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ABSTRACT

This paper presents a Technology Assisted Review (TAR) stopping

approach based on Reinforcement Learning (RL). Previous such

approaches offered limited control over stopping behaviour, such as

fixing the target recall and tradeoff between preferring to maximise

recall or cost. These limitations are overcome by introducing a novel

RL environment, GRLStop, that allows a single model to be applied

to multiple target recalls, balances the recall/cost tradeoff and inte-

grates a classifier. Experiments were carried out on six benchmark

datasets (CLEF e-Health datasets 2017-9, TREC Total Recall, TREC

Legal and Reuters RCV1) at multiple target recall levels. Results

showed that the proposed approach to be effective compared to

multiple baselines in addition to offering greater flexibility.
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1 INTRODUCTION

Identifying all, or a significant proportion of, the relevant docu-

ments in a collection has applications in multiple areas including

development of systematic reviews [16, 20±22], satisfying legal dis-

closure requirements [3, 15, 28], social media content moderation

[45] and test collection development [27]. These problems often

involve large collections where manually reviewing all documents

would be prohibitively time-consuming. Technology Assisted Re-

view (TAR) develops techniques to support these document review

processes, including stopping rules which help reviewers to decide
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Figure 1: RL Environment for TAR Stopping

when to stop assessing documents, thereby reducing the effort re-

quired to screen a collection for relevance. TAR stopping rules aim

to identify when a desired level of recall (the target recall) has been

reached during document review, while also minimising the number

of documents examined. The problem is challenging since these two

objectives are in opposition; increasing the number of documents

examined provides more information about whether the target has

been reached.

A wide range of approaches have been applied to the problem,

including examination of the rate at which relevant documents are

observed [10, 37], estimating the number of remaining relevant doc-

uments by sampling or classification [8, 11, 25, 36] and analysis of

ranking scores [13, 17]. A recent approach is based on Reinforce-

ment Learning (RL) (see Figure 1). RLStop uses deep RL to train

a model to make stopping decisions which were found to perform

well in comparison with a wide range of alternative stopping mod-

els [6]. However, RLStop suffers from a range of limitations, the

most significant being that each model is trained for a specific target

recall, limiting their generalisability. Also, in common with many

other stopping methods, it does not provide a mechanism to adapt

behaviour to balance the two stopping objectives: maximising the

likelihood of reaching target recall and minimising the number of

https://orcid.org/0000-0002-9156-6186
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documents examined. Finally, RLStop only uses information from

documents that have already been examined, despite work demon-

strating the value of incorporating predictions about likely relevance

of unexamined documents [5, 43, 46].

Inspired by RLStop, this paper proposes an alternative RL-based

stopping algorithm which overcomes these limitations and improves

performance. In particular, it proposes a new reward function for

use within the RL algorithm which allows the creation of a single

stopping model that can be used with a range of target recall levels

and also provides control over whether proposed stopping points

prefer to maximise the number of relevant documents identified

or minimise the number of documents examined. In addition, it

demonstrates how information from unexamined documents can be

incorporated within the RL framework. Experiments on six data sets

commonly used in TAR evaluation demonstrate that these extensions

improve performance. Further analysis explores the effect of ranking

quality.

This work makes the following contributions: (1) introduces a

RL-based stopping model that can be applied to multiple target re-

calls and adapted for different stopping preferences (e.g. maximising

reaching target recall or minimising number of documents exam-

ined), (2) integrates a classifier within the RL environment to provide

information about the unexamined documents, (3) demonstrates that

this approach provides state-of-the-art performance through evalu-

ation using multiple benchmark data sets, and (4) investigates the

effect of a ranking quality on these approaches.1

2 BACKGROUND

A wide range of approaches have been proposed for TAR stop-

ping methods. The most common is to estimate the total number

of relevant documents in the collection and use this information to

determine whether enough documents have been observed for the

target recall to have been achieved. The total number of relevant

documents has been estimated in a range of ways including sam-

pling the unexamined documents [7, 8, 11, 19, 25, 30, 36], training

a classifier using relevance judgments from the examined documents

and applying it to those yet to be examined to estimate the number

that are relevant [43, 44, 46], applying score distribution approaches

that make use of the scores assigned by the ranking algorithm [17]

and by applying counting processes [5, 37].

Other approaches identify a stopping point without explicitly es-

timating the total number of relevant documents. The knee method

examines the gain curve produced as relevant documents are encoun-

tered to identify an inflection point where these become less frequent

[10], while target methods apply sampling theory to randomly sam-

ple documents until a pre-specified number of relevant documents

have been observed [10, 23, 44].

RLStop also identifies a stopping point without explicitly esti-

mating the total number of relevant documents [6]. RLStop treats

the stopping problem as a sequential decision-making problem and

employs RL to make repeated decisions to either stop or continue

examining documents, in contrast with the more common approach

of treating stopping as an estimation problem. Although RL has been

widely applied within Information Retrieval [1, 31, 33, 42], RLStop

was the first application to stopping in TAR. RLStop was found to

1Code available from https://github.com/ReemBinHezam/GRLStop

identify suitable stopping points at a range of target recall levels and

outperformed other approaches on a range of TAR problems.

Despite its strong performance, RLStop suffers from several lim-

itations. Each model is trained using a single target recall and is

intended to make stopping decisions for that recall alone. This limits

the generalisability of each model and multiple models would need

to be trained in any cases where different target recalls are of interest.

This limitation is unusual within stopping methods, for example it is

straightforward for approaches based on estimating the total number

of relevant documents to adjust the target recall and target meth-

ods account of the target recall in the formulae used to determine

the number of relevant documents that need to be observed before

stopping.

