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ABSTRACT

In this paper, we address the challenges of efficiently assigning items to Unit Load
Devices within the air cargo industry. We present a comprehensive formulation of
the three-dimensional air cargo palletisation problem, focusing on cost minimisation
and incorporating grouping, positioning, and compatibility constraints. We propose
a set of 12 resolution approaches that utilise contextual bandits-guided local search
heuristics. We conduct a thorough benchmark experiment to evaluate the perfor-
mance of our proposed methods. Two objective functions, namely unused volume
and costs are employed to underscore the significance of cost minimisation in air
cargo palletisation. Furthermore, we address instances encompassing grouping, po-
sitioning, and compatibility constraints, enabling us to explore the managerial in-
sights these constraints offer and assess the benefits of integrating cost-reduction
strategies. The findings provide valuable insights for decision-makers involved in
optimising air cargo palletisation operations.

KEYWORDS

Air transport; three-dimensional bin packing; complete shipment; contextual
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1. Introduction

Air freight transport has demonstrated significant growth over the past few decades,
despite encountering recessions, geopolitical instabilities, and a temporary decline of
approximately 2% in 2020 due to the COVID-19 pandemic (Rodrigue 2020). The
industry rebounded swiftly, with air cargo volumes experiencing an 18.7% year-on-
year increase in 2021 (IATA 2023b).

Air cargo transportation encompasses general cargo and special cargo (IATA 2021).
General cargo refers to items not requiring specific handling or additional precautions
during air transport. On the other hand, special cargo entails goods subject to specific
regulations and requiring special handling due to their nature. Examples of special
cargo include dangerous goods, live animals, perishable goods, wet cargo, and time and
temperature-sensitive products. General and special cargo can be transported using
either full freighter aircraft or the belly space of passenger aircraft. Full freighters are
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dedicated exclusively to cargo transportation, offering a fixed and substantial capacity.
In contrast, the cargo capacity of passenger aircraft is more limited and susceptible to
unexpected changes (Tseremoglou, Bombelli, and Santos 2022).

Air cargo rates are determined by several factors, including the travel distance, the
shipment’s origin and destination, and the cargo’s nature (e.g., hazardous materials
or perishable goods). The pricing structure considers both the weight and volume of
the shipments. In addition, the airlines typically offer significant quantity discounts
(Huang and Chi 2007).

Shippers often rely on freight forwarders to facilitate the delivery of their goods
(Bombelli and Fazi 2022). Freight forwarders play a crucial role as decision-makers,
they capitalise on consolidating multiple shipments into a limited number of larger
consignments (Van Asch 2022). By doing so, they meet the shippers’ requirements
while minimising the costs charged by the airlines.

In this study, we focus on investigating the perspective of a large freight forwarder
regarding the utilisation of full freighter aircraft. Specifically, we examine the key fac-
tors and considerations related to reserving and managing unit load devices (ULDs),
which encompass various shapes and sizes, such as air cargo pallets or containers (Li,
Bookbinder, and Elhedhli 2012). The freight forwarder’s decision-making process in-
volves several important parameters associated with ULDs. These parameters include
fixed reservation charges, pivot weights, unit pivot costs, maximum weights, and over-
pivot rates. Fixed reservation charges pertain to the costs incurred when reserving a
specific ULD for transportation. Pivot weights represent the threshold at which the
weight of the cargo loaded onto a ULD becomes subject to additional charges or fees.
Cargo carriers typically determine these pivot weights, which vary depending on the
specific ULD utilised, as well as the origin and destination of the shipment. The under-
pivot rate denotes the cost associated with transporting cargo in a ULD below the
pivot weight. Over-pivot rates are the additional charges applied to cargo that exceeds
the pivot weight for a given ULD. Maximum weights refer to the maximum permissible
load that can be safely transported.

The problem of assigning items to ULDs and determining their placement inside
them is commonly referred to as the Air Cargo Palletisation Problem (Brandt and
Nickel 2019). Specifically, we focus on the static version of this problem, where all items
are known in advance. This problem can be formulated as a three-dimensional Multiple
Bin Size Bin Packing Problem (3D-MBSBPP), as defined by Wäscher, Haußner, and
Schumann (2007), considering physical, regulatory, and operational requirements. In
this problem, each item must be assigned to a suitable ULD. Since most items have
a parallelepiped shape (boxes), only orthogonal rotations are typically considered.
The goal is to minimise the unused volume within the ULDs while satisfying various
constraints.

Paquay, Schyns, and Limbourg (2016) proposed a method that minimises unused
volume while considering all physical requirements. These requirements include en-
suring that each loaded item is fully positioned within the admissible contour of its
assigned ULD, adhering to the maximum weight limit of the ULD after loading, main-
taining orthogonal placement, avoiding overlap between items, respecting orientation
constraints, accommodating the specific shape of the ULDs, ensuring vertical stability,
accounting for fragility considerations, and achieving appropriate ULD weight distri-
bution.

However, in addition to these physical requirements, air freight forwarders encounter
three other loading constraints (Brandt and Nickel 2019), namely:
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(1) Item compatibility. Some items may contain substances (e.g., dry ice, radia-
tion, chemicals, explosives) subject to additional requirements. The United Na-
tions (UN) provides recommendations on transporting dangerous goods to gov-
ernments and international organisations. They have been regularly amended
and updated in response to technological developments and needs of users (UN
2019). Moreover, the International Civil Aviation Organisation (ICAO 2017)
produces the basic legal requirements for storing and loading dangerous goods.
In addition, the International Air Transport Association’s Dangerous Goods
Regulations considers three types of dangerous goods: goods too dangerous to
be transported by air, goods transported with cargo aircraft only (called CAO
shipments) and goods transported both with cargo and passenger aircraft. Some
dangerous goods are subject to maximum weight or quantity limitations. More-
over, hazardous materials transportation must consider that some goods may
react dangerously with others.

(2) Item grouping. To reduce handling costs, items of the same shipment should
be split across as few ULDs as possible when a cargo aircraft carries out pick-
up and delivery operations at intermediate airports (Lurkin and Schyns 2015).
Grouping constraints related to standard and priority items must also be re-
spected to save handling time (Brandt 2017). Temperature-sensitive products
such as food, flowers, or pharmaceutical products must be transported into spe-
cial temperature-controlled ULDs to maintain goods at the desired tempera-
ture (Baxter and Kourousis 2015). Moreover, cargo registered under the same
house airway bill must be transported together to meet tax and customs re-
quirements (Chan et al. 2006). Furthermore, item grouping can also ensure that
release/clearance is coordinated and carried out with minimum delay since the
nature of a shipment could attract the attention of different public authorities,
e.g., the customs, veterinary or sanitary controllers (Abeyratne 2018).

(3) Item positioning. An item might need to be placed only on the periphery of the
ULD for easy accessibility (Brandt and Nickel 2019).

Our research aims to enhance the 3D-MBSBPP by incorporating practical loading
constraints. The main contribution of our study is to integrate these constraints into
the 3D-MBSBPP framework, focusing on minimising the total cost under the pivot-
weight scheme (Bookbinder, Elhedhli, and Li 2015). This scheme is characterised by
a pivot weight and two unit costs: the under-pivot rate and the over-pivot rate. In-
deed, minimising unused volume, while a common objective in the literature, assumes
a fixed cost per ULD, suggesting larger ULDs incur proportionally greater fixed costs.
However, this assumption does not align with the reality of the transportation in-
dustry. According to Bookbinder, Elhedhli, and Li (2015), in the airfreight business,
the ULD reservation fee is an attribute independent of its capacity, meaning that it
may or may not be correlated to the ULD’s size. Furthermore, Crainic et al. (2011)
acknowledge the independence between fixed reservation costs and bin capacity in var-
ious bin packing problems. Our second contribution lies in enhancing the resolution of
the 3D-MBSBPP applied to air transport. To this end, we propose a learning-based
algorithm by hybridising a contextual bandits-guided local search-based heuristic with
machine learning techniques (Juan et al. 2021; Achamrah, Riane, and Limbourg 2021;
Achamrah et al. 2022). This combination enables us to leverage the strengths of both
approaches, leading to more effective and efficient solutions for the 3D-MBSBPP in
the context of air transport.

The remainder of the paper is organised as follows. Section 2 provides the back-
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ground of the problem, while in Section 3, we present the problem formulation. The
resolution algorithm is described in Section 4, and the results of benchmark experi-
ments are provided in Section 5. Managerial insights are discussed in Section 6 while
closing remarks are given in the last section along with potential future perspectives.

2. Literature Review

This literature review explores three main research streams: the first concerns ap-
proaches to solving the multiple bin-size bin packing problem (MBSBPP), the second
focuses on various constraints considered in bin packing, and the third is related to
the integration of contextual bandits in local searches.

2.1. Approaches to solving the MBSBPP

Various solutions have been proposed to tackle the MBSBPP in two and three di-
mensions. Motivated by a real-world problem in which the customers’ orders involving
products packed into boxes of different sizes have to be put together into bins to be
delivered, Alvarez-Valdés, Parreño, and Tamarit (2013) proposed a greedy randomised
adaptive search procedure (GRASP)/Path relinking algorithm for two- and three- di-
mensional MBSBPP. The objective is to select the most appropriate bins to minimise
transportation costs. Alvarez-Valdes, Parreño, and Tamarit (2015) provided further
improvements on lower bounds for two- and three-dimensional MBSBPP.

