ąrst perform tokenization by reshaping the input x into a sequence of Ćattened

2D patches ¶xi
p ∈ R

P 2
·C ♣i = 1, .., N♢, where each patch is of size P × P and N = HW

P 2 is the number of image
patches (i.e., the input sequence length). We map the vectorized patches xp into a latent D-dimensional
embedding space using a trainable linear projection. To encode the patch spatial information, we learn
speciĄc position embeddings which are added to the patch embeddings to retain positional information as
follows:

z0 = [x1
pE; x2

pE; · · · ; xN
p E] + Epos, (1)

where E ∈ R
(P 2

·C)×D is the patch embedding projection, and Epos ∈ R
N×D denotes the position embedding.

The concatenated sequence T is processed through the Transformer encoder layers to yield the Ąnal
representations. Then, we employ multi-headed self-attention (MSA) [23] (Eq. 3) and multi-layer perceptron
(MLP) blocks (Eq. 4). Layer normalization (LN) is applied before each block (Eq. 5), as described in the
following equations:

Z0 = T, (2)

Z′

ℓ = MSA(LN(Zℓ−1)) + Zℓ−1, ℓ = 1 . . . L, (3)

Zℓ = MLP(LN(Z′

ℓ)) + Z′

ℓ, ℓ = 1 . . . L, (4)

Y = LN(ZL[0]), (5)

where L denotes the number of Transformer layers, and ZL[0] represents the Ąnal layerŠs class token
representation. The output Y ∈ R

D serves as the input to a classiĄer head for the task at hand. For

segmentation, an effective approach is to upsample the encoded feature representation zL ∈ R
HW

P 2
×D to the

full resolution. This involves reshaping the encoded feature from HW
P 2 to H

P × W
P , applying a 1 × 1 convolution

to reduce the channel size to the number of classes, and then bilinearly upsampling the feature map to the
full resolution H × W for the Ąnal segmentation outcome.

Due to the limited dimensions of ViT input tokens, input image patch sizes H
P × W

P are often much smaller
than the original image resolution H × W in high-resolution medical images, leading to a loss of low-level
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details (e.g., cell shape and boundary). TransUNet addresses this by using a CNN-Transformer hybrid model,
where a CNN Ąrst extracts a feature map from the input. Patch embedding is then applied to 1 × 1 patches
from the CNN feature map instead of raw images, ensuring better retention of details. We present the hybrid
encoder in Figure 2 because it yields better performance, as demonstrated in the comparative analysis of
different encoders presented in Table 1 in Section 5.3.

U-Net Structure and Skip Connections. Following TransUNet, we adopt the standard U-Net design
with skip connections, replacing naive upsampling with a Cascaded Upsampler (CUP). After reshaping the

feature sequence zL ∈ R
HW

P 2
×D into a H

P × W
P × D feature map, CUP employs multiple upsampling blocks to

progressively restore full resolution. Each block comprises a 2× upsampling operator, a 3 × 3 convolution,
and a ReLU activation, enabling effective multi-scale feature aggregation.

Figure 2 illustrates the overall framework of our approach. One thing to notice is that our method is not
highly relied on the TransUNet as the outliers sampling processes lies in the latent space and invarient to the
model structure, we present the TransUNet here simply as it represents the Transformer based Unet Structure
model framework for cell segmentations. The details of how raw high-resolution images are subdivided into
small patches to satisfy the input constraints of the vision transformer and to capture Ąne cellular details
presented in Section 4.2.

3.2. Robust Cell Segmentation via Virtual Outlier Sampling

Our proposed NT2 cell dataset presents two major challenges. First, high-resolution medical images often
contain small, densely packed cells that are highly sensitive to pixel-level variations, making accurate human
annotation particularly difficult. Second, there is a lack of sufficient training data for the diverse stages of
pluripotent carcinoma cells, which limits the modelŠs ability to generalize across different developmental
stages.

To address these issues, we propose a virtual outlier sampling strategy that is applied exclusively during
training. Instead of directly sampling outliers from the input image space x ∈ R

H×W ×C , we synthesize
virtual outliers in the latent feature space z ∈ R

H′
×W ′

×C′

, where H ′, W ′, and C ′ differ from H, W , and C
due to the spatial and channel transformations introduced by the encoder network.

Operating in the latent space provides several beneĄts. First, it reduces computational complexity due
to the lower dimensionality of latent representations. Second, it enhances training stability and model
robustness, as learning to handle synthetic perturbations in the latent space encourages the model to better
capture the underlying data distribution. In contrast, perturbing the input space directly may lead to
unstable training and degraded performance.

