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G R A P H I C A L A B S T R A C T
� A charging behaviour database is built
using massive EV operating data.

� A charging scheduling scheme is pro-
posed for a public charging station.

� A charging pile allocation method is
presented for charging power control.

� A micro-grid system model is developed
for renewable energy integration.

� Simulation studies verify the effective-
ness of the proposed scheme.
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The rapid adoption of electric vehicles (EVs) in recent years has posed significant challenges to the safe operation
of local grids, particularly due to massive charging operations at public charging stations. This paper proposes a
real-time charging scheduling scheme to enable efficient Vehicle-to-Grid (V2G) interactions and facilitate
renewable energy integration at public charging stations while accounting for real-world EV charging behaviors.
First, an EV charging/discharging behavior database is developed to capture the temporal uncertainty and
charging characteristics of both fast- and slow-charging operations on weekdays and weekends. Then a charging
pile allocation mechanism is introduced to optimize the charging power distribution for each EV to maximize the
operational efficiency of the studied charging station. A micro-grid system model is developed by incorporating
efficient V2G interactions and renewable energy integration. Finally, a comprehensive charging scheduling
scheme is proposed to achieve a balanced optimization of multiple objectives. Extensive simulation studies are
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Table 1
Comparison with similar works published in recent
Variable, PV: Photovoltaic, WT: Wind Turbine, DN:

Refs. MO MS MM M

[20] ✓ ✓ � �
[34] ✓ ✓ ✓ �
[35] ✓ ✓ � �
[36] � ✓ � �
[37] � ✓ � �
[41] ✓ ✓ � �
[42] ✓ ✓ � �
[43] ✓ ✓ � �
[44] ✓ ✓ � �
[45] ✓ ✓ � �
[46] ✓ ✓ � �
[47] ✓ ✓ � �
This work ✓ ✓ ✓ ✓
conducted to evaluate the performance of the proposed scheduling method. The results demonstrate that the
proposed scheme achieves strong performance across all three selected indicators.
1. Introduction

1.1. Background

Electric vehicles (EVs) have been widely recognized as a viable so-
lution to address the challenges of global warming and fossil fuel
depletion [1–3]. Their synergistic development with renewable energy
generation is expected to accelerate the achievement of carbon neutrality
[4,5]. In recent years, with continuous technological advancements and
supportive government policies, the adoption of EVs has been acceler-
ating rapidly worldwide [6]. To meet the growing charging demands,
charging infrastructure, especially public charging stations, is being
extensively deployed [7]. However, uncontrolled large-scale charging
operations pose significant challenges to the safe operation of the elec-
tricity grid [8]. Although grid reinforcements could be a solution, their
feasibility is constrained by exorbitant costs [9]. On the other hand, the
connection time at a charging station significantly exceeds the time
required to meet the charging demand for most EV charging sessions
[10]. This provides great opportunities for implementing efficient
charging scheduling strategies. By reasonably arranging the charging
time, it is possible to reduce the risk of grid overload, lower the charging
costs for users, and promote the integration of renewable energy gener-
ation [11].
1.2. Literature review

Although uncoordinated charging of EVs may have detrimental ef-
fects on the electricity grid [12,13], EVs can also function as flexible
energy storage devices to support grid operation through Vehicle-to-Grid
(V2G) interactions [14]. Especially in micro-grid systems, EVs can be
integrated as distributed energy resources, which is conducive to better
adapting to the intermittent characteristics of renewable energy gener-
ation [15,16]. Efficient charging scheduling holds the key to realizing
these potentials.

Analyzing EV charging behaviors is of great significance for formu-
lating effective charging scheduling schemes [17,18]. In existing
research, time [19], spatial [20], or energy models [21] are often used to
characterize the charging behaviors of EVs. When modeling the charging
behaviors of EVs at public charging stations, statistical fitting is a
commonly used method [22]. Generally, it involves constructing time
and energymodels based on comprehensive charging behavior data [23].
However, this approach has limitations in capturing EV charging be-
haviors in specific scenarios and fails to fully reflect the inherent het-
erogeneity of EV charging patterns.
years. (MO: Multi-Objective, MS:
Distribution Network, G2V: Grid