Applications of TAR stopping rules may have different require-

ments in terms of the balance between ensuring that the target recall

is achieved and minimising the number of documents examined.

For example, ensuring that a high proportion of relevant documents

are identified is a priority for systematic reviews in the medical do-

main [16], while stopping as close to the target recall as possible is

more likely to be important in the legal domain where minimising

cost and unnecessary disclosure are important factors [14]. Some

stopping methods, notably target methods [10, 23], do provide this

functionality by incorporating the probability that the target recall

is reached within the stopping decision. However, RLStop does not

allow behaviours to be adapted in this way.

These limitations are addressed in this work by making use of an

alternative reward function within the RL algorithm which allows a

single model to be trained and then applied to multiple target recalls.

This reward function also allows the balance between ensuring that

target recall is achieved and number of documents examined to be

considered during training, allowing different models to be created.

In addition, RLStop examines the documents in the order in which

they are ranked and bases its stopping decisions only on informa-

tion from the documents that have been examined so far. Although

this approach has the advantage of prioritising the documents that

are more likely to be relevant, information about the unexamined

documents has been demonstrated to be useful for this problem

[5, 44, 46]. This paper also demonstrates how information about

unexamined documents can be integrated into the RL approach by

training a classifier on the documents for which relevance judgments

are available and applying it to the unexamined documents.

3 REINFORCEMENT LEARNING APPROACH

In RL an agent interacts with an environment and receives rewards

depending upon its actions. The environment consists of a state

space, 𝑆 , which defines the set of possible states that the agent

can occupy and an action space, 𝐴, that lists the set of possible

actions that the agent can take at each state. The goal of RL is

to learn a policy, 𝜋 (𝑠, 𝑎) where 𝑎 ∈ 𝐴 and 𝑠 ∈ 𝑆 , which defines

the value of choosing action 𝑎 given states 𝑠 and thereby guides

the agent’s behaviour. A reward function, 𝑅(𝑠), assigns a score to

each state and is used to train the policy. An RL algorithm explores

the environment by making sequential choices of action through

trial-and-error with the goal of maximising the reward obtained.

Each choice of action may affect not only the immediate reward

obtained but also the rewards obtained following subsequent actions.

https://github.com/ReemBinHezam/GRLStop
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RL algorithms must balance exploitation and exploration, that is

maximising the reward obtained at each step by exploiting what

it has already experienced versus maximising cumulative future

rewards by exploring the environment by taking new actions [38].

3.1 Stopping RL environment

This section describes how a stopping algorithm is implemented

within an RL environment. The agent examines a ranked list of

documents in batches, starting with the highest ranked documents.

After each batch the agent decides to either continue examining

documents or stop.

State Space: The state space represents the document ranking and

target recall. A ranking is split into 𝐵 fixed size batches, each con-

taining 𝑁

𝐵
documents for a collection of 𝑁 documents. The agent

examines batches sequentially and obtains relevance judgments for

all documents in the batch simultaneously. The initial state for each

ranking, 𝑆1, occurs when the first batch (but none of the subsequent

batches) has been examined by the agent. Additional batches are

examined in subsequent states, i.e. in the 𝑛th state, 𝑆𝑛 , the first

𝑛 batches have been examined. The final state, 𝑆𝐵 , represents the

situation in which the entire ranking has been examined.

States are represented by a fixed size vector of length 𝐵+2 where

each of the first 𝐵 elements represent a single batch and the final two

represent the number of batches that have been examined so far (𝐸)

and the target recall. The way in which the values representing each

batch are computed depends on whether or not the batch has been

examined by the agent. For examined batches, i.e. batches 1 . . . 𝐸,

the value shows the proportion of relevant documents within the

batch. However, since the remaining batches, i.e. 𝐸 + 1 . . . 𝑁 , have

not yet been examined, the number of relevant documents within

each is not known. For these batches a classifier is trained using

the relevance judgments from the examined batches and applying

it to each of the unexamined batches to provide an estimate of the

number of relevant documents it contains.

Note that the state representation used by RLStop only included

information about relevant documents within examined batches. This

work integrates estimates of the number of relevant documents in

unexamined batches produced by a classifier, information that has

previously been demonstrated to be useful [43, 46], into the RL

approach.

Action Space: At each point in the ranking, the agent has a choice

between two discrete actions: STOP and CONTINUE. The first

action is chosen when the agent (informed by the policy) judges

that the target recall has been reached. The stopping point returned

is the end of the last batch that has been examined so far. If the

agent does not stop, it continues to examine the ranking, i.e. moves

from state 𝑆𝑖 to 𝑆𝑖+1. The last possible agent step is to state 𝑆𝐵 since

this represents the end of the ranking and all documents have been

examined.

Policy: A neural network is an appropriate choice of policy when the

number of potential states is large, such as the state space encoding

used here [2]. The policy used is a feed-forward network consisting

of an input layer of length 𝐵 + 2, representing the current state, two

hidden layers and a binary output layer indicating the chosen action,

which is converted to a probability distribution over the two possible

actions by a softmax activation function.

Reward function: The policy is trained using a reward function,

𝑅(𝑆𝑖 ), which assigns a score to each state indicating its desirability

to the agent. A suitable reward function should have the following

properties 1) encourages the agent to continue examining documents

until the target recall has been reached, 2) penalises further examina-

tion after it has been reached, 3) have the same range for different

document rankings and target positions, and 4) can be adapted to of-

fer control over the balance between undershooting and overshooting

of target recall.

Note that the third property is necessary for to develop a single

model that can be applied to multiple target recalls since it is difficult

for RL algorithms to learn good policies when reward function values

across the state space cannot be compared directly.