This strategy also enables the incorporation of an uncertainty loss term, Luncertainty, which guides
the model to account for potential outlier regions during training, further improving generalization and
segmentation accuracy under limited and imbalanced data conditions.

SpeciĄcally, we opt to sample virtual outliers directly from the output logits of the segmentation
map, denoted by s(xi), rather than from earlier latent representations. This strategy not only reduces
computational load but also minimizes the risk of training instabilities, such as loss explosion, that could
arise from discrepancies between artiĄcially added noise and true label distributions.

Given the generic nature of our method, we establish general notations applicable to similar tasks in
image classiĄcation or segmentation. We model the features of all target classes as conditional multivariate
Gaussian distributions:

pθ(s(x)♣y = k) = N (µk, Σ), (6)

where µk represents the mean for class k ∈ ¶1, 2, . . . , K♢, and Σ is the covariance matrix shared across
classes. The function s(x) ∈ R

m represents the segmentation map of a cell instance x, where m is signiĄcantly
smaller than the input dimension d. In our speciĄc application to the pluripotent carcinoma cell dataset, we
focus on two classes: the cells and the background, implying k = 2.
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To estimate the parameters of the Gaussian distribution, we calculate the empirical class means and
covariance matrix from the training samples ¶xi, yi♢

N
i=1:

µ̂k =
1

Nk

∑

i:yi=k

s(xi), (7)

Σ̂ =
1

N

K∑

k=1

∑

i:yi=k

(s(xi) − µ̂k) (s(xi) − µ̂k)
⊤

. (8)

where Nk is the number of objects in class k, and N is the total number of objects. We use online
estimation for efficient training, where we maintain a class-conditional queue with ♣Qk♣ object instances from
each class. In each iteration, we enqueue the embeddings of objects to their corresponding class-conditional
queues and dequeue the same number of object embeddings.
Sampling from the Feature Representation Space We propose sampling virtual outliers from the
feature representation space of cell images, utilizing the multivariate distributions estimated from these
features. These virtual outliers are designed to reĄne the decision boundary between different stages of cell
development and other outlier data, which may not be adequately represented in the training set.

To accomplish this, we generate virtual outliers Vk from the ϵ-likelihood region of the estimated class-
conditional distribution for each cell stage:

Vk =

{
vk ♣

1

(2π)m/2♣Σ̂♣1/2
exp


−

1

2
(vk − µ̂k)⊤Σ̂−1(vk − µ̂k)


< ϵ

}
, (9)

where vk ∼ N (µ̂k, Σ̂k) represents the sampled virtual outliers for class k. These samples are chosen from
a sublevel set deĄned by a small ϵ, ensuring that the outliers are near the decision boundary of the class.
With the virtual outliers vk sampled from the predicted segmentation map s(xi), we effectively capture the
inherent uncertainty of the segmentation process. In particular, the set of virtual outliers, Vk, is integrated
into the segmentation pipeline to update s(x), yielding an uncertainty-enhanced output that we denote as
fout(x; θ). This updated output is then utilized in our uncertainty-aware loss functions in the LDice out and
LCE out in Eq. 14 and 13.

We hypothesize that most of the cell pixels are near the boundary of existing cells as shown in Figure 3.
Compared to the ground truth masks shown in the second subĄgure in Figure 3, the synthesized outliers
contain more information about the cells, which are difficult for humans to annotate due to their small size.
This strategy aims to enhance the modelŠs sensitivity to subtle yet critical variations in cell morphology that
might indicate different developmental stages or pathological conditions.

3.3. Uncertainty-aware Training Objective

The objective is to develop an uncertainty-aware deep learning model capable of predicting a segmentation
map Ŝ for input cell images. To this end, we introduce a new overall training objective, which utilizes virtual
outliers as discussed in Section 3.2. We start by deĄning the standard Dice loss between the predicted pixel
scores ŷ and the ground truth targets y:

LDice(f(x; θ), y) = 1 −
2

∑
i ŷiyi + ϵ∑

i ŷ2
i +

∑
i y2

i + ϵ
, (10)

where ŷi represents the predicted probabilities for the actual class labels yi, and ϵ is a small constant
introduced to prevent division by zero.