P DV EV PV

Price ✓ ✓

Time ✓ �
Price ✓ ✓

Power ✓ �
Power ✓ ✓

Power ✓ ✓

Price ✓ ✓

Time ✓ �
Price ✓ �
Price ✓ �
Price ✓ ✓

Price ✓ ✓

Power ✓ ✓
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Substantial efforts have also been made to develop efficient charging
scheduling schemes [24,25]. From the perspective of control architec-
ture, existing methods can be categorized into centralized control [26],
distributed control [27] and hierarchical control [28]. The centralized
control method directly regulates EV charging operations at the involved
charging stations. Although it is straightforward to implement, it requires
a high control frequency. The distributed control method typically uses
Time-of-Use (TOU) pricing to encourage EVs to participate in smart
charging schemes, but its effectiveness highly depends on the respon-
siveness of EV users. The hierarchical control method combines the
characteristics of centralized and distributed control approaches. It for-
mulates multiple optimization objectives from the perspectives of
different stakeholders [29], such as grid operation, financial benefits, and
environmental considerations. For grid operation, the optimization ob-
jectives may include preventing grid overload, minimizing peak-load
differences, reducing distribution losses, and facilitating frequency
regulation [30,31]. Financial benefits usually focus on the interests of the
power grid, charging stations, and EV users. Environmental consider-
ations may involve carbon emissions reduction and renewable energy
integration [32]. Weighting the multi-objective function is a common
optimization method for solving such problems [33]. Key control vari-
ables include charging time [34], charging/discharging tariffs [35], and
charging/discharging power [36,37].

At public charging stations, a micro-grid is often implemented to
better accommodate renewable energy generation. Many studies have
been conducted on this topic as shown in Table 1. Some key consider-
ations include EV model diversity, uncertainty in renewable energy
generation, impact of TOU pricing, and real-time scheduling (RTS).
However, existing studies usually address only one or several of these
aspects, and there is a lack of research that simultaneously considers all
of them. Meanwhile, when formulating specific charging schedules, it is
often assumed that sufficient charging piles are available. Nevertheless,
this assumption may not conform to the actual situation. Especially
during peak charging periods, public charging stations are often fully
occupied by EVs, and newly arriving vehicles may have to wait or leave
without fulfilling their charging needs at a particular charging station
[38,39]. In addition, previous research on EV charging schedulingmainly
focuses on single-objective optimization or transforms multiple objec-
tives into a single objective through weighted formulations [40]. These
methods rely on static scheduling schemes, which lack flexibility and
adaptability to dynamic changes in the actual charging process, such as
fluctuations in renewable energy generation, changes in EV arrival times,
and variations in grid conditions. Moreover, most of the existing studies
assume idealized EV charging demands and behaviors, lacking support
Multi-Scenario, MM: Multi-charging Modes, MP: Multi-power Pile, DV: Decision
-to-Vehicle.)

WT Load DN G2V V2G TOU RTS

✓ ✓ ✓ ✓ ✓ ✓ ✓

� � � ✓ � � �
� ✓ ✓ ✓ ✓ ✓ ✓

✓ � � ✓ ✓ � ✓

� ✓ � ✓ � ✓ �
✓ � � ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

� � � ✓ � � ✓

� � � ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

� ✓ ✓ ✓ ✓ ✓ ✓

✓ � ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓
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Table 2
Nomenclature.

Pricecha/(CNY⋅kWh-1) Charging electricity price
Pricedis/(CNY⋅kWh-1) Discharging electricity price
F–C Fast charging
S–C Slow charging
BL Base load
OTL Total load of orderly charging
DTL Total load of disorderly charging
D-C Disorderly charging
O–C Orderly charging
SE SOCerror

DL Disorderly charging EV load
OL Orderly charging EV load
EVN Total number of EVs
POCN Number of EVs participating in orderly charging
ACN Number of EVs abandoned for charging
WCN Number of EVs waiting to be charged
FSN Number of failed solutions
AST/s Average solving time

L. Zhang et al. Green Energy and Intelligent Transportation 4 (2025) 100283

3

from real-world data, which may lead to deviations between the pro-
posed scheduling strategies and actual operation scenarios.
1.3. Contributions