Sun et al. (2022) concentrated on the 3D-MBSBPP within the context of Alibaba’s
warehouses. The objective is to minimise the total number of boxes, and if there
are multiple solutions with the same number of boxes, the secondary objective is to
minimise the total box material costs. Based on the heuristic algorithm developed
by Alibaba, the authors proposed to anticipate and incorporate human deviations to
reduce them and improve performance.

An algorithm proposed by Li et al. (2017) involves considering the positions and
orientations of all items simultaneously and computing their optimal arrangement in
variable box sizes for an e-fulfilment packaging system. The position of the box’s centre
of gravity is assumed to make the box more stable and easier to carry. Moreover, similar
box sizes are preferred for multiple-box deliveries. The algorithm also considers the
robots’ and robot manipulators’ real situations to ensure a smooth process. Indeed, as
mentioned in Elhedhli, Gzara, and Yildiz (2019), the automated warehouse is expected
to pack thousands of items into hundreds of industry-sized pallets daily. Further, the
authors included bin stability through layers to enable a column-generation approach
where the subproblem generates two-dimensional packings.

Tresca et al. (2022) addressed the problem of automating the definition of feasi-
ble pallet configurations that requires a fast solution of a three-dimensional Single
Bin-Size Bin Packing Problem (3D-SBSBPP) with additional logistic specifications
fundamental in real applications. Such specifications include items’ grouping by logis-
tic features, load bearing, stability, height homogeneity, overhang, weight limits, and
robotised layer picking. The authors also proposed matheuristics combining a mixed
integer linear programming formulation of 3D-SBSBPP and layer-building heuristics.
However, the concept of layers does not fit in air transport since according to Lee et al.
(2021), items are strongly heterogeneous in terms of their dimensions.

Paquay, Schyns, and Limbourg (2016) introduced a mixed integer linear program to
address 3D-MBSBPP. Their main contribution is to consider the weight distribution
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and centre of gravity of each container to maintain safety during air transportation.
The work is further extended in Paquay et al. (2018) by providing three matheuristics:
Relax-and-Fix, Insert-and-Fix and Fractional Relax-and-Fix; a heuristics is developed
in Paquay, Limbourg, and Schyns (2018) to solve larger instances.

2.2. Constraints in bin packing problem

Research in the field of bin packing problem has also looked into constraints such as
separation, stability, and grouping of items. Pollaris et al. (2015) discussed separa-
tion constraints in their review on vehicle routing problems, exploring articles, as in
Battarra, Monaci, and Vigo (2009), where certain products are prevented from be-
ing shipped in the same container or vehicle. Indeed, a distinction is made between
three types of commodities: vegetables, fresh products, and non-perishable items, in
the framework of a minimum multiple-trip vehicle routing problem.

Regarding air transportation, the safe transport of dangerous goods is subject to
several regulations, as highlighted by Brandt and Nickel (2019). In their work, they
mentioned the segregation table, which outlines the incompatibilities between different
shipment types, varying according to factors such as the type of aircraft and the loca-
tion of ULD: on the main deck or lower deck, or close to the cockpit. Indeed, aside from
hazmat, other materials, often transported by air due to its rapidity, need the same
consideration. For instance, hatching eggs must not be loaded near dry ice, used as a
refrigerant for perishable goods transportation; foodstuffs must not be loaded close to
human remains, or magnetised materials must not be loaded with undeveloped films
(Dangerous goods panel 1995; Abeyratne 2018). Nascimento, Alves de Queiroz, and
Junqueira (2021) considered the conflicting items that cannot be placed inside the
same container and separation constraints when items should keep a certain distance
from each other in the same container. Whereas Hamdi-Dhaoui, Labadie, and Yalaoui
(2014) qualified as partially conflicting when products can be loaded together, an ad-
ditional constraint on the distance separating them must be respected. Finally, Lurkin
and Schyns (2015) addressed the same issue for the weight and balance problem: op-
timally loading a set of containers and pallets into a compartmentalised cargo aircraft
(Limbourg, Schyns, and Laporte 2012; Zhao et al. 2021; Desai et al. 2023).

Other constraints have also been investigated, such as the requirement for items
from the same group or customer to be placed as close as possible to each other inside
a container. Nascimento, Alves de Queiroz, and Junqueira (2021) provided comprehen-
sive formulations and exact algorithms for these practical constraints in the container
loading problem. Indeed, they considered packing rectangular boxes into rectangular
containers to maximise their occupied volume (or maximise the total profit). They
also defined the grouping of items constraint when items belonging to the same group
(or customer) should be placed as close as possible to each other inside the container.
However, it is worth noting that their grouping constraints differ from ours, as items
can be placed in multiple ULDs.

2.3. Application of contextual bandit methodology in local searches

Bandit problems, introduced by Thompson (1933), balance exploration and exploita-
tion in decision-making. The Contextual Multi-Armed Bandit (CMAB) framework in-
corporates external contextual information (Lu, Pál, and Pál 2010), with applications
across various fields and machine learning processes (Bouneffouf, Rish, and Aggarwal
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2020). CMAB combined with local search has shown success in several domains. Yu,
Kveton, and Mengshoel (2017) introduced the Stochastic Local Search Bandit for tun-
ing multiple parameters simultaneously, improving regret bounds and efficiency. Chen,
Wang, and Zhou (2020) used CMAB for dynamic assortment optimisation, incorporat-
ing local search and handling time-varying contextual information. Jun, Choi, and Lee
(2022) employed a contextual bandit-enhanced local search algorithm for scheduling
and routing autonomous mobile robots, reducing average total tardiness. Zheng et al.
(2022) proposed a multi-armed bandit local search solver for MaxSAT problems, using
the bandit model to escape suboptimal solutions. To the best of our knowledge, no
existing papers have applied the combination of CMAB and local search techniques
to solve 3D-MBSBPP.

3. Problem formulation

A ULD is charged depending on whether the total weight exceeds a certain threshold,
which is called the pivot weight. Shipments are charged the under-pivot rate up to
the pivot weight. Additional weight is charged at the over-pivot rate (Bookbinder,
Elhedhli, and Li 2015).

Using the same notation as in Paquay, Schyns, and Limbourg (2016), the problem
can be formulated as follows.

3.1. Parameters

A set of n rectangular boxes of dimensions li × wi × hi and weight mi (i ∈ {1, ..., n})
has to be packed into m available ULDs of dimensions Lj × Wj × Hj , a maximal
capacity, also called maximum gross weight, Cj and a volume Vj (j ∈ {1, ...,m}). All
these numbers are assumed integers. Without loss of generality, we place, as in Paquay,
Schyns, and Limbourg (2016), the axes of the coordinate system so that the length
Lj (resp. width Wj , height Hj) of the ULD j lies on the x-axis (resp. y-axis, z-axis)
∀j ∈ {1, ...,m}.

The origin of this coordinate system lies on the front left bottom corner of the
containers. We also assume that the ULD can be opened in x = L, y = W , or
z = H. Each ULD has a fixed reservation cost fj , a pivot weight C̄j , an under-
pivot fixed cost c̄j and an over-pivot rate cj . These parameters are referred to as:
∀i ∈ {1, ..., n}, j ∈ {1, ...,m}

n Total number of boxes to be packed,

li × wi × hi Length × width × height of box i, ∀i,

mi Weight of box i, ∀i,

m Total number of available ULDs,

Lj ×Wj ×Hj Length × width × height of ULD j, ∀j,

Cj Maximum gross weight of ULD j, ∀j,

Vj Volume of ULD j, ∀j.

fj Fixed reservation cost of ULD j, ∀j.

C̄j The pivot weight of ULD j, ∀j.

c̄j The under-pivot rate of ULD j, ∀j.
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cj The over-pivot rate per weight unit of ULD j, ∀j.

3.2. Objective function

We use binary decision variables:

pij =

{

1 if box i is in ULD j,

0 otherwise,
∀i ∈ {1, ..., n}, j ∈ {1, ...,m},

uj =

{

1 if ULD j is used,

0 otherwise,
∀j ∈ {1, ...,m}.

In Paquay, Schyns, and Limbourg (2016), the objective function consists in min-
imising the unused volume of the selected ULDs

m
∑

j=1

ujVj −

n
∑

i=1

li wi hi. (1)

Since li, wi, hi are parameters, the term
∑n

i=1 li wi hi is a constant. Therefore, the
volume of the used ULDs is minimised:

m
∑

j=1

ujVj . (2)

As in Bookbinder, Elhedhli, and Li (2015), we also consider the objective function
that consists in minimising the total cost, that is, the fixed reservation cost plus the
under-pivot and over-pivot costs. While the fixed reservation costs in our formulation
are similar to those in Bookbinder, Elhedhli, and Li (2015), the treatment of under-
pivot and over-pivot costs differs. In Bookbinder, Elhedhli, and Li (2015), the under-
pivot cost is computed by multiplying the total weight of all boxes i loaded in ULD j

by the under-pivot rate. In contrast, following IATA (2023a), we define the under-
pivot cost as the basic unit load device charge, meaning that if at least one box is
loaded in ULD j, the under-pivot rate is applied, regardless of the total weight of
the boxes. Regarding over-pivot costs, in Bookbinder, Elhedhli, and Li (2015), employ
continuous variables to denote the additional capacity beyond the pivot weight. In our
formulation, the weight beyond the pivot weight is given by: max(0,

∑n
i=1mipij− C̄j),

this ensures that the over-pivot rate is only applied to the weight that exceeds the
pivot threshold.

m
∑

j=1

fjuj +

m
∑

j=1

c̄juj +

m
∑

j=1

cj max(0,

n
∑

i=1

mipij − C̄j). (3)

We can replace max(0,
∑n

i=1mipij − C̄j) with ρj ∀j ∈ {1, ...,m}, subject to:

ρj ≥ 0 (4)
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and

ρj ≥

n
∑

i=1

mipij − C̄j . (5)

In the context of air cargo transport, the filling rate is used to measure the extent to
which the available cargo capacity is being filled. Typically, the filling rate is calculated
based on either weight (load factor) or volume, and in most cases, cargo space fills up
based on volume before reaching the aircraft’s maximum weight capacity (Loadstar
2021; The International Air Cargo Association (TIACA) 2020). The filling rate, as
used in Paquay, Schyns, and Limbourg (2016), serves as a Key Performance Indicator
(KPI) for evaluating the efficiency of ULD usage, thereby complementing the cost
minimisation objective.