In the case of medical segmentation [42], Dice loss is frequently combined with Cross Entropy loss to
form the overall training objective. The Cross Entropy loss is deĄned as follows:

LCE(f(x; θ), y) = −
∑

i

yi log(f(xi; θ)), (11)
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(a). Original cell images from the training set

(b). Corresponding ground truth masks

(c). Visualization of the proposed segmentation map with synthesis outliers

Figure 3. Examples showcasing the training with visual outliers. Patches are taken from the training set, presented in sizes
of 224 × 224 and 448 × 448. Compared to the ground truth masks, the synthetic outlier samples simulate small cell dots at
the pixel level, which are challenging for human annotation. Additionally, small white dots are presented as outliers, which
may be difficult to discern without magniĄcation.
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where f(xi; θ) is the modelŠs output for the input xi, and yi is the corresponding true label.
The overall training objective for medical segmentation, as used in vanilla TransUNet, combines both

Cross Entropy and Dice losses [43]. This combined loss function is employed as the primary training loss,
deĄned as:

Lseg = λ1LCE(Ŝl, D(S)) + λ2LDICE(Ŝl, D(S)). (12)

The weights λ1 and λ2 are used to balance these two terms, typically set to be equally distributed [1].
With the virtual outliers vk sampled from the predicted segmentation map s(xi), we effectively capture

the inherent uncertainty of the segmentation process. To make our model uncertainty-aware, we adapt both
the Dice loss and Cross Entropy loss for training as follows:

LDice out(fout(x; θ), y) = 1 −
2

∑
i ŷsyn,iyi + ϵ∑

i ŷ2
syn,i +

∑
i y2

i + ϵ
, (13)

LCE out(fout(x; θ), y) = −
∑

i

yi log(fout(xi; θ)), (14)

where ŷsyn,i represents the predicted probabilities for the actual class labels yi from the synthetic outputs,
and fout(xi; θ) denotes the modelŠs output for synthetic data designed to simulate under-represented features.

Furthermore, we model the uncertainty captured by the virtual outliers through a speciĄc loss function:

Luncertainty = β1LCE out(Ŝl, D(S)) + β2LDICE out(Ŝl, D(S)), (15)

where β1 and β2 are coefficients that weigh the contributions of the cross-entropy and Dice losses, respectively,
in quantifying the uncertainty associated with the segmentation of cells.
Overall Training Objective. Although the proposed loss function is initially designed for binary segmen-
tation, it is adaptable for multi-class segmentation scenarios. Our overall training objective integrates the
segmentation loss, which includes both Dice and Cross Entropy losses, and a regularization component that
addresses model uncertainty:

min
θ

E(x,y)∼D [λLseg(x, y; θ) + βLuncertainty(x, y; θ)] , (16)

where λ and β is the weighting coefficient for the uncertainty regularization. The segmentation loss,
Lseg, combines the Dice loss, LDICE, and the cross-entropy loss, LCE, formulated to effectively handle the
segmentation of cells across different stages and morphologies. The uncertainty component, Luncertainty,
leverages synthetic data to enhance the modelŠs ability to predict underrepresented features and quantify
predictive conĄdence. Ablation studies, detailed in Section 5.4, demonstrate the efficacy of this loss function
in improving segmentation accuracy and model robustness.

4. Dataset

4.1. Data Description

NT2 cells were exposed to 10-5 ATRA every 48 hours for 14 days [16, 17]. The cells were imaged using a
bright-Ąeld microscope on treatment days. ATRA exposure induces neuronal differentiation in NT2 cells,
leading to notable morphological changes including an increase in cytoplasm size, elongation of the cell body
and neurite extension, as illustrated in Figure 1B.

The NT2 dataset consists of 105 high-resolution raw images of NT2 cells undergoing differentiation, of
which 36 images are fully annotated, including 2425 individual cells annotated. These images have resolutions
primarily around 4000 × 3000 pixels, enabling detailed morphological analysis and accurate segmentation.
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4.2. Data Preprocessing

Data Augmentation. We randomly partition the entire dataset into two subsets, allocating 80% for
training and 20% for testing. To effectively train our TransUNet-based MorphoSeg model, we augment the
data by partitioning each high-resolution image into smaller, manageable patches. SpeciĄcally, we extract
patches of sizes 224 × 224, 448 × 448, 1000 × 1000, 1500 × 1500, and 2000 × 2000 pixels using an overlapping
strategy with a 35% overlap. This approach preserves the spatial context across adjacent patches, which
is essential for capturing the complex spatial relationships inherent in cell structures. In addition to these
patches, the original full-resolution images and their corresponding masks are included to form the complete
training and testing dataset.