In summary, existing studies have certain limitations in terms of data
support, objective consideration, and scheduling flexibility. To address
these issues, this study proposes a real-time charging scheduling scheme
to facilitate efficient renewable energy integration and V2G interactions
at a public charging station with a micro-grid system. First, an EV
charging behavior model based on real-world charging data is developed.
The dataset consists of 329,632 charging samples collected from 1268
charging stations in Beijing, covering the period from January 1, 2023, to
February 19, 2023. Then a multi-objective charging scheduling model is
formulated with renewable energy integration, along with a charging
pile allocation mechanism and an optimization scheduling method. The
Pareto front solution set is derived using the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [48], and the optimal solution is deter-
mined using the Entropy and Technique for Order Preference by Simi-
larity to an Ideal Solution (Entropy-TOPSIS) [49]. The main
contributions of this study are summarized as follows:

1. A charging scheduling model based on real-world data and a multi-
objective optimization framework is adopted. It can provide
charging scheduling strategies for different scenarios.

2. A charging pile allocation mechanism is designed to address the
limited availability of charging piles. It aims to maximize charging
pile utilization while minimizing waiting times and charging aban-
donment rate.

3. An efficient charging scheduling model is proposed, taking into ac-
count grid operation, financial benefits, and renewable energy inte-
gration. It can effectively balance the conflicting objectives among
different stakeholders.

4. A sliding windowmechanism is developed to connect the microscopic
EV charging behaviors with the macroscopic operational objectives of
the charging station. It enables real-time adjustment of charging
schedules according to the actual situation, thereby improving the
adaptability of the scheduling scheme.

The remainder of the paper is organized as follows. Section 2 in-
troduces the constructed EV charging behavior dataset and details the
extraction of EV charging behavior characteristics. Section 3 presents the
multi-objective optimization model for a charging station with renew-
able energy integration. Section 4 elaborates on the charging pile allo-
cation mechanism and the charging scheduling model formulation.
Section 5 provides case studies under typical operating conditions, with



Fig. 2. EV charging characteristics distributions: (a) Battery capacity. (b) Starting and ending SOC. (c) SOC variation.
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key conclusions summarized in Section 6. The schematic of the proposed
charging scheduling scheme is illustrated in Fig. 1.

2. Analysis of EV charging behaviors

In this section, an EV charging behavior database is developed using
real-world charging data collected from 46 charging stations in Beijing.
The raw data contains some anomalies, redundancies, and missing
values. After data processing, relevant information from some entries in
the database is listed in Appendix Table A-2. Each data sample includes
battery capacity, starting SOC, ending SOC, and start and end charging
times. Based on weekdays and holidays, as well as fast and slow charging,
the charging behaviors of different EVs were categorized into four sub-
databases, from which charging behavior characteristics are extracted.
2.1. Battery capacity and SOC distribution

The battery capacities of EVs are distributed mainly between 45 kWh
and 62 kWh, as depicted in Fig. 2(a). Fig. 2(b) and (c) illustrate the
starting SOC, ending SOC, and SOC variation. It can be observed that EVs
tend to recharge even when their remaining SOCs are relatively high, and
the vast majority of them have an ending SOC of 100%. The SOC vari-
ation during a single charging session predominantly falls within the
range of 20%–60%.
2.2. Arrival time

In this study, 4:00 am is designated as the start of a day with the
lowest probability of EV arrival, and the day ends at 4:00 am the next
day. The day is divided into 96 time intervals, each with a duration of 15
mins. When charging piles are available, the arrival time at the charging
station is considered as the start charging time. The distribution of EV
arrival times is shown in Fig. 3.

As can be seen from Fig. 3, there is no significant peak in the arrival
time of fast-charging EVs. On weekdays, the arrival time of slow-charging
EVs exhibits two peaks, one in the morning and the other in the evening;
on weekends, there is only one peak in the evening. The statistical results
reveal the randomness of EV arrival times at the charging station and the
differences in EV charging behaviors between weekdays and weekends.
To mitigate the influence of outliers, the Gaussian Mixture Model (GMM)
is employed for curve fitting, and a residual analysis is also conducted
[50,51]. It can be seen that the residual between the fitted curve and the
original data fluctuates around 0, indicating that the fitted curve provides
a good approximation. Normalizing the values obtained from the GMM
fitting yields the probability distribution of EV arrivals within one day. In
4

the simulation, EV information is extracted from the constructed EV
behavior database.
2.3. EV charging and parking durations

EVs usually start charging immediately upon arrival at the charging
station and continue to park for some time after charging completion.
The duration of parking after charging operation is defined as the idle
time. The distributions of EV charging and parking durations are pre-
sented in Fig. 4.