A function that meets these properties is:

𝑅(𝑆𝑖 ) =





𝑖
𝑚−(𝑖−1)𝑚

𝑇𝑚 if 𝑖 ≤ 𝑇

(𝐵−𝑖 )𝑛−(𝐵−𝑖+1)𝑛

(𝐵−𝑇 )𝑛
if 𝑖 > 𝑇

(1)

where 𝑖 is the current state (i.e. 𝑖th batch), 𝐵 is the number of

batches into which the ranking is split and 𝑇 is the batch at which

the target recall is reached. (Note that while the value of 𝑇 is known

while the algorithm is being trained, it is not known when it is

applied.) In addition, 𝑚 and 𝑛 are parameters allowing the function

to be adapted between preferring to maximise the likelihood of

reaching the target recall and minimising the number of documents

examined.

This function assigns a positive reward for states at, or below,

the target recall and a negative reward for states after it has been

exceeded, thereby meeting the first two properties for a suitable

reward function.

Other properties of Equation 1 are best understood by considering

the cumulative reward produced for an RL episode, i.e. the sum of

rewards for all states visited by the agent during that episode. In this

application an episode consists of examining a ranking from the first

batch until a stopping decision is made. The cumulative reward for

an episode that ends at 𝑆𝑖 , 𝐶𝑅(𝑆𝑖 ), is given by:

𝐶𝑅(𝑆𝑖 ) =




(
𝑖

𝑇

)𝑚
if 𝑖 ≤ 𝑇

(
𝐵−𝑖
𝐵−𝑇

)𝑛
if 𝑖 > 𝑇

(2)

The maximum value for this function, which occurs when the

target recall has been reached (i.e. 𝑖 = 𝑇 ) is always 1. The function’s

value decreases for values below or above 𝑇 with a minimum pos-

sible value of 0 reached when 𝑖 = 𝐵 (provided 𝑇 ≠ 𝐵). The range

of the cumulative reward is therefore invariant to the point in the

ranking at which the target recall is reached, so the third property is

satisfied.

The properties of the reward function, and therefore the cumula-

tive reward, can be controlled by varying the values of the parameters

𝑚 and 𝑛. The value of𝑚 determines the reward for states before the

target recall has been reached. Setting it < 1 increases this reward

while it is reduced for values > 1. Similarly, varying 𝑛 changes the

reward after the target recall has been exceeded. Choosing appropri-

ate values for𝑚 and 𝑛 provides a mechanism to control the balance

between ensuring the target recall has been reached and minimising
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Figure 2: Example cumulative reward functions produced by

varying parameters 𝑚 and 𝑛. In this example, the target recall

is achieved at batch 40 of 100 in this example (i.e. 𝑇 = 40 and

𝐵 = 100). The solid blue line shows the function produced when

𝑚 = 𝑛 = 1. The dashed orange line, produced when 𝑚 = 4 and

𝑛 = 0.25, shows a function that assigns less reward before the

target recall is achieved and more after it. Similarly, the dotted

green line,𝑚 = 0.25 and 𝑛 = 4, assigns more reward before and

less after.

the number of documents examined. For example, setting 𝑚 = 4

and 𝑛 = 0.25 alters the function to increase the reward when the

target recall is exceeded and reduce the reward when it is not met,

thereby encouraging policies that ensure enough documents have

been identified to achieve the target recall even at the expense of

examining more documents than necessary. Similarly, setting 𝑚 < 1

and 𝑛 > 1 reverses this to increase reward for minimising the number

of documents examined, even when the target recall has not been

achieved (see Figure 2).

Note that a reward function could be created using a single param-

eter to control the balance between maximising recall or minimising

workload, and such a function would be adequate for the majority

of applications. However, we chose to include two parameters to

increase the possible reward functions available.

The reward function presented here can be compared against

the one used by RLStop. That function met the first two properties

by assigning positive reward until the target recall was reached

and then negative reward thereafter. However, the maximum and

minimum cumulative reward varied depending on the batch at which

the target recall was reached (i.e. value of 𝑇 ) with higher maximum

values when this batch occurred later in the rankings. (The maximum

cumulative reward for RLStop is 𝑇−1
2

while the minimum, 2𝑇−𝐵−2
2

,

is negative in some cases.) In addition, RLStop’s reward function did

not offer any mechanism to adapt the policy to prefer to overshoot

or undershoot the target recall.

4 EXPERIMENTS

4.1 Datasets

Performance was evaluated on six datasets from multiple domains

that are widely used in high recall retrieval studies. The datasets

are highly imbalanced, with a very low percentage of relevant docu-

ments for each topic.

CLEF Technology-Assisted Review in Empirical Medicine (CLEF

2017/2018/2019) [20±22]: A collection of systematic reviews from

the Conference and Labs of the Evaluation Forum (CLEF) 2017,

2018, and 2019 e-Health lab Task 2: Technology-Assisted Reviews

in Empirical Medicine. The CLEF 2017 dataset contains 42 reviews,

CLEF 2018 contains 30 and CLEF 2019 contains 31. The training

dataset consists of 12 reviews from CLEF2017.

TREC Total Recall (TR) [15]: A collection of 290,099 emails

related to Jeb Bush’s eight-year tenure as Governor of Florida (ath-

ome4). The collection contains 34 topics. Each topic is labelled

with a short title and based on an issue associated with Jeb Bush’s

governorship. The training dataset is (athome1) which consists of

10 topics from the same collection.

TREC Legal (Legal) [12]: A collection of 685,592 Enron emails

made available by the Federal Energy Review Commission during

their investigation into the company’s collapse. Two topics were

used for testing and two for training.