Using this technique, we generate a total of 15,710 patches. This distribution results in 12,568 patches for
training and 3,142 patches for testing. To optimize the modelŠs performance, we implement a data pruning
strategy during both the training and testing stages, excluding all patches that do not contain any part of
the annotated masks, which will reduce the training set to 10,016 samples for training.

In addition to evaluating performance on the patch-based testing set, we also assess our model on
full-resolution images that lack annotations (i.e., the 69 images not included in the 36 annotated images out
of 105 total). This evaluation more closely reĆects real-world scenarios where researchers directly apply the
trained model to raw images, yielding segmentation masks for the entire image. Visualization examples of
these results are presented in Figure 4.

5. Experiments

5.1. Implementation details

We evaluate our model against established benchmarks including Cellpose and TransUNet, utilizing the
AdamW optimizer with exponential learning rate decay on the R50-ViT-B architecture. SpeciĄcally for
Cellpose, we utilize two of the highest performing pre-trained conĄgurations, cyto3 and cyto2, both set with
a cell diameter of 30. These models are trained with a learning rate of 0.01, a weight decay of 5 × 10−5, and
over 200 epochs. The batch size for training is set at 8, with verbose output enabled for detailed progress
tracking. During testing, we adapted the Cellpose model to handle larger cells by setting the diameter
parameter to 100, with no Ćow threshold and a cell probability threshold of 0.2, adjusting the channels
accordingly to match speciĄc imaging conditions. For the TransUNet, we adhere which includes two types of
encoders: a pure Transformer-based encoder, denoted as ŞViT-B16,Ť and a hybrid encoder that combines
ResNet-50 with ViT, denoted as ŞR50-B16Ť. The input resolution and patch size P are set to 224×224 and
16, respectively. We set the learning rate to 0.01, momentum to 0.9, and weight decay to 1 × 10−4. All
models are trained over 200 epochs, with sampling commencing at the 150th epoch. Batch sizes of 128
and 256 are implemented depending on the model size, focusing on 10,0000 critical samples by selectively
sampling 1,0000 pixels per image to enhance training efficiency and effectiveness.

5.2. Evaluation Metrics

We evaluate our method using four key metrics: the average Dice Similarity Coefficient (DSC) [44] for
assessing overlap accuracy, the 95th Percentile Hausdorff Distance (HD95) [45] for measuring boundary
alignment, the Intersection over Union (IoU) [46] for quantifying region overlap, and the mean Average
Precision (mAP) [47] for overall object detection performance. These metrics, calculated from true positives,
false positives, and false negatives, offer a comprehensive view of segmentation quality, while qualitative
evaluations further validate the practical effectiveness of our approach.

5.3. Comparison with Baselines

Table 1 presents a comprehensive comparison of our proposed approach, MorphoSeg, against several
baselines including Cellpose, TransUNet, and TopoSeg UNet++ , SwinUNet and ScaleFormer. Cellpose, a
CNN-based U-Net model tailored for cell segmentation, is evaluated in its cyto3 and cyto2 variants. Although
Cellpose beneĄts from requiring fewer annotations, its performance is hindered by its reliance on cell Ćow and
diameter estimationsŮcharacteristics that vary signiĄcantly across different cell stages. This variability is
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Method Model DSC ↑ HD95 ↓ IoU-0.5 ↑ IoU-0.75 ↑ IoU-0.9 ↑ mAP ↑

Cellpose [6] cyto3 63.66±1.23 137.90±0.95 25.31±1.11 12.35±0.87 3.64±1.45 13.77±0.67
cyto2 48.15±0.56 181.50±1.98 19.02±1.34 8.22±0.75 2.57±1.05 9.94±0.62

UNet++ [21] - 76.24±1.29 39.53±1.70 82.24±1.12 43.46±1.05 4.15±0.60 43.28±0.55

UNet++ + MorphoSeg - 76.49±1.27 39.29±1.68 82.68±1.15 44.09±1.00 4.47±0.57 43.75±0.54

SwinUnet [25] - 72.78±1.48 42.77±1.95 77.29±1.10 31.36±0.95 3.27±0.65 37.31±0.53

SwinUnet + MorphoSeg - 75.23±1.42 39.47±1.83 81.13±1.07 39.51±1.02 3.91±0.70 41.52±0.55

ScaleFormer [26] - 72.13±1.38 44.09±1.90 75.54±1.10 33.28±0.95 2.67±0.60 37.16±0.52

ScaleFormer + MorphoSeg - 75.11±1.35 41.11±1.80 80.29±1.08 39.03±0.92 2.95±0.55 40.76±0.51