3.3. Operational constraints

The objective function (3) is also subject to the following constraints:

• the maximum capacity of each ULD cannot be exceeded.
• each box is allocated to exactly one ULD.
• the boxes do not exceed their ULD size.
• there is no overlap, i.e., two boxes cannot occupy the same portion of the space.
• the boxes can rotate orthogonally in all directions allowed by their content. For
instance, if the boxes contain fragile or liquid items, or items that must remain
upright, their ability to rotate in specific directions might be restricted to prevent
damage or spillage.
• each box lies inside the special shapes of the ULD.
• the vertical stability, that is, the bottom side of each box needs to be supported
by the top face of other boxes or by the ULD floor, as mentioned in Paquay,
Schyns, and Limbourg (2016). The horizontal stability is not considered since it
can be fixed by adding a special sheet increasing the friction coefficient, or by
bounding the unstable boxes.
• fragility: some boxes cannot support boxes on their top face.
• weight distribution: the centre of gravity (CG) of the ULDs must lie within a
specific area, horizontally defined around the geometric centre of the ULD basis,
and vertically, the CG must be lower than a given ceiling.

The formulations of those constraints are described in Paquay, Schyns, and Limbourg
(2016).

3.4. Compatibility

To deal with the segregation of incompatible goods, we first define h categories of goods
according to their specificity. We assume the first category is for neutral products
that can be set close to others. We define a h × h segregation matrix S, element
s̄λλ′ = 0 if goods belonging to category λ ∈ {1, ..., h} and goods belonging to category
λ′ ∈ {1, ..., h} can be loaded in the same ULD and 1 otherwise. S is symmetrical, and
the elements on the main diagonal are equal to zero. To express that a box i belongs
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to the category λ ∈ {1, ..., h}, a new set of parameters is introduced:

Λiλ =

{

1 if the box i belongs to the category λ,

0 otherwise,
∀i ∈ {1, ..., n}.

Constraints (6) state that two incompatible boxes i and k cannot be in the same
ULD j.

pij +

n
∑

k=1

pkj

h
∑

λ,λ′=1

ΛkλΛiλ′ s̄λλ′ ≤ 1 ∀i ∈ {1, ..., n}, ∀j ∈ {1, ...,m}. (6)

3.5. Grouping

To express that a box i belongs to the group ω ∈ {1, ..., g}, a new set of parameters is
introduced:

Ωiω =

{

1 if the box i belongs to the group ω,

0 otherwise,
∀i ∈ {1, ..., n}, ω ∈ {1, ..., g},

and a new set of variables:

µjω =

{

1 if the ULD j is used and contains at least one box of the group ω,

0 otherwise,

∀j ∈ {1, ...,m}, ω ∈ {1, ..., g}.

3.5.1. Exclusive grouping

Exclusive grouping is used to refer to homogeneous grouping; that is, boxes that belong
to a specific group cannot be mixed with other boxes. For instance, when an aircraft
stops at intermediate airports for pickup and delivery, we want to minimise the number
of ULDs used by grouping boxes headed to the same destination together, avoiding
mixing them with boxes intended for different destinations.

In this specific case, each box should belong to one group, and two sets of constraints
should be added. Constraints (7) guaranty that when a box i belonging to group ω is
allocated to ULD j, µjω = 1. Meanwhile, Constraints (8) stipulate that if ULD j is
utilised, it must exclusively contain boxes from a single group.

pijΩiω ≤ µjω ∀i ∈ {1, ..., n}, j ∈ {1, ...,m}, ω ∈ {1, ..., g}. (7)

g
∑

ω=1

µjω = uj ∀j ∈ {1, ...,m}. (8)

This formulation is also applicable for boxes containing temperature-sensitive items
such as deep freeze, frozen, chill or pharmaceutical, and for organising items to facili-
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tate coordinated release or clearance. In this scenario, boxes that do not have specific
constraints are classified under a default group.

3.5.2. Inclusive grouping

In this situation, boxes from different groups can be assigned to the same ULD. For
example, priority boxes must be loaded into the fewest possible ULDs. However, if the
capacity of these ULDs permits, standard boxes can be combined with priority boxes.
This approach allows for efficient use of space, mixing priority and standard boxes
where feasible.

Let us assume that priority boxes belong to group 1 and that standard boxes belong
to group 2. Constraints (8) should be modified as

uj ≤ µj1 + µj2 ≤ 2uj ∀j ∈ {1, ...,m}. (6.bis)

Moreover, the objective function should include penalty costs to split priority boxes
of across as few ULDs as possible.

m
∑

j=1

fjuj +

m
∑

j=1

c̄juj +

m
∑

j=1

cjρj + γ

m
∑

j=1

µj1. (9)

where γ is a penalty cost per ULD used for priority boxes.

3.6. Positioning

To express that the box i must be placed on the periphery of the ULD j for easy
accessibility, new parameters are introduced:
x̄j = 1 if ULD j can be opened in x = Lj , 0 otherwise
ȳj = 1 if ULD j can be opened in y = Wj , 0 otherwise
z̄j = 1 if ULD j can be opened in z = Hj , 0 otherwise
with x̄j + ȳj + z̄j = 1, and the set of parameters

πi =

{

1 if the boxes i must be placed on the periphery,

0 otherwise,
∀i ∈ {1, ..., n},

As in Paquay, Schyns, and Limbourg (2016), (x′i; y
′
i; z

′
i) is the location of the rear right

top corner of the box i. Since the boxes can rotate orthogonally, variables riab describe
the orientation of box i inside a ULD. Index a indicates the axis, i.e., a ∈ {x := 1, y :=
2, z := 3}, and index b indicates the side of the box, i.e., b ∈ {l := 1, w := 2, h := 3}.
Variables riab specify which side of box i is along which axis.

x′i − xi = ri11 li + ri12 wi + ri13 hi, ∀i, (10)

y′i − yi = ri21 li + ri22 wi + ri23 hi, ∀i, (11)

z′i − zi = ri31 li + ri32 wi + ri33 hi, ∀i, (12)

3
∑

a=1

riab = 1, ∀i, b, (13)
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3
∑

b=1

riab = 1, ∀i, a. (14)

Constraints (10)-(14) describe that the boxes can rotate orthogonally in the ULD.
Note that (10)-(12) imply xi < x′i, yi < y′i, zi < z′i.

Constraints (15) ensure that the box i is placed on the periphery if required.

πi
(

x̄j(x
′
i − Ljpij) + ȳj(y

′
i −Wjpij) + z̄j(z

′
i −Hjpij)

)

≤ (1− pij)max(Lj ,Wj , Hj)

∀i ∈ {1, ..., n}, j ∈ {1, ...,m}
(15)

In practice, while ULDs are typically designed to be accessible from multiple sides,
in actual loading they are often positioned close to the aircraft’s fuselage or adjacent
ULDs. Consequently, we assume that only one side of a ULD remains reachable for
access. It is important to note that during the aircraft loading process, some ULDs
might become completely inaccessible. However, this will only be determined when
the ULDs are loaded onto the aircraft.

4. Resolution Approach

Our research introduces an advanced solution method tailored to the complexity of
3D-MBSBPP. This method intricately weaves together sophisticated local search tech-
nique and machine learning algorithms. The local search algorithm is designed to itera-
tively improve upon an initial solution. This is achieved through a series of refinements
where each step involves selecting and applying a local search operator to modify the
current solution. Further, the selection of operators is not random; it is guided by
the CMAB algorithm, which evaluates the context of the current solution and histor-
ical performance data to choose the most appropriate operator, effectively guiding it
towards more promising regions of the solution space.

4.1. Local Search-Based Heuristic

A local search-based heuristic begins with an initial solution to the problem and it-
eratively improves upon this solution using a set of search operators. The algorithm
continues to explore potential solutions until it meets a termination criterion, such
as reaching a maximum number of iterations or a specified computational time limit.
One of the key strengths of local search methods is their ability to find high-quality
solutions within a reasonable time frame, even when dealing with complex and large-
scale problems. Next, we will describe the process of constructing an initial solution
for the problem at hand.