RCV1: [24] A collection of Reuters news articles labelled with cat-

egories. Following [43, 44], 45 categories were used to represent

a range of topics at different prevalence and difficulty levels, and

the collections downsampled to 20% for efficiency. The remaining

unused 94 topics in the collection were used for training.

To ensure fair comparison, all stopping methods are applied to the

same rankings. AutoTAR [9] is a greedy Active Learning approach

that represents state-of-the-art performance on total recall tasks

and is commonly used within work on stopping methods. It allows

comparison with a range of alternative approaches [25]. AutoTAR

rankings for each dataset were created using a reference implemen-

tation and default parameters.2 These rankings were used for all

experiments, except those reported in Section 5.4 which explore the

effect of varying ranking quality.

4.2 Baselines

Multiple stopping methods representing a range of approaches were

used as baselines, including those widely used in previous work.

RLStop [6] is the existing RL-based approach described previously.

Separate models are trained for each dataset and target recall.

SCAL [11] estimates the number of relevant documents in the col-

lection by sampling across the entire ranking.

AutoStop [25] employs a similar approach to SCAL. Sampling is

carried out using unbiased estimators [18, 39] to account for the

decreasing prevalence of relevant documents.

SD-training/SD-sampling [17] make use of the scores assigned by

the ranking algorithm to estimate the total number of relevant docu-

ments. They differ in how they identify relevant documents needed

to model ranking scores. SD-training from the training data and

SD-sampling by sampling documents to obtain relevance judgments

from a simulated user.

IP-H [37] examines the rate at which relevant documents are ob-

served and uses this information within a statistical model (counting

process) to estimate the total number of relevant documents.

Knee [10] examines the ªgain curveº produced by plotting the cu-

mulative total of relevant documents identified against rank. A ªknee

2https://github.com/dli1/auto-stop-tar

https://github.com/dli1/auto-stop-tar
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detectionº algorithm [34] is used to examine this curve’s gradient to

determine when the frequency of relevant documents decreases.

TM-adapted [10] randomly samples from the collection until a

pre-specified number of relevant documents have been found. An

extension of this approach that allows this figure to be adapted for

different target recalls is used [37].

QBCB [23] similar to the previous approach but relies on a set of

known relevant documents. Sampling continues until all documents

in the set have been found.

Baselines are computed using reference implementations from

previous work [25, 37] where possible. Otherwise, previously re-

ported results are used and are directly comparable since they are

also based on AutoTAR rankings. However, some baselines are not

available for the RCV1 dataset since we were unable to run the

reference code and results have not been provided in previous work.

Performance was also compared against an Oracle method (OR)

which examines documents in ranking order and stops when the

target recall level has been achieved (or exceeded). The oracle rep-

resents the behaviour of an ideal stopping method but is not useful

in practise since it requires full information about the ranking. Note

that in some cases the oracle can only achieve a recall higher than

the target when it is not possible to stop exactly at target, e.g. given

a target recall of 0.8 and collection containing 7 relevant documents,

the oracle will stop after 6 relevant documents have been found, i.e.

recall 0.86.

4.3 Evaluation Metrics

Approaches were evaluated using metrics commonly used in previ-

ous work on TAR stopping criteria, e.g. [10, 25], calculated using

the tar_eval open-source evaluation script.3

Recall: Proportion of relevant documents within the collection iden-

tified before the method stops examining documents.

Reliability (Rel.): Percentage of topics where the desired target

recall was reached (or exceeded). For each topic, the reliability

is 1 if the target recall is reached before the stopping examining

documents, and 0 otherwise.

Cost: Percentage of documents examined.

Cost Difference (CostDiff): In addition to the above metrics, the

cost difference score is also introduced. This is the difference be-

tween the proportion of documents that were examined and would

have been examined by the oracle method (i.e. stopping immediately

upon reaching the target recall). It is computed as 𝑐𝑜𝑠𝑡 (𝑚𝑒𝑡ℎ𝑜𝑑) −

𝑐𝑜𝑠𝑡 (𝑜𝑟𝑎𝑐𝑙𝑒). Positive scores indicate that the target recall has been

reached and negative that it was not while the absolute value in-

dicates the proportion of the collection by which the ideal stop-

ping point was missed. Cost difference combines information about

whether the target recall has been reached and number of documents

examined within a single metric.

4.4 Implementation

Proximal Policy Optimization (PPO) [35] is used as the RL algo-

rithm. PPO is a policy gradient approach that directly learn the policy

that maps states to actions rather than indirectly extracting it from

state-action pairs. It is an actor-critic RL algorithm that combines

policy-based (actor) and value-based (critic) RL, where the actor

3https://github.com/CLEF-TAR/tar

network decides the actions, and the critic network evaluates them to

optimise the value function (i.e. reward value). PPO is based on the

REINFORCE [41] algorithm but with several enhancements, and

most importantly in our case, collects trajectories from different en-

vironments simultaneously from independent parallel actors, which

allows a policy to be trained using rankings from multiple topics.

PPO employs a clipping mechanism limiting policy updates within a

specific range and leading to more stable training which is important

when training the agent with multiple environments.

PPO is more suitable than alternative approaches like DQN [29]

which relies on Q-values to map actions to specific states and does

not easily generalise across different environments such as multiple

rankings. PPO is also more sample-efficient than some alternative

methods, thereby reducing the amount of data required to learn

effective policies.

Classifier: The classifier applied to the unexamined portion of the

ranking was implemented using logistic regression with a TF-IDF

document representation. Despite its simplicity, this approach has

proved successful for TAR problems and has commonly been used

by previous approaches [5, 25, 43, 44, 46]. The classifier was imple-

mented using the scikit-learn library with LogisticRegression

and TF-IDF scores generation using TfidfVectorizer and default

configurations, which proved to work well in previous work [5, 25].