TopoSeg [33] ViT-B16 62.08±1.12 96.51±1.33 58.30±0.78 10.93±0.14 1.28±0.03 23.50±0.26
R50-B16 66.14±1.55 97.77±1.23 64.21±1.67 15.12±0.78 1.83±1.11 27.05±0.72

TopoSeg + MorphoSeg ViT-B16 65.99±1.34 91.97±1.56 63.65±2.98 14.09±0.18 1.16±0.00 26.30±1.00
R50-B16 67.97±1.11 91.40±1.45 68.56±1.23 17.24±0.56 2.19±1.67 29.33±0.72

TransUNet [1] ViT-B16 72.97±1.50 32.94±1.20 78.33±1.11 34.52±0.87 3.51±0.89 38.79±0.56
R50-B16 80.35±1.67 21.98±0.99 88.00±1.11 58.67±1.45 9.22±1.02 51.96±0.70

TransUNet + MorphoSeg ViT-B16 84.89±1.56 15.37±1.78 92.50±1.23 74.02±1.36 18.08±0.12 61.53±0.61
R50-B16 86.57±1.34 15.75±1.11 93.02±2.45 80.01±1.93 21.87±0.67 64.97±1.06

Table 1. Comparison on our proposed cell dataset. All methods incorporating outlier synthesis are trained with a sample
size of 100, 000, and the selection count is set to 10, 000. ↑ indicates that larger values are preferable, while ↓ indicates that
smaller values are better. All numerical values are presented as percentages. Bold numbers denote the best performance,
with results presented as mean ± standard deviation over 3 runs.

reĆected in its DSC scores of 63.66 (cyto3) and 48.15 (cyto2), indicating limitations when applied to datasets
with diverse cell morphologies.

In addition to Cellpose, we integrated MorphoSeg with another CNN-based architecture, UNet++ [21].
To maintain consistent experimental settings, we sampled the virtual outliers at the output level of the
segmentation map rather than at a reduced dimensionality in the latent space. Although sampling in the
latent space might simplify training and further improve results, even under these suboptimal conditions, our
MorphoSeg still yielded a measurable improvement for UNet++, as demonstrated in Table 1.

Furthermore, we extended MorphoSeg to two state-of-the-art Transformer-based segmentation backbone
networks, SwinUNet [25] and ScaleFormer [26]. The results reported in Table 1 were obtained using the
official default settings for these models. The integration of MorphoSeg led to signiĄcant performance gains
across multiple evaluation metrics for both SwinUnet and ScaleFormer, thereby demonstrating the robustness
and versatility of our approach.

TransUNet was evaluated in two variants: ViT-B16 and R50-B16. The ViT-B16 variant exhibits
suboptimal performance with a DSC of only 25.00, likely due to challenges in distinguishing cells from the
background under varying lighting conditions. In contrast, the R50-B16 variant demonstrates markedly
better performance, achieving a DSC of 80.35. This improvement underscores the beneĄt of incorporating a
ResNet-50-based encoder for effectively capturing low-level features in high-resolution medical images.

We implement TopoSeg based on TransUNet. As a state-of-the-art semi-supervised method that leverages
topological consistency, it shows moderate performance. Its ViT-B16 variant attains a DSC of 26.53, while
the R50-B16 variant improves to 66.14. However, across all metrics, TopoSeg remains less competitive
compared to the best-performing models. The conĄgurations used for TopoSeg remain the default settings.

Our proposed method, MorphoSeg, further enhances segmentation accuracy by incorporating virtual
outlier sampling and an uncertainty-aware training objective. When combined with the R50-B16 encoder,
MorphoSeg achieves a DSC of 86.57, a HD95 of 15.75, and superior IoU and mAP scores compared to all
baselines. These results highlight the effectiveness of our approach in managing the inherent variability in
cell morphology. Additionally, while an integration of our method with TopoSeg was explored using both
ViT-B16 and R50-B16 variants, the standalone performance of MorphoSeg with the R50-B16 encoder remains
the most competitive, emphasizing its robust capability for accurate cell segmentation.
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Method Encoder Loss DSC↑ HD95↓ IoU-0.5↑ IoU-0.75↑ IoU-0.9↑ mAP↑

MorphoSeg

ViT-B16
Balance 76.20±1.50 31.77±3.00 65.34±1.00 39.78±0.90 4.07±0.50 36.40±0.48
Norm 84.89±1.56 15.37±1.78 92.50±1.23 74.02±1.36 18.08±0.12 61.53±0.61
Pareto 79.08±1.34 26.20±1.11 69.01±1.45 49.92±1.67 5.95±0.67 41.63±0.77