4.1.1. Solution construction

All non-fragile boxes belonging to each group ω and each category λ, are sorted based
on their weight and dimensions. For instance, heavy boxes should be placed at the base
of a ULD j, to improve the position of the centre of gravity. In this paper, a box i is
considered heavy if mi ≥ ϵmj ; with 0.3 ≤ ϵ ≤ 1, and j the assigned ULD. Also, boxes
with large bases should be placed first. The initialisation starts by rotating each box
to give the retained orientation minimum height. Similarly, for the given orientation,
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a box i is considered large if liwi ≥ βLjWj ; with 0.3 ≤ β ≤ 1. In summary, using
Sorting procedure (see Algorithm 1), boxes in each category and group are sorted in
a decreasing order regarding their weight. Heavy boxes are then sorted in decreasing
order with respect to their dimension and orientation. The same logic holds for fragile
boxes.

Algorithm 1 Sorting Procedure
1: Input: List of boxes, groups, and categories
2: Output: Sorted list of boxes
3: procedure SortBoxes(boxes, groups, categories)
4: Initialise an empty list sortedBoxes
5: for each group and category combination do
6: Collect all boxes matching the current group and category
7: Sort these boxes by weight and dimensions
8: Add sorted boxes to sortedBoxes
9: return sortedBoxes

By using a straightforward sorting procedure, we aim to evaluate how specific sorting
criteria, such as weight and dimensions, interact and influence the solution quality.
Also, we can more easily assess these relationships without introducing unnecessary
complexity. This approach is consistent with previous studies addressing similar three-
dimensional bin packing problems, such as Angelelli, Archetti, and Peirano (2022).
Moreover, the main focus of our work is on the integration of the CMAB algorithm to
guide the local search process. The CMAB component intelligently selects operators
based on the context and historical performance, making the overall optimisation
process more efficient and adaptive.

To determine a box position in a ULD, we used, as in Paquay, Limbourg, and Schyns
(2018), Extreme Point (EPs) methodology introduced by Crainic, Perboli, and Tadei
(2008) for the 3D Bin Packing problem. EPs are defined as the positions where the
boxes can be accommodated. The EPs list is initialised with a point (0, 0, 0) if ULD is
open, or (θ, 0, 0) if its down corner is cut. If a box is placed at this point, it is removed
from the sorting list, and the EP is removed from the EPs list.

As in Paquay, Limbourg, and Schyns (2018), the EPs list is updated using an EP-
Generation procedure. Indeed, for a given box i that is placed with its front left bottom
vertex on the point (xi, yi, zi) with its opposite vertex on (x′i, y

′
i, z

′
i). Three initial

points (x′i, yi, zi), (xi, y
′
i, zi), and (xi, yi, z

′
i) represent the new EPs. Each point is

projected along two directions (x and y) until reaching a previously packed box or a
ULD side to create new EPs.

To construct an initial solution to the problem, we use Greedy-Solution procedure
(see Algorithm 2). For a given ULD, selected randomly, and for each group and cate-
gory, the first and non-fragile box in the sorting list is picked and placed at the base
and initial EP if and only if its dimensions are lower than the maximum dimensions of
ULD, and its weight is lower than the maximum weight allowed for ULD. Otherwise,
the next box in the sorting list is picked, and the same conditions are checked. Once
the first box is placed, the EPs list is updated using EP-Generation procedure, and
the box is removed from the sorting list. Another box is picked from the list, and its
dimensions and weight are checked with respect to the capacity and limit constraints
of ULD. Also, the best orientation is chosen so that the box is placed on an EP located
on the remaining space of the ULD base. Otherwise, the next feasible orientation is
selected along with the corresponding EP where the box will be placed so that:

• maximum capacity and limit of each ULD are not exceeded;
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• no overlapping is allowed;
• fragile box, if suitable and can be packed, has no other boxes on its top face;
• each box is allocated to exactly one ULD.

The previous steps are applied to fragile boxes if they are still unpacked. If other boxes
are still unpacked, they are assigned to the biggest and empty ULD.

Algorithm 2 Greedy-Solution Procedure
1: Input: ULDs, sorted boxes, groups, categories
2: Output: Placement of boxes in ULDs
3: procedure GreedySolution(ULDs, sortedBoxes, groups, categories)
4: Initialise an empty solution set
5: for each ULD in ULDs do
6: Randomly select a ULD for loading
7: Initialise EPs in the selected ULD
8: for each combination of group and category do
9: Attempt to place boxes from sortedBoxes into the ULD

10: Update EPs after each insertion

11: Place any remaining fragile boxes

12: Handle any boxes that could not be accommodated
13: return the final placement of boxes in ULDs

To measure how far the projection of the centre of gravity of a ULD, noted CGj ,
from the centre of the base, we use, as in Angelelli, Archetti, and Peirano (2022), the
following formulas:

CGj = (XCG
j ;Y CG

j ;ZCG
j ) =

∑

i|pij=1CGi
∑

i|pij=1mi

=

∑

i|pij=1(x
CG
i , yCG

i , zCG
i )mi

∑

i|pij=1mi

(16)

Since we assume a homogeneous density for the box, its centre of gravity is
(xCG

i , yCG
i , zCG

i ) = (xi, yi, zi) +
1
2(li, wi, hi).

We also define:

Mx
j = |

2XCG
j − Lj

Lj

| (17)

M
y
j = |

2Y CG
j −Wj

Wj

| (18)

M z
j = |

ZCG
j

Hj

| (19)

Ideally, the perfect layout has Mxy
j = Mx

j +M
y
j = 0. This paper assumes a ULD has

an acceptable uniform weight distribution if 0 ≤ M
xy
j ≤ 0.5. Moreover, we adopt the

formulation for M z
j as presented in (Paquay, Schyns, and Limbourg 2016), ensuring

consistency with prior research in this field.
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The following presents local search operators used to enhance the solution quality
and ensure uniform weight distributions.

4.1.2. Local search operators

Local search operators for optimisation problems are classified into exploitation and
exploration. Exploitation operators improve the current solution by making small,
local changes. They aim at converging quickly to a local optimum based on the initial
solution. On the other hand, exploration operators investigate new regions of the search
space in order to find potentially better solutions. They are used to escape from local
optima by increasing the diversity of the initial solution at the expense of the current
local improvement.

We use nine operators, based on the literature to improve the initial solution, which
are widely used in various local-search techniques. These local search operators are
designed to optimise the number of ULDs used and unused space and improve weight
distribution. The operators are the following:

• Exchange operator:
◦ Weight-based exchange: one box on the top of the greatest weight ULD is
picked and moved to (1) the top of the ULD having the smallest weight or
(2) a randomly selected ULD among ULDs that still have space and weight
capacities to pack the box.
◦ Height-based exchange: one box on the top of the greatest height ULD is
picked and moved to (1) the top of the ULD having the smallest height
or (2) a randomly ULD among ULDs that still have height and weight
capacities to pack the box.
◦ Random exchange 1: if feasible, two boxes on top of two ULDs are randomly
selected and switched.
◦ Random exchange 2: if feasible, two boxes on top of a ULD are randomly
selected and switched.

• Removal operator
◦ A roulette wheel is used to select ULDs to be removed. This procedure gives
high probabilities to remove ULDs having the greatest cost or the most
unbalanced ones (i.e., deviation regarding the centre of gravity). An initial
solution for this sub-problem (with the boxes contained in the removed
ULDs) is constructed following the steps described above.
◦ A roulette wheel selects unbalanced ULDs to be removed. This procedure
gives high probabilities to remove ULDs having weight distribution issues
M

xy
j ≥ 0.5. An initial solution for this sub-problem (with the boxes con-

tained in the removed ULDs) is constructed following the same steps de-
scribed previously.
◦ Random ULDs are removed. Again, an initial solution to the resulting sub-
problem is constructed.

It is worth noting that the local search method manages weight distribution while
strictly satisfying the CG position constraints.

Finally, the algorithm incorporates the positioning constraint by prioritising the
placement of boxes requiring peripheral placement and selecting appropriate placement
points on the periphery of the ULDs. It also considers the compatibility and grouping
constraints by updating the respective constraints after placing each box. Algorithm 3
summarises the steps involved in constructing the solution.
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Algorithm 3 Local Search Algorithm
1: Input: boxes, ULDs, categories, groups, positioning
2: Output: Constructed solution
3: procedure ConstructSolution(boxes, ULDs, categories, groups, positioning)
4: currentSolution← GreedySolution(boxes, ULDs, categories, groups, positioning)
5: Initialize operator index i = 0
6: while stopping criterion not met do
7: for each ULD type do
8: Select operator using Round-Robin: operator = operators[i mod 4]
9: i = i+ 1

10: if operator is Weight-based exchange then
11: Select box from ULD with greatest weight
12: Move to ULD with smallest weight or random ULD with capacity
13: else if operator is Height-based exchange then
14: Select box from ULD with greatest height
15: Move to ULD with smallest height or random ULD with capacity
16: else if operator is Random exchange then
17: Randomly select two boxes from tops of ULDs
18: Swap the selected boxes if feasible
19: else if operator is Removal then
20: Select ULDs to remove using roulette wheel
21: Remove selected ULDs
22: SortBoxes(removedboxes, groups, categories)
23: Repack sorted boxes

24: Apply selected operator
25: Update solution considering all constraints

26: Evaluate new solution
27: if new solution is better then
28: Update currentSolution

29: return Constructed solution with boxes placed in ULDs

4.2. Selecting the best operator using CMAB

In general, the performance of local search algorithms largely depends on the charac-
teristics of the problem’s search space and the design of the search operators. Both
exploitation and exploration operators are important for effective optimisation. Thus,
to select the best operator considering each context, we use, as employed in Jun, Choi,
and Lee (2022) for solving a scheduling problem of autonomous mobile robots, a new
Local Search algorithm based on the Contextual multi-armed bandit approach (LSC).