Documents features used were title and abstract for the CLEF 2017-

19 datasets, title and content of emails for TREC TR and Legal and

the entire news article for RCV1. Cost sensitive learning was used to

mitigate class imbalance during classifier training by using a weight

of 1 for the minority class (i.e. relevant) and weighing the minority

class (i.e. not relevant) as the ratio of the number of documents in

the minority and majority classes [26].

Implementation and Hyperparameters: The RL environment was

created using the Gymnasium library [40] with vector environments,

which allows multiple independent environments to be stacked to-

gether, thereby allowing simultaneous training on multiple topics.

The Stable-Baseline3 [32] implementation of PPO was used.

Following previous work, the number of batches, 𝐵, was set to

100 to ensure a reasonable number of possible stopping positions

without the environment becoming too sparse [6].

Experiments were carried out exploring multiple configurations

which required different hyperparameters due to the changes to

the environment and reward behaviour. The best values for each

setting were identified using a grid search. For all configurations,

the number of epochs, discount factor, learning rate, and neural

network hidden layers nodes were set to their default values of 10,

0.99, 0.0003 and 64, which also proved to provide the best results.

The number of steps per environment at each rollout was set to 10,

the entropy coefficient to 0.1 and the clipping range to 0.1. Early

stopping callback [32] was applied when there was no improvement

in the policy for ten consecutive rollouts to help avoid overfitting,

save training time and ensure fair comparison.

Section 5.2 describes a configuration in which the classifier was

not included. For this configuration, the number of steps per envi-

ronment at each rollout was increased to 100 since the environment

is less informative and more steps are required for to explore it fully.

The entropy coefficient was also set to 0.001 to encourage a balance

between the number of steps and exploration, thereby introducing

more stable policy updates.
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The reward function parameters 𝑚 and 𝑛 were set to 1 for all

experiments except those in Section 5.3 which explore the effect of

altering the objectives.

5 RESULTS

The first experiment compares the proposed approach, referred to

as GRLStop, with the alternative methods (baselines and oracle)

described in Section 4.2. Results are reported using recall and cost,

averaged across all topics in each collection. (Note that the reliability

and CostDiff scores for GRLStop are also available in Table 1.) Re-

call and cost metrics were chosen because they provide information

about how well the stopping algorithm has achieved its two key

objectives: identifying relevant documents and minimising the total

number of documents examined. Suitable stopping methods need to

take account of both objectives so Pareto efficient approaches (i.e.

those that reach the highest recall for a particular cost) are identified

for each setting.

Results are shown in Figure 3 for all datasets with target recalls

set to 0.8, 0.9 and 1.0. (Target recall 0.7 is also included for subse-

quent experiments but not for this one since it was not possible to

obtain scores for several of the baseline approaches.) Each dataset

is represented in a single column and each target recall in a single

row. Grey lines in each sub-figure indicate the Pareto front (i.e. set

of Pareto efficient approaches).

The variation in relative performance across the range of config-

urations included in the experiment demonstrates the difficulty of

selecting a single approach that is optimal in all circumstances. How-

ever, GRLStop is Pareto optimal in almost every case. The single

exception is for the TR dataset for target recall 1.0 (subfigure (p))

where GRLStop is very close to being Pareto optimal. The approach

was consistently able to reach the target recall level with lower cost

compared to the baselines in almost all non-total recall scenarios

when the target recall is 0.8 or 0.9. It is also consistently closer to

the optimal Oracle results than other approaches.

GRLStop often fails to meet the target recall when it is set to 1.0

(bottom row of Figure 3), most noticeably for the CLEF 2018 and

2019 datasets. However, the cost is substantially lower than for other

approaches (several of which examine the majority of the collection)

and achieves a good balance between cost and recall.

The knee and IP-H approaches are also Pareto optimal in several

cases. However, their cost is generally higher then GRLStop (indi-

cating that they require more documents to be examined) and they

tend to be further from the oracle. The remaining approaches are not

Pareto optimal under any scenario, or only occasionally.

These results demonstrate that GRLStop is comparable with state-

of-the-art approaches for TAR stopping and is often able to achieve

performance closer to the optimal oracle than alternative methods.

5.1 Fixed vs Varying Target Recall

A key feature of GRLStop is its ability to train a single model that can

be used to identify stopping points for different target recalls. This

is in contrast with RLStop where a different model has to be trained

for each target recall, limiting their flexibility. This also provides

RLStop with an advantage in the results shown in Figure 3 since all

GRLStop results for a dataset are produced by a single model, while

the RLStop ones are produced by three separate models.

To explore this further, an experiment was carried out in which

GRLStop was compared against versions of RLStop trained for

two target recalls: RLStop7 for target recall 0.7 and RLStop9 for

target recall 0.9. Each model was then applied in scenarios with for

different target recalls (0.7, 0.8, 0.9 and 1.0). The difference between

this experiment and the one reported in Figure 3 is that the RLStop7

and RLStop9 models are applied to all target recalls, rather than just

the one that they have been trained for.

Results are shown in Table 1 where recall, reliability, cost and

CostDiff metrics are reported for each approach. Note that the recall

and cost metrics for the RLStop7 and RLStop9 models are the same

for all target recalls, since these models only aim to achieve the target

recall they were trained for. The reliability and CostDiff scores for

these models do change since these metrics consider the target recall.

However, for GRLStop, results for all metrics vary depending on the

target recall, demonstrating the models generalisability across target

recalls.

Unsurprisingly, the RLStop7 and RLStop9 models perform best

when applied to the target recall they had been trained for. But

the performance of these models tends to degrade when they are

applied to different target recalls. For example, performance of

RLStop7 reduces as it is applied to increasingly higher target recalls.