R50-B16
Balance 86.33±1.11 16.33±0.99 93.02±1.45 79.68±1.42 20.11±1.67 64.27±0.88
Norm 84.40±1.16 26.37±1.11 91.64±1.22 72.50±1.67 11.30±1.34 58.48±0.82
Pareto 86.57±1.34 15.75±1.11 93.02±2.45 80.01±1.93 21.87±0.67 64.97±1.06

Table 2. Ablation study on the effect of different loss function designs for MorphoSeg. All methods incorporating outlier
synthesis are trained using the same conĄguration as in Table 1. ↑ indicates that larger values are preferable, while ↓

indicates that smaller values are better. Bold numbers denote the best performance, with results presented as mean ±

standard deviation over 3 runs.

5.4. Ablation Studies

Incorporating Uncertainty into Loss Function Design. To determine the optimal values for the
weight parameters λ and β in Equation.(16), we evaluate three sophisticated approaches to weight the loss
components, tailored for enhanced model training and testing. The Original Balancing method, consistent
with TranUNet, evenly distributes weights across all loss components, simplifying optimization but potentially
overlooking speciĄc task requirements within the model. Alternatively, the Normalized Losses method
dynamically scales each loss component by its magnitude:

Lnorm =
∑

i

Li

∥Li∥
+ ϵ, (17)

where Li denotes individual loss components, ∥ · ∥ signiĄes the norm operation applied to each loss component
to normalize its scale, and ϵ is a small constant to prevent division by zero. This adjustment ensures that
hyperparameters λi are iteratively tuned to maintain balance among the loss components. A reĄnement of
this approach normalizes subsequent losses relative to the Ąrst, calculated as:

Lpareto = Lloss +
∑

i,loss

Li

∥Li/Lloss∥
, (18)

which potentially provides a more rational scaling by relating all losses back to the primary loss component.
Lastly, the Pareto Optimization strategy [48], aims to achieve a Pareto efficient solution by treating each
loss as an objective in a multi-objective optimization framework, wherein improvements in one objective are
sought without signiĄcant compromises in others, facilitating an equilibrium that optimizes overall model
performance.

Table 2 shows an ablation study comparing three loss strategies for MorphoSeg using two encoder
backbones, ViT-B16 and R50-B16. With ViT-B16, the Balance loss yields slightly higher DSC and lower
HD95 while all methods register low IoU values at high thresholds. In contrast, the R50-B16 encoder achieves
much better performance overall and the Pareto strategy delivers the best results with the highest DSC and
mAP and the lowest HD95. These results suggest that the choice of loss is more inĆuential with R50-B16
and that the Pareto approach offers a modest advantage.
Ablation Studies on Different Network Architectures. To evaluate the effect of different network
components, we performed experiments on various architectures with differing numbers of Transformer layers
and attention heads. Table 3 summarizes these results, which show that larger networks generally yield better
performance. SpeciĄcally, the ŞR50-B16Ť model represents our hybrid architecture combining a ResNet-50
backbone with a Vision Transformer conĄgured in a base setting, consisting of 12 Transformer layers with
12 self-attention heads per layer and a patch size of 16. In contrast, the ŞR50-L32Ť model uses the same
ResNet-50 backbone but incorporates a larger Transformer module with 32 layers and 16 self-attention heads
per layer. For the pure Vision Transformer architectures, ViT-B16 comprises 12 layers with 12 attention
heads per layer, while ViT-L16 features 24 layers with 16 attention heads per layer.
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Encoder Layers Heads Hybrid Loss DSC↑ HD95↓ mAP↑

ViT-B16 12 12 ×

Balance 76.20±1.50 31.77±3.00 42.31±0.69

Norm 84.89±1.56 15.37±1.78 61.53±0.61

Pareto 79.08±1.34 26.20±1.11 47.58±0.55

ViT-L16 24 16 ×

Balance 77.35±1.45 30.12±2.85 43.27±0.74

Norm 85.42±1.59 14.88±1.77 62.34±0.68

Pareto 79.97±1.38 25.83±1.12 48.21±0.63

R50-B16 12 12 ✓

Balance 86.33±1.11 16.33±0.99 64.27±0.77

Norm 84.40±1.16 26.37±1.11 58.48±0.64

Pareto 86.57±1.34 15.75±1.11 64.97±1.06

R50-L32 32 16 ✓

Balance 88.50±1.26 14.50±1.72 67.32±0.71

Norm 87.55±1.15 17.82±1.19 62.75±0.68

Pareto 88.95±1.34 14.25±1.21 68.11±0.77

Table 3. Ablation studies on different network architectures. For each encoder variant, we report the number of Transformer
layers, attention heads, and indicate whether the encoder is hybrid (ResNet backbone; ✓) or pure Transformer (×). Results
are presented for three loss variants: Balance, Norm, and Pareto.