It can be noted that most fast-charging EVs can reach their target
SOCs within 3 h and stay for over 1 h after charging completion. Most
slow-charging EVs can reach their target SOCs within 8 h and stay for
over 10 h after charging completion. The idle time after EV charging
completion provides an opportunity for charging scheduling. By making
use of this idle time, the overall EV charging load can to some extent be
shifted, thereby reducing the impact of EV charging on the grid.

3. Optimization model

The studied charging station is integrated into a micro-grid with
renewable energy generation, as shown in Fig. 5. An Energy Information
Dispatch Center (EIDC) is responsible for regulating the power flows
among different units, and the distribution network serves as an auxiliary
power source. When the power supply exceeds the power demand, the
excess energy is either consumed by the basic power usage of the
charging station or transferred to other nodes in the distribution network.
As depicted in Fig. 6, the EV charging/discharging process is divided into
T time slots, each with an interval of Δt. The power balance equation is
given by

PDN þ PWT þ PPV ¼ Pload þ P*
cha � Pdis (1)

where PDN is the overall power generation; PWT is the actual WT power
generation; PPV is the actual PV power generation; Pload is the base loads
within the same distribution network; P*cha is the total load of EV
charging; Pdis is the total load of EV discharging.

During the charging process, the actual charging power from the
supply side is the rated power P*cha; during the discharging process, the
actual discharging power Pdis is variable.
3.1. WT and PV power generation

In this part, the WT and PV power forecasting models are developed
to predict renewable power generation in real-time.
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(1) The WT power forecasting model is given by Ref. [20]

Ppredicted
WT ¼

8>>><
>>>:

0; v < vin; v > vout

P*
WT

v� vin
v* � vin

; vin � v � v*

P*
WT; v* � v � vout

(2)

where PpredictedWT is the estimated WT output power; vin, vout and v* are the
cut-in wind speed, cut-out wind speed, and rated wind speed; P*WT is the
rated WT power.

(2) The PV power forecasting model is given by Ref. [35]

Ppredicted
PV ¼ ηPVGA (3)

where PpredictedPV is the estimated PV output power; ηPV is the PV conver-
sion efficiency; G is the solar radiation intensity; A is the exposure area.

3.2. The load of EV charging and discharging

PEV is used to represent the total load of EV charging and discharging
during time period t, which is given by

PEV ¼ P*
cha � Pdis (4)

The relationship between the actual and the rated total power of EV
charging and discharging during time period t can be given by

Pcha ¼ ηchaP
*
cha (5)

Pdis ¼ ηdisP
*
dis (6)

where ηcha and ηdis are the charging and discharging efficiencies.
The overall charging and discharging powers can be obtained by

Pcha ¼
Xn¼N

n¼1

Pev;chaðnÞ (7)

Pdis ¼
Xn¼N

n¼1

Pev;disðnÞ (8)

where Pev,cha and Pev,dis are the actual charging and discharging powers
of the n-th EV. Similarly, each EV satisfies

Pev;cha ¼ ηchaP
*
ev;cha (9)

Pev;dis ¼ ηdisP
*
ev;dis (10)

where P*ev;cha and P*ev;dis are the rated charging and discharging powers for
a single EV.

3.3. Optimization objectives

The primary control objectives are to mitigate the power fluctuations
in the distribution network, reduce charging costs for EV users, and
accommodate more renewable energy generation.

(1) Load fluctuation in the distribution network

The total load of the distribution network during the time period t is
given by

PLoad ¼ Pload þ PEV (11)

The Distribution Network Load Fluctuation (DNLF) during the
scheduling period can be described as



Fig. 4. The distribution of charging and parking time of EVs: (a) Fast charging. (b) Slow-charging. Cumulative probability distribution and idle time distribution of
charging and parking time for EVs: (c) Fast-charging. (d) Slow-charging.