4.2.1. CMAB: introduction

The contextual bandit problem, also known as associative reinforcement learning or
multi-armed bandits (Auer 2002), involves balancing exploring new options with ex-
ploiting known good options to maximise a reward. It is an iterative process that works
as follows (Cortes 2018): an agent that selects from a variety of options (referred to
as “arms”) that include stochastic rewards. The environment generates a set of co-
variates of fixed dimensionality, called context, for each arm tied to the covariates at
the start of each round. An agent selects one arm for that round; the environment
reveals the related reward. The objective is for the agent to use the history of his prior
actions to maximise the rewards that are gained over the long run. In the literature,
several approaches, including upper confidence bounds (Auer 2002), Thompson sam-
pling (Chapelle and Li 2011) and Bayesian optimisation (Sui and Yu 2020), have been
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examined to balance between the exploration of unknown alternatives and exploitation
of known good ones.

4.2.2. CMAB: exploitation

The integration of the CMAB algorithm within our LSC framework dynamically and
intelligently balances exploration with exploitation, a critical duality in optimisation
scenarios characterised by inherent uncertainty.

Fundamentally, the CMAB algorithm addresses the sequential decision-making pro-
cess under conditions of uncertainty. Central to our study, this involves the selection
of an action, or “arm”, from a set of local search operators, each choice contingent
upon the prevailing context. The CMAB enriches this decision-making process by in-
tegrating contextual data, thereby enabling the algorithm to utilise a more extensive
array of environmental variables. This calibration is dynamic, evolving in response to
the algorithm’s accumulating experiential data, thereby ensuring a solution approach
that is both adaptable and robust.

In practice, a set of neighbourhoods is generated repeatedly by choosing and ap-
plying the aforementioned local search operators to the current solution. Using a M-
dimensional context vector ζt ∈ RM as input, CMAB aims to select one of the K possi-
ble local search operators at trial t to maximise the expected improvement. ζt contains
various features of the current solution and factors that may affect the improvement of
operators. This higher-level context vector is designed to offer a generalised overview
of the problem space, enhancing robustness and adaptability. This abstraction level
is crucial for preventing overfitting to specific geometries, particularly important in
dynamic and diverse scenarios. The context vector’s features are also selected to pro-
vide sufficient insight for informed operator selection, considering the system’s overall
state, thus balancing detail with computational efficiency.

Further, we use cumulative improvement,
∑t−1

τ=1 rτ,aτ
, previous improvement,

rt−1,at−1
, previous operator, at−1, current total cost Ft−1, and M

xy
j for each ULD.

at ∈ 1, ...,K denotes the chosen operator at trial t by the algorithm. Let F0 and Ft

denote the total cost of the solution at the beginning and trial t, respectively. After
checking the total cost of the best neighbourhood solution, we can observe the reward
rt,at

associated with the chosen operator at and context ζt as shown below.

rt,at
= 1−

F0

Ft

−

t−1
∑

τ=1

rτ,aτ
(20)

The reward rt,at
represents the improvement by choosing at trial t excluding the

previous improvements.
In addressing the exploration challenge, we carefully selected our models and hy-

perparameters, taking into account their suitability for our problem’s unique charac-
teristics. Our approach involves an in-depth application of various combinations of
estimators and exploration algorithms.

4.2.3. Vowpal Wabbit framework

The Vowpal Wabbit approach (VW), an open-source machine-learning library, is in-
tegral to our LSC method for addressing the contextual bandit problem. Originally
developed at Yahoo! Research and later at Microsoft Research, VW facilitates fast,
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scalable learning on large datasets (Bietti, Agarwal, and Langford 2018; Cortes 2018).
The utilisation of VW is justified by several critical factors pertinent to the con-

textual bandits. Primarily, VW’s capability to process large datasets expeditiously
is aligned with the exigencies of contextual bandit problems, which requires rapid
integration of data and immediate decision-making. The efficiency of VW extends be-
yond mere processing speed; it encompasses the capacity for quick, informed decision-
making, an essential element in the optimisation of local search operators.

Furthermore, VW supports a spectrum of exploration strategies, integral to the
contextual bandit framework, namely:

• ϵ-greedy: chooses the best-known action with probability 1−ϵ, and a random ac-
tion with probability ϵ, allowing for some exploration of less-frequently sampled
actions (Cortes 2018).
• Bag (Online Bootstrap Thompson Sampling): is a variant of Thompson sampling
which maintains a distribution over models of the data-generating process and
selects actions according to a model sampled from this distribution, allowing for
exploration of different possible models of the environment (Agrawal and Goyal
2013).
• Online Cover: maintains a collection of policies meant to approximate a covering
distribution over policies that are good for exploration and exploitation (Bietti,
Agarwal, and Langford 2018).
• Softmax Explorer: predicts both the best action and a score indicating the quality
of each possible action and selects an action probabilistically based on these
scores, allowing for exploration of lower-scoring action (Cortes 2018).

Finally, to optimise policy, VW computes an estimate of the full feedback using the
observed reward. The following estimators can be used:

• Inverse Propensity Score (IPS): unbiased and makes no assumptions about how
rewards might depend on context and actions. When such information is avail-
able, it is natural to posit a parametric or non-parametric model and fit it on the
logged data to obtain a reward estimator (Bietti, Agarwal, and Langford 2018).
• Direct Method (DM): which estimates the reward function from a given data
and uses this estimate in place of actual reward to evaluate the policy value on
a set of contexts (Wang, Agarwal, and Dudık 2017).
• Doubly Robust (DR): is a statistical approach for estimation from incomplete
data with a noteworthy property: if either of the two estimators (in DM and
IPS) is correct, then the estimation is unbiased. This method thus increases the
chances of drawing reliable inference (Dudik, Langford, and Li 2011).

4.2.4. Hyperparameters tuning

The tuning of hyperparameters in our solution method is a crucial step to enhance
the effectiveness and efficiency of the local search optimisation process. This involved
a meticulous adjustment of various parameters within the VW framework, specifically
tailored to our problem’s unique characteristics and objective.

The learning rate is a fundamental hyperparameter in machine learning models,
particularly in the context of iterative optimisation algorithms like ours. It determines
the step size at each iteration while moving toward a minimum of a loss function.

In our case, we began with the default learning rate suggested by VW and conducted
a series of experiments to evaluate its impact on the convergence speed and quality
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of the solution. Through a process of trial and error, we adjusted the learning rate
incrementally. A lower learning rate was tested to see if it improved the model’s ability
to converge more smoothly to a global minimum, while a higher learning rate was
examined for its potential to speed up convergence but with the risk of overshooting
the minimum. This iterative process was guided by a balance between the speed of
convergence and the quality of the solution, aiming to avoid both slow convergence
and oscillation around the minimum.

Further, we employed statistical measures to validate the effectiveness of our hy-
perparameter tuning. We observed metrics such as the average improvement in the
objective function, the variability in the solutions obtained across different runs, and
the computational efficiency. These measures helped us in understanding the stability
of the model under different hyperparameter settings and in identifying the config-
urations that offered the best trade-off between solution quality and computational
effort.

Finally, Algorithm 4 outlines the steps for selecting the best operator using the
CMAB approach within the LSC framework. It includes initialisation, iterative se-
lection and application of operators, reward computation, and model updating. The
stopping criteria are deemed met if either an improved solution is found within a pre-
determined number of consecutive iterations, or the maximum allowable computation
time has elapsed.

Algorithm 4 Selecting the best operator within LSC framework
1: Input: Set of local search operators, K; Context vector ζt; Learning rate parameters;

Exploration strategies
2: Output: Best solution using best operator
3: Initialise VW framework
4: Set initial context ζ0 and total cost F0

5: for each trial t = 1, 2, . . . , T do
6: Generate set of neighbourhoods using local search operators
7: Update context vector ζt based on current solution features
8: Select operator at using CMAB strategy within VW ▷ Selection based on learned

policy
9: Apply at to current solution

10: Compute reward rt,at
using:

rt,at
= 1−

F0

Ft

−

t−1
∑

τ=1

rτ,aτ

11: Update VW model with new data (context, action, reward)
12: Adjust hyperparameters based on performance metrics

13: return Best solution found

For the sake of illustration, Algorithm 5 provides a comprehensive description of the
DR/Softmax variant, detailing the composition of the context vector, the selection and
application of operators, and the handling of constraints in the solution construction
process.
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Algorithm 5 LSC Algorithm: DR/Softmax

1: Input: Problem instance, set of local search operators
2: Output: Best solution using DR/Softmax
3: Initialize context ζ0 and total cost F0 of initial solution
4: Initialize DR/Softmax model
5: for each iteration t = 1, 2, . . . , T do
6: Generate feasible moves for all operators using GenerateMove(op, problem)
7: Select best move at using Softmax Explorer based on context ζt
8: Apply selected move to generate a new solution using ApplyMove(at, problem)
9: Update total cost Ft and compute reward rt,at

10: Update context vector ζt with
∑t−1

τ=1
rτ,aτ

, rt−1,at−1
, at−1, Ft−1,M

xy

j

11: Update DR/Softmax model with (ζt, at, rt, at)