BloodCell[49] LIVECell[8]

Method Loss DSC ↑ HD95 ↓ IoU-0.5 ↑ IoU-0.75 ↑ IoU-0.9 ↑ mAP ↑ DSC ↑ HD95 ↓ IoU-0.5 ↑ IoU-0.75 ↑ IoU-0.9 ↑ mAP ↑

UNet++[21] - 96.11 2.21 100.00 100.00 83.02 94.34 88.52 7.55 100.00 71.93 15.79 62.57

Norm 95.98 2.26 100.00 100.00 79.25 93.08 88.88 6.58 100.00 68.42 14.04 60.82
+ MorphoSeg Balance 96.13 2.23 100.00 100.00 83.65 94.55 88.43 7.10 100.00 71.93 15.79 62.57

Pareto 96.07 2.21 100.00 100.00 81.76 93.92 88.55 7.04 100.00 68.42 12.28 60.23

TransUNet [1] - 90.56 4.80 100.00 98.74 0.00 66.25 73.83 18.08 77.19 19.30 0.00 32.16
Norm 94.73 2.66 100.00 99.37 57.86 85.74 76.98 16.27 85.96 24.56 1.75 37.43

+ MorphoSeg Balance 90.57 4.75 100.00 98.74 0.00 66.25 73.83 18.08 77.19 19.30 0.00 32.16
Pareto 92.16 4.02 100.00 98.74 8.81 69.18 75.05 17.44 77.19 22.81 1.75 33.92

SwinUNet [25] - 95.37 2.87 100.00 99.37 69.81 89.73 82.95 9.37 100.00 40.35 3.51 47.95
Norm 95.95 2.39 100.00 100.00 81.13 93.71 85.33 8.79 100.00 50.88 7.02 52.63

+ MorphoSeg Balance 95.61 2.70 100.00 100.00 72.33 90.78 82.95 9.37 100.00 40.35 3.51 47.95
Pareto 95.74 2.51 100.00 100.00 76.73 92.24 85.27 8.78 100.00 50.88 7.02 52.63

ScaleFormer [26] - 95.91 2.17 100.00 100.00 78.62 92.87 88.48 6.52 100.00 71.93 12.28 61.40
Norm 96.04 2.16 100.00 100.00 83.02 94.34 83.24 10.97 96.49 43.86 3.51 47.95

+ MorphoSeg Balance 96.16 2.20 100.00 100.00 83.02 94.34 87.89 8.41 100.00 63.16 14.04 59.06
Pareto 96.04 2.15 100.00 100.00 79.87 93.29 89.01 7.95 100.00 70.18 15.79 61.99

Table 4. Segmentation results on the BloodCell and LIVECell datasets of several benchmarks. The results of using
MorphoSeg are reported with three loss functions: Balance, Norm, and Pareto. The TransUNet presented in this table uses
the hybrid encoder of R50-ViT-B-16. Best results for each dataset for each method is marked in Bold numbers.
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Input image Cellpose TransUnet TopoSeg MorphoSeg (Ours)

Figure 4. Visualization of full input images with model outputs. The presented images are the direct outputs from the
model without annotations or ground truth masks, representing unseen data during training and testing. Due to the high
resolution, differences among the outputs of TransUNet, TopoSemi, and MorphoSeg are not easily discernible. For a more
detailed comparison, zoomed-in results are provided in Figure 5.
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5.5. Experiments on Additional Datasets

To further validate the generalization and robustness of our proposed MorphoSeg, we performed exper-
iments on two widely recognized datasets: the BloodCell dataset [49] and the LIVECell dataset [8]. The
BloodCell dataset (BBBC041v1) consists of 1,364 microscopic images of Giemsa-stained human blood smears
infected with Plasmodium vivax, containing approximately 80,000 cells. The LIVECell dataset includes
5,239 expert-annotated phase-contrast microscopy images, comprising 1,686,352 annotated cells across eight
cell types, with predeĄned splits for training, validation, and testing, along with various subset sizes for
scalability experiments.