In these cases the models tends to undershoot the target, as indicated

by the drop in reliability and CostDiff scores. Similarly, RLStop9

overshoots when applied to lower target recalls, as demonstrated

by the high cost and cost difference figures in comparison with the

other two approaches.

The costDiff scores for GRLStop are consistently lower than

those for RLStop7 and RLStop9, even in the cases where it was

more costly (such as target recall 1.0), demonstrating its ability to

adapt the stopping decision to the target recall being sought.

5.2 Classifier Effect

A further analysis was carried out to determine the effect of includ-

ing the classifier to predict relevance of unobserved documents on

overall performance. A version of GRLStop that did not employ the

classifier was created by adapting the RL environment described

by Section 3.1 so that the classifier-predicted values for each unob-

served document (i.e. all batches from 𝐸 + 1 . . . 𝑁 ) are replaced by

a dummy value −1, an approach similar to the one used by RLStop.

The box plot in Figure 4 compares the results obtained with and

without the classifier over all topics. CostDiff scores are reported

since to allows per-topic differences to be represented. It can be

seen that including classifier prediction labels moves the CostDiff

score closer to the optimal score of 0 in the majority of scenarios. In

the majority of circumstances, particularly for target recalls 0.7 and

0.8 and the CLEF data sets, removing the classifier leads to more

documents being examined than necessary, indicated by the overall

increase in CostDiff. However, in other cases such as target recall

1.0, removing the classifier results in an increased failure to meet the

target recall (as indicated by increased negative CostDiff).

The differences between the results obtained with and without the

classifier for each metric were compared across all target recalls and

found to be statistically significant for all target recalls except 0.9

(paired t-test with Bonferroni correction, 𝑝 < 0.05).
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Figure 3: Recall vs cost. Target recall indicated by horizontal blue dashed line and Pareto front as grey line. Note that scale of y-axis

varies across sub-figures.

Table 1: Comparison of GRLStop and RLStop trained on target recalls 0.7 and 0.9

Target Recall = 1.0 Target Recall = 0.9 Target Recall = 0.8 Target Recall = 0.7

Dataset Model Recall ↑ Rel. ↑ Cost ↓ CostDiff Recall ↑ Rel. ↑ Cost ↓ CostDiff Recall Rel. Cost CostDiff Recall ↑ Rel. ↑ Cost ↓ CostDiff

CLEF2017

RLStop7 0.851 0.500 0.050 -0.084 0.851 0.667 0.050 -0.009 0.851 0.733 0.050 0.004 0.851 0.767 0.050 0.014

RLStop9 0.933 0.600 0.090 -0.044 0.933 0.767 0.090 0.031 0.933 0.800 0.090 0.044 0.933 0.933 0.090 0.054

GRLStop 0.992 0.767 0.165 0.032 0.935 0.767 0.065 0.006 0.869 0.700 0.045 0.000 0.791 0.733 0.031 -0.006

CLEF2018

RLStop7 0.803 0.333 0.050 -0.110 0.803 0.500 0.050 -0.019 0.803 0.667 0.050 -0.004 0.803 0.700 0.050 0.006

RLStop9 0.913 0.500 0.090 -0.070 0.913 0.767 0.090 0.021 0.913 0.867 0.090 0.036 0.913 0.867 0.090 0.046

GRLStop 0.913 0.700 0.149 -0.012 0.870 0.700 0.073 0.003 0.796 0.633 0.047 -0.007 0.732 0.667 0.034 -0.010

CLEF2019

RLStop7 0.811 0.500 0.050 -0.062 0.811 0.600 0.050 -0.018 0.811 0.633 0.050 -0.005 0.811 0.667 0.050 0.004

RLStop9 0.912 0.633 0.090 -0.022 0.912 0.767 0.090 0.022 0.912 0.800 0.090 0.035 0.912 0.900 0.090 0.044

GRLStop 0.896 0.633 0.099 -0.013 0.842 0.700 0.056 -0.012 0.809 0.667 0.045 -0.010 0.743 0.633 0.034 -0.011

Legal

RLStop7 0.504 0.000 0.010 -0.320 0.504 0.000 0.010 -0.035 0.504 0.000 0.010 -0.025 0.504 0.000 0.010 -0.015

RLStop9 0.931 0.500 0.520 0.190 0.931 0.500 0.520 0.475 0.931 1.000 0.520 0.485 0.931 1.000 0.520 0.495

GRLStop 0.942 0.500 0.180 -0.150 0.908 0.500 0.045 0.000 0.872 1.000 0.035 0.000 0.836 1.000 0.030 0.005

TR

RLStop7 0.965 0.324 0.039 -0.010 0.965 0.971 0.039 0.027 0.965 0.971 0.039 0.028 0.965 0.971 0.039 0.028

RLStop9 0.971 0.324 0.039 -0.010 0.971 0.971 0.039 0.028 0.971 0.971 0.039 0.028 0.971 0.971 0.039 0.028

GRLStop 0.997 0.618 0.046 -0.004 0.950 0.941 0.010 -0.002 0.950 0.941 0.010 -0.001 0.950 0.941 0.010 -0.001

RCV1

RLStop7 0.850 0.156 0.034 -0.229 0.850 0.533 0.034 0.012 0.850 0.689 0.034 0.017 0.850 0.800 0.034 0.020

RLStop9 0.888 0.200 0.080 -0.182 0.888 0.578 0.080 0.058 0.888 0.778 0.080 0.064 0.888 0.911 0.080 0.067

GRLStop 0.984 0.356 0.153 -0.109 0.916 0.644 0.018 -0.004 0.890 0.778 0.015 -0.002 0.877 0.889 0.014 0.000

These results demonstrate that integrating the classifier’s predic-

tions into the RL environment improves stopping decision perfor-

mance.