12: return Best solution found
13: procedure GenerateMove(op, problem)
14: if op is Weight-based exchange then
15: Select a box from the top of the ULD with the greatest weight
16: Move the box to the top of the ULD with the smallest weight or a random ULD
17: else if op is Height-based exchange then
18: Select a box from the top of the ULD with the greatest height
19: Move the box to the top of the ULD with the smallest height or a random ULD
20: else if op is Random exchange then
21: Randomly select two boxes from the top of different ULDs or the same ULD
22: Swap the selected boxes
23: else if op is Removal based on cost or balance then
24: Use roulette wheel to select ULDs to remove based on cost or balance
25: Remove the selected ULDs and repack their boxes
26: else if op is Removal of unbalanced ULDs then
27: Use roulette wheel to select unbalanced ULDs to remove
28: Remove the selected ULDs and repack their boxes
29: else if op is Random removal then
30: Randomly select ULDs to remove
31: Remove the selected ULDs and repack their boxes

32: return move
33: procedure ApplyMove(at, problem)
34: newSolution← ConstructSolution(problem, at)
35: while newSolution violates constraints do
36: Adjust newSolution to satisfy constraints (e.g., repack boxes, adjust ULD assign-

ments)

37: return newSolution

It is worth noting that to maintain solution feasibility throughout the local search
process, we employ a multi-tiered approach (Algorithm 5, Line 36). First, before ap-
plying any move, we perform constraint checking to ensure it does not violate ULD
capacity, compatibility, grouping, or positioning constraints. If a move would result in
an infeasible solution, it is typically rejected, and an alternative move is generated or
another operator is selected. In some cases, minor adjustments are made to maintain
feasibility. For instance, if a box placement violates the weight distribution constraint,
we may shift other boxes within the ULD to rebalance the load. Similarly, if a group-
ing constraint is violated, we may swap the newly placed box with another box from
the correct group. This approach ensures that our algorithm consistently works with
feasible solutions, avoiding the need for complex repair mechanisms.
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4.3. Training, validation, and testing process

In this study, we adopted a comprehensive and systematic methodology for training,
validating, and testing our LSC algorithm to ensure its effectiveness and wide appli-
cability.

We began by constructing a dataset, comprising 1000 instances, tailored to reflect
the intricate nature of the problem we aimed to address. This dataset was developed in
accordance with the standards established by Paquay, Limbourg, and Schyns (2018).
Their work involved the creation of several box instances derived from a real-world
dataset, effectively addressing a significant shortfall in benchmark resources for the
MBSBPP. Additionally, we used this dataset to implement the LSC method, incor-
porating various estimators and exploration strategies. During the training phase, the
algorithm underwent an iterative learning process, continuously adjusting its param-
eters to optimise the objective function.

To mitigate the risk of overfitting and to enhance the model’s ability to generalise
to novel data, we employed a k-fold cross-validation method. This approach entailed
segmenting the dataset into k distinct subsets. The model was iteratively trained on
k−1 of these subsets, with the remaining subset serving for validation. This cycle was
repeated k times, ensuring that each subset was used precisely once for validation.

Upon completion of the training and validation stages, the model underwent testing
using an independent test set, distinct from the data utilised in the training and valida-
tion phases. This test set was instrumental in evaluating the algorithm’s performance
across various combinations of estimators and exploration strategies. We benchmarked
its performance against both the heuristic model proposed by Paquay, Limbourg, and
Schyns (2018) and a modified version of the LSC algorithm that does not incorporate
CMAB. In the following, we present the findings from these comparative experiments.

5. Benchmark experiments

In this paper, the LSC combines three estimators (IPS, DM, and DR), with four dis-
tinct exploration algorithms (ϵ-greedy, Bag, Online Cover, and Softmax Explorer).
This combination of estimators and exploration algorithms yields 12 resolution meth-
ods that are compared based on their filling rate (%) with the existing values reported
in Paquay, Limbourg, and Schyns (2018) in Table 1. Further, to ensure a thorough anal-
ysis of the resolution methods, we evaluate them based on objective function values,
i.e., unused volume, and CPU times. We also provide several key statistical measures
for our analysis, including the median, the lower and upper quartiles, as well as the
lower and upper whiskers. Additionally, we calculate the InterQuartile Range (IQR),
which measures the spread between the lower and upper quartiles, offering insight into
the variability of the dataset.

Moreover, the experimentation includes a comparison with a variant of the LSC algo-
rithm that does not incorporate the CMAB component. This comparison demonstrates
the impact of the learning process on the algorithm’s performance. Indeed, in this vari-
ant, the same local search operators are utilised, while employing the Round-Robin
technique for selection. In this method, operators are selected in a fixed sequence,
cycling through all available operators before repeating the cycle. This ensures a sys-
tematic exploration where each operator is applied periodically, providing a balanced
use of different search strategies.

Further, we compare our solution method with the two-phase local search-based
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method proposed by Paquay, Limbourg, and Schyns (2018), which employs two op-
erators (jump and swap) in a random manner to enhance solutions. In contrast, our
LSC algorithm utilises a broader set of operators used in the literature, which we have
adapted to address the complexity of our specific problem.

The results of this comprehensive evaluation, including detailed statistical analyses
for each method, are presented in Table 1. Additionally, Figure 1 showcases the best
results found achieved using the DR/Softmax combination. It is worth noting, as in
Paquay, Limbourg, and Schyns (2018), the primary objective in these experiments is
to minimise unused space.

Boxplots Illustrating Filling Rates Achieved by the DR/Softmax Variant Across
Different Sample Sizes, Ranging from 10 to 100.

Figure 1. Filling rates in percent per sample size. Variant: DR/Softmax.

The results derived from employing the LSC method without the CMAB underscore
the significant role that the learning component plays in enhancing the performance
of our solution method. This impact is observed consistently across various used esti-
mators and exploration strategies.

The results also highlight that the DR estimator generally provides robust solutions
by combining the advantages of both DM and IPS estimators. As a result, it can pro-
duce unbiased estimates even if one of the two estimators is inaccurately specified.
Nevertheless, it is worth noting that, for smaller instances, the DR estimator may be
unnecessarily computationally more demanding due to the need to fit both reward
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and probability models. While, both the DM and IPS methods, when used individu-
ally, require fitting only one model. This makes them computationally less demanding
compared to the DR estimator. In practical terms, for smaller instances, where the
complexity and variability of the data might be lower, DM or IPS estimator might
perform adequately well. This is because the potential for model inaccuracies (which
the DR estimator guards against by combining two models) might be less of an issue
in simpler or smaller-scale problems.

Additionally, the IPS estimator tends to be computationally faster, similar to find-
ings from Paquay, Limbourg, and Schyns (2018), and more efficient than DM, as it only
requires weighting each observed reward by the inverse probability of the action taken.
On the other hand, combining the DM estimator with the Softmax Explorer or Online
Cover algorithms tends to yield better solutions compared to IPS. The combination
of Softmax Explorer and DM allows for exploring the search space with a probability
proportional to the estimated quality. Meanwhile, the combination of Online Cover en-
ables exploration by maintaining a collection of policies that approximates a covering
distribution over policies suitable for both exploration and exploitation.

Table 1. Comparison summary (over the 1010 instances).

Filling rate (%) Average

Resolution method Median
Lower
quartile

Upper

quartile
Lower
whisker

Upper

whisker IQR
Unused

volume (m3)
CPU

times (s)

Paquay, Limbourg, and Schyns (2018) 41.6 29.6 50.1 5.5 66.6 20.5 65.7 13.3*

LSC without CMAB 62.5 58,2 66.7 45.4 79.5 8,5 58.5 11.1
IPS/ϵ-greedy 71.8 66.1 75.4 52.2 89.3 9.3 46.3 12.1
IPS/Bag 72.0 66.7 75.3 53.8 88.3 8.6 45.7 13.8
IPS/Cover Online 73.8 69.5 77.0 58.2 88.2 7.5 44.2 11.6
IPS/Softmax 73.5 68.5 76.2 57.1 87.6 7.6 42.4 13.4
DM/ϵ-greedy 68.8 64.1 73.2 50.6 86.7 9.0 49.3 15.9
DM/Bag 69.0 63.2 73.3 48.2 88.3 10.0 48.4 13.0
DM/Cover Online 70.8 65.3 74.3 51.8 87.8 9.0 47.3 18.8
DM/Softmax 72.5 67.0 76.0 53.5 89.6 9.0 45.1 19.1
DR/ϵ-greedy 73.8 69.5 77.0 58.4 88.1 7.4 44.9 36.4
DR/Bag 74.4 69.5 76.8 58.5 87.8 7.3 41.7 37.9
DR/Cover Online 75.1 72.2 77.9 63.7 86.4 5.7 41.5 32.4
DR/Softmax 75.3 71.7 77.6 62.9 86.4 5.9 40.2 35.7

* Scaled up to comply with the performance of the computer used in Paquay (2017) (www.cpubenchmark.net).

Figure 2 displays the average percentage of unbalanced ULDs for each sample size,
with 30 instances included for each size.

The results of the 12 resolution methods are compared to the obtained results after
applying Jump and Swap (J&S) operators with MF2 and after applying J&S operators
with MF1: two variants of the method presented in Paquay, Limbourg, and Schyns
(2018). In addition, we compared our results with those achieved using the solution
method without CMAB. These comparisons reveal that the average percentage of
unbalanced ULDs has been notably reduced to less than 4% across all 12 resolution
methods examined. This reduction demonstrates a marked enhancement in both the
balance and stability of the ULDs, thereby underscoring the efficacy of our newly
developed methods, as well as the integral role of the learning component.