Noteably that both the BloodCell and LIVECell datasets present segmentation tasks that are relatively
simpler compared to our primary dataset due to the consistent cellular morphologies observed. Despite these
variations, our MorphoSeg method achieves promiss performance improvements, as summarized in Table 4,
highlighting its effectiveness across diverse cellular imaging conditions.

Target Cells TopoSeg TransUNet MorphoSeg

Figure 5. Zoomed-in visualization of Ntera-2 cell segmentation results on the testing dataset, including target cell
annotations, predicted segmentation masks, and corresponding overlay outputs. As a detailed supplement to Figure 4,
this comparison highlights the performance of MorphoSeg against TopoSeg and TransUNet. Notable differences between
segmentation methods are observed, with some regions exhibiting incomplete segmentation, while others merge multiple
cells into a single segmentation.

5.6. Patch-Based Approach for High-Resolution Inference and Visualization

Given the inherent limitations of Vision Transformers, where token size constraints can result in vague and
imprecise inference on large images, we propose an advanced patch-based inference technique to address the
sensitivity to pixel-level cellular details. This approach enhances segmentation accuracy for high-resolution
biological cell images while making the framework more practical and accessible for researchers. Example
visualizations of the results are presented in Figure 4.

During a single image inference stage, the image is initially subdivided into patches of size 224 × 224,
similar to the data augmentation strategy presented in Section 4.2. This subdivision allows the model to focus
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on and accurately detect Ąne-grained variations at the boundaries of the Ntera-2 cells and their surrounding
environment. Each patch undergoes a separate inference process. To preserve the global spatial context, we
incorporate an overlapping strategy with a 56-pixel margin. This overlap ensures continuity and minimizes
edge artifacts. The inference results from the patches are then combined using an average pooling strategy
and visualized as segmentation masks, shown in red in Figure 4 and Figure 5. This end-to-end training and
visualization strategy signiĄcantly facilitates the application of our framework, enabling researchers to use it
without requiring further modiĄcations.

Figure 4 presents inference results with segmented masks overlaid on the original raw images. For
comparison, we also show outputs from Cellpose, TransUNet, and TopoSeg using the same input images. It
is evident that Cellpose fails to detect a signiĄcant number of cells, while TopoSeg produces unsatisfactory
results with many spurious, thin lines. In contrast, MorphoSeg yields results comparable to TransUNet
but with noticeable improvements in the Ąne details. Although the high resolution of the raw images can
mask these subtle differences in the full-view images, the zoomed-in regions in Figure 5 clearly demonstrate
the enhanced segmentation quality. These qualitative Ąndings are consistent with the quantitative results
reported in Table 1.

6. Conclusions and Future Works

In this paper, we introduced a novel data repository containing differentiating NT2 cells, designed to
facilitate the segmentation of complex cell morphologies. This dataset requires pixel-level segmentation, which
presents new challenges for accurately segmenting cells with intricate shapes. To address these challenges, we
proposed an uncertainty-aware segmentation method MorphoSeg enhancing the base TranUNet by training
on virtual outliers sampled near the feature representation space, thereby increasing the modelŠs sensitivity
to small pixel variations and morphological changes across different cell stages. This enhancement makes our
MorphoSeg more robust and effective for segmenting complex and irregularly shaped cells.

The experimental results demonstrate that the proposed MorphoSeg outperforms existing benchmarks,
including Cellpose and TransUNet. Our best-performing model, MorphoSeg with a hybrid encoder, showed a
notable improvement in performance metrics, achieving a 6.23% increase in the Dice Similarity Coefficient
(DSC). This statistic measures the similarity between the segmented cells and the ground truth. A reduction in
HD95 (Hausdorff Distance at the 95th percentile) was also measured, indicating a decreased spatial discrepancy
between the predicted and actual segmentation boundaries compared to the baseline conĄguration. By
providing comprehensive visualizations and complete code, we aim to contribute to not only advance further
research in this emerging domain but also to serve as a practical solution for cell segmentation and visualization
in diverse medical AI applications.
Limitations. The relatively small size of the annotated dataset (36 images), is a limitation and the data
may not be sufficient for all research applications. We anticipate that incorporating a larger number of
images could further improve model performance. Additionally, while our method is effective for the NT2
cell dataset, it may not scale seamlessly to all types of cell datasets; inappropriately handling systematic
outliers could potentially reduce its effectiveness.
Future Work. Future work will focus on a broader range of deep learning architectures to further enhance
performance and generalisability. This also includes applying sampling procedures within the latent space to
further simplify training and potentially enhance the results. QuantiĄcation of the method performance with
respect to uncertainties is another important aspect to study further.
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