5.3 Adapting Objectives

GRLStop allows the reward function to be varied to achieve dif-

ferent objectives such as encouraging the policy to meet the target

recall or to minimise the number of documents examined. The ef-

fect of doing so was explored in an experiment comparing versions
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Figure 4: Effect of including/excluding classifier on CostDiff. Green dashed horizontal line indicates optimal value (i.e. 0).

of GRLStop developed using different reward functions. The first,

GRLStop-recall-obj, is designed to encourage a policy that ensures

the target recall is achieved, even if this requires more documents

to be examined. Its reward function was created by setting 𝑚 = 4

and 𝑛 = 0.25, values chosen to encourage the intended behaviour

without being too extreme. The second, GRLStop-cost-obj, aims to

minimise the number of documents examined, even if raises the risk

that the target recall is not met. It was created by setting 𝑚 = 0.25

and 𝑛 = 4. These approaches are compared against the standard

GRLStop (𝑚 = 𝑛 = 1) which balances these objectives (GRLStop-

cost-balanced). The classifier predictions were not included in this

experiment since it was found that the impact of varying the reward

function was more pronounced when it was not included.

Table 2 shows the performance of the three approaches for a

range of target recalls over each data set. These results demonstrate

that GRLStop-recall-obj consistently reached higher recall levels

than GRLStop and GRLStop-cost-obj, normally at the expense of an

increase in cost although this is sometimes quite limited (e.g. for the

TR dataset and RCV1 with lower target recalls). The improvement in

recall and reliability is particularly noticeable for the Legal dataset,

although it only consists of two topics which limits the possible

reliability scores. In this case, GRLStop-recall-obj is always able

to achieve the target recall for both topics with a cost that does not

exceed 20%. Examination of the learning process revealed that the

RL algorithm needed more training steps to converge on a policy

for the GRLStop-recall-obj objective, although these policies had

higher cumulative rewards than the ones learned using the other two

objectives.

On the other hand, the cost for GRLStop-cost-obj is consistently

lower than the other two models, often considerably so. This reduc-

tion in the number of documents examined comes at the expense

of lower recall, which often fails to reach the target. However, the

reward function used to train GRLStop-cost-obj is designed to prefer

minimising effort over ensuring the target recall has been reached

so, in that sense, it has met its objective.

These results demonstrate that adapting the reward function used

by GRLStop provides a mechanism to control the balance between

preferring to ensure that target recall is achieved and minimising the

number of documents examined.

5.4 Ranking Quality

Results for the majority of stopping methods have only been re-

ported for a single ranking, despite previous work demonstrating

the ranking quality can affect stopping method performance [37].

GRLStop’s performance across ranking qualities was explored by

generating three sets of rankings with different levels of effective-

ness. These were produced using AutoTAR with low, mid-range and

good rankings being created by stopping the active learning process
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Table 2: Effect of Varying Reward Function

Target Recall = 1.0 Target Recall = 0.9 Target Recall = 0.8 Target Recall = 0.7

Dataset Model Recall ↑ Rel. ↑ Cost ↓ CostDiff Recall ↑ Rel. ↑ Cost ↓ CostDiff Recall ↑ Rel. ↑ Cost ↓ CostDiff Recall ↑ Rel. ↑ Cost ↓ CostDiff

CLEF2017

GRLStop-recall-obj 0.967 0.700 0.129 -0.005 0.952 0.867 0.126 0.067 0.944 0.900 0.124 0.078 0.937 0.967 0.116 0.080

GRLStop-balanced 0.942 0.533 0.067 -0.066 0.925 0.733 0.064 0.005 0.914 0.867 0.062 0.016 0.883 0.900 0.051 0.015

GRLStop-cost-obj 0.685 0.267 0.026 -0.108 0.616 0.267 0.019 -0.040 0.514 0.267 0.010 -0.036 0.514 0.367 0.010 -0.026

CLEF2018

GRLStop-recall-obj 0.969 0.667 0.164 0.003 0.960 0.833 0.156 0.086 0.942 0.900 0.140 0.086 0.941 0.967 0.136 0.092

GRLStop-balanced 0.928 0.367 0.084 -0.076 0.924 0.700 0.081 0.012 0.898 0.900 0.073 0.019 0.887 0.900 0.070 0.025

GRLStop-cost-obj 0.686 0.167 0.033 -0.128 0.605 0.200 0.026 -0.043 0.436 0.267 0.010 -0.044 0.436 0.300 0.010 -0.034

CLEF2019

GRLStop-recall-obj 0.971 0.767 0.158 0.046 0.966 0.900 0.147 0.079 0.957 0.933 0.139 0.084 0.952 0.967 0.136 0.090

GRLStop-balanced 0.933 0.533 0.081 -0.031 0.926 0.833 0.077 0.009 0.915 0.867 0.074 0.019 0.899 0.833 0.068 0.022

GRLStop-cost-obj 0.661 0.367 0.029 -0.083 0.620 0.367 0.025 -0.042 0.459 0.267 0.010 -0.045 0.459 0.267 0.010 -0.036

Legal

GRLStop-recall-obj 0.998 0.000 0.200 -0.130 0.998 1.000 0.200 0.155 0.998 1.000 0.200 0.165 0.998 1.000 0.200 0.175

GRLStop-balanced 0.504 0.000 0.010 -0.320 0.504 0.000 0.010 -0.035 0.504 0.000 0.010 -0.025 0.504 0.000 0.010 -0.015