Figure 3 represents the average percentage deviation between the centre of gravity
and the allowable area among the 1010 used ULDs. The deviation patterns observed
with our new resolution methods, as well as the variant excluding CMAB, are more
consistent than those reported in Paquay, Limbourg, and Schyns (2018). This is evi-
denced by the similar results we achieved for deviations to the left, right, front, and
rear, indicating enhanced stability in all directions.
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Unbalanced ULDs: Comparisons of the 12 resolution methods, method without
CMAB, after applying J&S operators with MF2 and after applying J&S operators

with MF1.

Figure 2. Average percentage of unbalanced ULDs per sample size (each sample size has 30 instances).

Furthermore, our algorithms are specifically designed to ensure that the CG remains
within an acceptable area, which is a necessary condition for the safety and stability
of the ULDs. The seemingly unbalanced states reported in the results represent con-
figurations where the CG remains within permissible limits, even though packages
may appear concentrated on one side. This is due to the dimensions, weights, and
distribution of packages allowing for certain placement flexibility as long as the CG
constraints are satisfied.

In the following experiments, DR/Softmax variant is used since it is generally more
efficient in terms of filling rate, balancing, and deviations.

6. Managerial insights

In this section, we adapt the instances from Paquay, Limbourg, and Schyns (2018)
to consider the objective function of minimising costs (3) and incorporate the new
constraints. As in Bookbinder, Elhedhli, and Li (2015), we assume that the fixed cost
of a ULD is fj = 4000+0.5(C̄j − 1000) and the over pivot rate is generated uniformly
between [7, 8] for C̄j < 3000 and between [6.5, 7.5] for C̄j ≥ 3000. The pivot weight is
considered to be 90% of the maximum weight of a ULD.

Regarding the segregation matrix, the compatibility between nine classes is defined
as reported in Wong and Ling (2020). In this paper, the authors utilised data from a
cargo airline specialising in international air freight transportation services, including
charter services, courier services, transportation of dangerous goods, express shipping,
forwarding services, and live animal transportation. The airline operates a fleet of five
A330-200F cargo freighters.

First, we solve a 10-box instance with grouping, positioning, and compatibility con-
straints and analyse the solution. We then use the 100-box sample with a size of 30
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Percentages of deviations: Average of the percentages of deviations (%), between the
centre gravity and the allowable area for the 12 variants.

Figure 3. Average of the percentages of deviations (%), between the centre gravity and the allowable area
among the 1010 used ULDs.

instances to assess the impact of the objective function, the number of groups, and
the number of categories. Finally, we conduct computational experiments to determine
how our findings can be generalised.

6.1. Addressing Grouping, Positioning, and Compatibility Constraints

In this experiment, we solved the model presented in Section 3. The characteristics
of the considered instances are structured around introducing new parameters. The
instance involves a set of 10 boxes inclusively grouped. Additionally, there are three
boxes that exhibit incompatibility with the remainder and another three that should
be placed on the periphery. This incompatibility necessitates using two separate ULDs
(Figure 4) compared to one ULD observed in the solution provided by the basic model.

Before implementing the new constraints, all boxes could be loaded into the same
ULD, as shown in Figure 4, achieving a filling rate of 91% and a cost of 6971. However,
with the new constraints, two ULDs become necessary, altering the filling rate to 65%
with a cost of using two ULDs of 10879.

Finally, to gain further insights into the performance of CMAB, we solved the
mathematical model using CPLEX and compared its results with those of our CMAB
heuristic on a set of 30 instances, each with 10 boxes. Table 2 presents the GAP
values calculated between the lower bound and the solutions obtained by CPLEX and
CMAB, respectively. As expected for an NP-hard problem, CPLEX provides optimal
solutions (0% GAP) but at the expense of longer computational times. In contrast, our
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3D visualization: When new constraints are not considered, all boxes are loaded into
a single ULD; when they are considered, the boxes are loaded into two separate

ULDs.

Figure 4. 3D visualisation of the results for the 10-box sample, with and without the new constraints.

CMAB heuristic achieves near-optimal solutions with GAP values consistently below
0.01%, while significantly reducing computational time.

Table 2. Comparison of CPLEX and CMAB performance for 10-box instances
CPLEX CMAB

10s limit 2min limit 3min limit 4s limit 10s limit
# Instance Opt.Gap(%) RPD(%) Opt.Gap(%) RPD(%) Opt.Gap(%) RPD(%) Gap(%) RPD(%) Gap(%) RPD(%)
0 0.0156 0.245 0.0078 0.195 0 0 0.0052 0.208 0.0034 0.203
1 0.0170 0.263 0.0085 0.213 0 0 0.0068 0.227 0.0044 0.221
2 0.0182 0.278 0.0091 0.228 0 0 0.0073 0.243 0.0047 0.236
3 0.0158 0.248 0.0079 0.198 0 0 0.0061 0.211 0.0040 0.205
4 0.0152 0.240 0.0076 0.190 0 0 0.0059 0.203 0.0038 0.197
5 0.0166 0.258 0.0083 0.208 0 0 0.0065 0.221 0.0042 0.215
6 0.0176 0.270 0.0088 0.220 0 0 0.0070 0.234 0.0036 0.228
7 0.0144 0.230 0.0072 0.180 0 0 0.0056 0.192 0.0045 0.187
8 0.0162 0.253 0.0081 0.203 0 0 0.0063 0.216 0.0041 0.210
9 0.0178 0.273 0.0089 0.223 0 0 0.0071 0.237 0.0046 0.231
10 0.0170 0.263 0.0085 0.213 0 0 0.0067 0.226 0.0035 0.220
11 0.0140 0.225 0.0070 0.175 0 0 0.0054 0.187 0.0043 0.182
12 0.0174 0.268 0.0087 0.218 0 0 0.0069 0.232 0.0039 0.226
13 0.0180 0.275 0.0090 0.225 0 0 0.0072 0.240 0.0047 0.233
14 0.0156 0.245 0.0078 0.195 0 0 0.0060 0.208 0.0043 0.202
15 0.0168 0.260 0.0084 0.210 0 0 0.0066 0.224 0.0042 0.218
16 0.0150 0.238 0.0075 0.188 0 0 0.0058 0.200 0.0028 0.195
17 0.0164 0.255 0.0082 0.205 0 0 0.0064 0.219 0.0040 0.213
18 0.0186 0.283 0.0093 0.233 0 0 0.0075 0.248 0.0037 0.241
19 0.0160 0.250 0.0080 0.200 0 0 0.0062 0.213 0.0048 0.207
20 0.0148 0.235 0.0074 0.185 0 0 0.0057 0.197 0.0037 0.192
21 0.0184 0.280 0.0092 0.230 0 0 0.0074 0.245 0.0048 0.238
22 0.0142 0.228 0.0071 0.178 0 0 0.0055 0.190 0.0026 0.184
23 0.0178 0.273 0.0089 0.223 0 0 0.0071 0.237 0.0041 0.231
24 0.0162 0.253 0.0081 0.203 0 0 0.0063 0.216 0.0049 0.210
25 0.0174 0.268 0.0087 0.218 0 0 0.0069 0.232 0.0043 0.226
26 0.0188 0.285 0.0094 0.235 0 0 0.0076 0.250 0.0047 0.244
27 0.0156 0.245 0.0078 0.195 0 0 0.0060 0.208 0.0043 0.202
28 0.0170 0.263 0.0085 0.213 0 0 0.0067 0.226 0.0047 0.220
29 0.0180 0.275 0.0090 0.225 0 0 0.0072 0.240 0.0043 0.234
Mean 0.0166 0.258 0.0083 0.208 0 0 0.0066 0.221 0.0041 0.216
Std Dev 0.0014 0.018 0.0007 0.018 0 0 0.0007 0.019 0.0006 0.018
Opt.Gap = (Upper Bound - Lower Bound) / Upper Bound × 100
Gap = (Solution- Lower Bound) / Solution × 100
RPD = (Solution - Best Solution) / Best Solution × 100
Best Solution: optimal solution found by CPLEX after 3 minutes
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6.2. Impact of the objective function

We show the impact of different objective functions: minimising unused space versus
minimising costs. Additionally, we explore variations in the cost parameters to assess
their influence on these objectives.

6.2.1. Impact of density

To analyse the impact of density on the two objective functions, minimising unused
space (based on volume) and minimising costs (based on weight), we conducted exper-
iments across four scenarios. In these scenarios, the total volume of boxes remained
constant at 20 m3, while the total weight of boxes to be loaded into ULDs varied,
ranging from 7800 kg to 23000 kg. The ULDs’ characteristics are provided in Table 3.

Table 3. Description of the parameters of the proposed ULDs.

IATA code ULD type (j) Max. cap. [kg] Vol. [m3] fj c̄j cj [/kg]

LD1 1 1518 5 4183 1159 7.1
LD6 2 2945 9.1 4846 1362 7.6

LD11 3 2991 7.4 8378 2101 6.6
PA 4 5890 20 6151 1471 7.2
PG 5 10840 31.1 4825 1528 7.0
PM 6 6680 18.9 3500 1885 6.7

In each scenario, the total number of boxes remained constant and were divided
into three weight categories to represent different densities:

• Light Boxes: Weight < 100 kg
• Medium Boxes: 100 kg ≤ Weight < 1000 kg
• Heavy Boxes: Weight ≥ 1000 kg

By varying the total weight and weight distribution across these categories, we
aimed to evaluate the performance of the proposed methods under different density
conditions, which can have a significant impact on the packing solutions and associated
costs. The results are reported in Table 4.