GRLStop-cost-obj 0.504 0.000 0.010 -0.320 0.504 0.000 0.010 -0.035 0.504 0.000 0.010 -0.025 0.504 0.000 0.010 -0.015

TR

GRLStop-recall-obj 0.971 0.324 0.011 -0.038 0.970 0.971 0.011 -0.001 0.970 0.971 0.011 -0.001 0.964 0.971 0.010 -0.001

GRLStop-balanced 0.971 0.324 0.016 -0.033 0.970 0.971 0.011 -0.001 0.970 0.971 0.011 -0.001 0.964 0.971 0.010 -0.001

GRLStop-cost-obj 0.950 0.294 0.010 -0.039 0.950 0.941 0.010 -0.002 0.950 0.941 0.010 -0.001 0.950 0.941 0.010 -0.001

RCV1

GRLStop-recall-obj 0.992 0.578 0.189 -0.074 0.956 0.822 0.060 0.038 0.922 0.844 0.023 0.007 0.888 0.911 0.015 0.002

GRLStop-balanced 0.976 0.222 0.066 -0.197 0.898 0.578 0.017 -0.005 0.872 0.733 0.013 -0.003 0.850 0.800 0.012 -0.002

GRLStop-cost-obj 0.870 0.156 0.016 -0.247 0.842 0.511 0.013 -0.010 0.802 0.556 0.010 -0.006 0.802 0.733 0.010 -0.004

Table 3: Performance on Range of Ranking Qualities

Ranking Target Recall = 1.0 Target Recall = 0.9 Target Recall = 0.8 Target Recall = 0.7

Dataset Quality Recall ↑ Rel. ↑ Cost ↓ CostDiff Recall ↑ Rel. ↑ Cost ↓ CostDiff Recall ↑ Rel. ↑ Cost↓ CostDiff Recall ↑ Rel. ↑ Cost ↓ CostDiff

CLEF2017

Low 0.941 0.567 0.423 0.005 0.898 0.667 0.235 0.079 0.856 0.733 0.133 0.051 0.767 0.767 0.061 0.005

Mid 0.961 0.700 0.228 0.002 0.935 0.833 0.071 0.015 0.885 0.800 0.048 0.005 0.837 0.833 0.037 0.002

Good 0.989 0.767 0.226 0.066 0.957 0.833 0.067 0.008 0.890 0.767 0.048 0.002 0.809 0.767 0.035 -0.002

CLEF2018

Low 0.988 0.633 0.498 0.078 0.942 0.833 0.259 0.110 0.897 0.900 0.141 0.057 0.805 0.800 0.091 0.029

Mid 0.973 0.700 0.235 -0.011 0.892 0.700 0.073 -0.007 0.842 0.800 0.054 0.002 0.822 0.833 0.046 0.002

Good 0.954 0.733 0.191 -0.018 0.876 0.667 0.066 -0.002 0.832 0.733 0.050 -0.005 0.734 0.600 0.034 -0.011

CLEF2019

Low 0.911 0.600 0.493 0.081 0.848 0.633 0.321 0.083 0.798 0.633 0.175 0.017 0.732 0.633 0.120 0.002

Mid 0.866 0.567 0.192 -0.080 0.842 0.700 0.077 -0.024 0.802 0.667 0.058 -0.015 0.811 0.800 0.054 -0.012

Good 0.882 0.600 0.168 -0.074 0.854 0.733 0.067 -0.022 0.789 0.667 0.048 -0.028 0.750 0.667 0.037 -0.031

after assessing 25%, 50% and 75% of the collection respectively.

Quality of the rankings produced was measured by computing the

area under recall curve (AURC) and found to average 0.87, 0.92

and 0.96 for the low, mid and good rankings. For comparison, the

equivalent score for the rankings used in the previous experiments

was 0.97.

Table 3 shows the results of GRLStop on the CLEF datasets. Re-

sults for other data sets display similar trends but are not included

for brevity. These results indicate that, as expected, GRLStop’s per-

formance is affected by the ranking quality. The most noticeable

difference is in the cost scores which increase as the ranking quality

declines, with a particular jump between mid and low quality rank-

ings. For example, for the CLEF2017 data set with target recall 1.0

the cost increases from 0.226 to 0.228 when moving from high to

mid quality rankings but then to 0.423 for low quality. The reason

for this increase is that the relevant documents occur later in poorer

rankings, forcing GRLStop to progress further down the ranking

before stopping.

GRLStop displays some robustness to ranking quality since this

does not appear to affect reliability scores which, although they vary

with ranking quality, do not always decrease for lower quality rank-

ings (e.g. CLEF2018 dataset for target recalls 0.9 and 0.8). However,

there is a general trend for the CostDiff scores to increase as ranking

quality decreases, indicating that the approach is forced to examine

more documents than necessary before stopping. This is probably

because lower quality rankings represent a more noisy environment

and therefore a more challenging one for the RL algorithm to learn

a good policy for.

6 CONCLUSION

This paper introduces a generalised and adaptable RL-based stop-

ping method for TAR stopping approach. Unlike previous RL-based

approaches, the proposed approach allows a single model to be

applied to multiple target recall levels and the balance between min-

imising cost versus achieving target recall to be controlled. It also

demonstrates how the output from a text classifier can be used within

an RL-based stopping framework.

Results on several benchmark datasets showed that the proposed

approach proved to be effective compared to multiple baselines

including a previous RL-based method. Further experiments demon-

strated that the approach achieved its goals of being applicable to

multiple target recall levels and controlling objectives. The integra-

tion of text classification was also found to be beneficial.

Possibilities for future work include making use of curriculum

learning to reduce the time required to train RL models [4] and

experimenting with LLMs to produce relevance judgments for the

unexamined batches as an alternative to training a text classifier.
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