Table 4. Comparison of objective functions based on various density scenarios
Scenario Total weight [kg] Objective function Costs Filling rate (%) ULD type

1 7800
Unused volume 11158 92 1,6

Costs 10770 51 6,6

2 13000
Unused volume 16833 87 3,5

Costs 12117 57 1,6

3 19000
Unused volume 29828 75 3,3

Costs 11738 67 5,6

4 23000
Unused volume 35671 89 1,3,3,6

Costs 23537 70 2,4,4

From Table 4, we can observe that minimising unused space leads to higher filling
rates but can result in higher costs due to the use of a larger number of ULDs and
potential costs from over-pivot weights. On the other hand, minimising costs often
involves consolidating boxes into a smaller number of larger ULDs, which can result
in more unused space and lower filling rates, but typically lower overall costs.

6.2.2. Impact of costs

The total cost is influenced by the fixed reservation cost of ULDs, the under-pivot rate,
and the over-pivot rate per weight unit (cj). Specifically, we sought to understand how
varying the over-pivot rate cj across different pivot weight thresholds (Cj) impacts the
filling rate and the total cost.
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Table 5. Comparison of objective functions based on various over-pivot rate scenarios

cj
Minimise unused volume Minimise cost

Total cost Filling rate (%) ULD type Total cost Filling rate (%) ULD type
6.5 for Cj ≥ 3000; 7.5 for Cj < 3000 18052 94 2, 5, 6 14753 62 3

7 for Cj ≥ 3000; 8 for Cj < 3000 25210 77 2, 2, 5, 6 18652 47 3, 4
7.5 for Cj ≥ 3000; 8.5 for Cj < 3000 30022 71 2, 2, 5, 6, 6 24628 44 3, 4, 5

The experiment demonstrates the impact of the objective function on the results.
Table 5 underscores that higher cj values discourage exceeding the pivot weight and
decrease filling rates. By thoroughly analysing these results, we can derive valuable
insights into the optimal cj value ranges that best align with the specific priorities and
constraints of a given air cargo operation. These insights can guide the development of
adaptive strategies that dynamically adjust the over-pivot rate based on the underlying
objectives, resource availability, and operational demands, ultimately enabling more
efficient and cost-effective air cargo palletisation solutions.

6.3. Impact of the number of groups

The impact of grouping is represented in batches, i.e., the number of boxes per group.
The objective is to see how filling rates and costs evolve when 10% to 100% of boxes be-
long to a batch. Figure 5 provides the relative change for each KPI using the following
formula:

KPIω −KPIω=1

KPIω=1
(21)

As the percentage of boxes per batch increases, the size of each group also increases.
This leads to potentially more efficient utilisation of ULD volume, as larger groups of
homogeneous or compatible items can be more easily arranged to utilise the available
space effectively.

6.4. Impact of the number of categories

In this experiment, for the sake of theoretical assessment of the heuristic’s performance,
we considered a number of categories λ varying between 10 to 100. Also, we computed
the average filling rate and costs. We calculated the relative change for each KPI using
the following formula:

KPIλ −KPIλ=1

KPIλ=1
(22)

Separating boxes into multiple categories inherently reduces packing flexibility. Each
category may have specific handling and storage requirements or compatibility issues
that restrict how and with which other items they can be co-located. This limitation
often necessitates using additional ULDs, which increases costs and decreases overall
filling rates. In particular, if each box is categorised uniquely (i.e., one category per
box), this represents the least flexible packing scenario.

While effective grouping strategies can significantly enhance filling rates and reduce
costs, over-categorisation can lead to increased complexity, reduced flexibility, and
higher operational costs. Therefore, while it is crucial to respect safety and compati-
bility requirements necessitated by categorisation, reducing the number of categories
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Impact of groups: Relative change of the filling rate and costs according to the
number of groups.

Figure 5. Impact of the number of groups on KPIs.

is also pertinent to avoid overly restrictive packing conditions.
It is worth noting that the number of categories is generally quite limited. Danger-

ous goods are typically classified into different hazard classes, and there are specific
regulations and requirements for their handling and transportation (Feng, Li, and
Shen 2015). Moreover, the segregation of incompatible dangerous goods can vary de-
pending on factors such as the type of aircraft and the location of the ULD within the
aircraft (Brandt and Nickel 2019). However, even with a limited number of categories,
the impact on packing flexibility and costs can be significant, as demonstrated in our
experiments.

6.5. Impact of instance sizes on CPU times

Table 6 displays the CPU times of DR/Softmax under varying settings. The number
of boxes influences the CPU times, the specifications of groups and categories, and
any periphery requirements.

In the most straightforward scenarios, the algorithm can handle up to 100,000 boxes
assigned to a single group and category. Furthermore, it can efficiently solve configu-
rations with a small to medium number of boxes, even with increased group, category,
and periphery constraints. The complexity markedly increases for configurations in-
corporating 100,000 boxes along with an elevated number of groups and categories.
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Impact of categories: Relative change of the filling rate and costs according to the
number of categories.

Figure 6. Impact of the number of categories on KPIs.
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Table 6. Impact of instance sizes on CPU times.

# boxes # groups # categories # periphery CPU (s)

100 1 1 0 35
500 1 1 0 83

1000 1 1 0 190
100000 1 1 0 365

100 20 1 0 48
500 20 1 0 158

1000 20 1 0 443
100000 20 1 0 1618

100 40 1 0 42
500 40 1 0 225

1000 40 1 0 508
100000 40 1 0 2770

100 60 1 0 63
500 60 1 0 279

1000 60 1 0 870
100000 60 1 0 3431

100 1 20 0 41
500 1 20 0 160

1000 1 20 0 549
100000 1 20 0 1834

100 1 40 0 57
500 1 40 0 284

1000 1 40 0 809
100000 1 40 0 2859

100 1 60 0 71
500 1 60 0 309

1000 1 60 0 1085
100000 1 60 0 3924

100 1 1 10 31
500 1 1 10 164

1000 1 1 10 234
100000 1 1 10 613

100 1 1 20 38
500 1 1 20 222

1000 1 1 20 417
100000 1 1 20 1293

100 20 20 20 481
500 20 20 20 2085

1000 20 20 20 3522
100000 20 20 20 6319
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This showcases the intricate interplay between the variables in determining the com-
putational demand of the problem. However, the CPU time remains less than two
hours.

7. Conclusion

In this paper, we conducted experiments employing 12 contextual bandits-guided local
search heuristics to address the air cargo palletization problem. To ensure comprehen-
sive analysis, we evaluated the performance of our methods using three different esti-
mators (IPS, DM, and DR) and four distinct exploration algorithms (ϵ-greedy, Bag,
Online Cover, and Softmax Explorer). Through rigorous validation, we benchmarked
our approaches against a variant that does not incorporate the learning component
and against the results achieved by previous researchers. Our findings demonstrated
the effectiveness of our methods. We showed that the LSC outperformed the other
heuristics. Further, the LSC with the DR estimator generally provided robust solu-
tions by combining the advantages of both DM and IPS estimators, yet it may be
computationally more demanding.

We also conducted experiments utilising two distinct objective functions, namely the
unused volume and the costs, to emphasise the importance of cost minimisation. We
successfully tackled instances incorporating grouping, positioning, and compatibility
constraints, aiming to evaluate the influence of these constraints on our study and to
evaluate the broader applicability of our findings.

As a research outlook, this work could be extended by exploring the trade-off be-
tween the rising costs of grouping items of the same shipment and the handling costs
involved in disassembling certain ULDs. Considering this trade-off, a more compre-
hensive understanding of the cost dynamics in cargo operations can be achieved. Nev-
ertheless, depicting such an aspect requires a drastic mathematical transformation of
the actual framework, as several stakeholders might be involved. Furthermore, the seg-
regation constraints can vary depending on factors such as the ULD’s position within
the aircraft, the specific aircraft type, and the nature of the service provided (e.g.,
cargo only). To address these complexities comprehensively, an integrated model that
incorporates multiple decision-makers could be developed, considering both the air
cargo palletisation problem and the weight and balance problem. Such a model would
enable a holistic approach to optimising air cargo operations.

Moreover, this study can be extended to incorporate additional metaheuristic com-
parisons and further sensitivity analyses on an expanded set of constraints. This will
ensure a comprehensive benchmarking across a wider spectrum of operational scenar-
ios, further validating the LSC’s adaptability and efficiency. Additionally, it could be
interesting to incorporate more complex operators that might bring additional benefits
to the solution quality.

Finally, in our current work, we assume a priori knowledge of the boxes to be packed.
However, exploring an online version of the problem is important, where the boxes need
to be packed without prior knowledge of the subsequent boxes. In this online scenario,
each box can only be allocated to a ULD with a build-up period that is at least equal
to the time when the item becomes available for build-up. By considering this online
variant, we can simulate real-world packing scenarios more accurately, where decisions
must be made in real-time without complete knowledge of future items, leading to a
more practical and robust solution for the air cargo palletisation problem.
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Paquay, Célia, Sabine Limbourg, and Michaël Schyns. 2018. “A tailored two-phase con-
structive heuristic for the three-dimensional Multiple Bin Size Bin Packing Problem with
transportation constraints.” European Journal of Operational Research 267 (1): 52–64.
https://doi.org/https://doi.org/10.1016/j.ejor.2017.11.010, https://www.sciencedirec
t.com/science/article/pii/S0377221717310214.
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