Fig. 5. Illustration of a typical micro-grid with EV charging and renewable energy generation.
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Fig. 6. Comparison between orderly charging and disorderly
charging processes.
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DNLF ¼ 1 Xt¼T

ðPLoadðtÞ � PLoadÞ2
uut (12)
Fig. 7. Illustration of the multi-stage constant-current charging process.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T t¼1

v

where PLoad is the average load of the distribution network during the EV
charging and discharging processes.

(2) Charging costs of EVs

The charging cost for a single EV during the time period t can be given
by

C ¼ γchaP
*
ev;chaΔt � γdisPev;disΔt (13)

where γcha and γdis are the real-time charging and discharging prices.
Since an EV is either in the charging or discharging mode at a specific
time, it must satisfy

P*
ev;cha ⋅ Pev;dis ¼ 0 (14)

Then the Electric Vehicle Charging Cost (EVCC) over T scheduling
periods can be described as

EVCC ¼
Xt¼T

t¼1

CðtÞ (15)

(3) Real-time energy consumption difference

The powers generated by theWT and PV systems cannot be accurately
predicted. Pdiff is defined as the difference between the forecast renew-
able energy generation and the EV charging and discharging power
during time period t, which is given by

Pdiff ¼
��PEV � ðPpredicted

PV þPpredicted
WT Þ�� (16)

To maximize the utilization of renewable energy generation, the EV
charging and discharging load curve should closely match the predicted
renewable power generation. This can be achieved by minimizing the
Real-time Energy Consumption Difference (RECD), which is given by

RECD ¼ 1
T

Xt¼T

t¼1

PdiffðtÞ (17)

3.4. Constraints

(1) The capacity of the distribution equipment

In time period t, the total load of the distribution network should be
within the capacity range of the distribution equipment, which can be
expressed as

P�
MTF � PDN � Pþ

MTF (18)

where PþMTF and P�MTF are the maximum charging and discharging powers
that the distribution equipment can withstand.
7

(2) The output power of MG

The WT and PV output power limits are described as

0 � Ppredicted
WT � P*

WT (19)

0 � Ppredicted
PV � P*

PV (20)

The relationship between the charging and discharging powers of EVs
and the charging and discharging powers of charging piles is given by

Pev;cha ¼ ηchaPpile;cha (21)

Pev;dis ¼ 1
ηdis

Ppile;dis (22)

The multi-stage constant current charging method is often employed
for fast charging control [52], as shown in Fig. 7. The power boundaries
for fast charging during time period t can be given by

ηchaP
min
pile;cha � Pev;cha � minðηchaPmax

pile;cha;P
c�c
cha Þ (23)

1
ηdis

Pmin
pile;dis � Pev;dis � min

�
1
ηdis

Pmax
pile;dis;P

c�c
dis

�
(24)

For slow-charging, the Alternating Current charging rate is generally
less than 0.2 C, which can be given by

ηchaP
min
pile;cha � Pev;cha � ηchaP

max
pile;cha (25)

1
ηdis

Pmin
pile;dis � Pev;dis � 1

ηdis
Pmax
pile;dis (26)

where Pmin
pile;cha and Pmin

pile;dis are the minimum charging and discharging
powers to sustain charging/discharging sessions, and 0.2 kW is adopted
in this study; Pmax

pile;cha and Pmax
pile;dis are the maximum charging and dis-

charging powers of the charging piles, and it is assumed that

Pmax
pile;cha ¼ Pmax

pile;dis (27)

where Pc�c
cha and Pc�c

dis are the upper bounds of the charging and dis-
charging power in the multi-stage constant-current charging operation.

(3) SOC



Fig. 8. Flowchart of the proposed EV fast-charging pile allocation method.
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Throughout the entire process of EV charging and discharging oper-
ations, it should meet

0 � SOCev � 100% (28)

The variation of SOC for a single EV between adjacent time periods
can be described as

SOCðtÞ ¼ SOCðt � 1Þ þ Pev;chaΔt
Eev

� P*
ev;disΔt
Eev

(29)

where Eev is the battery capacity.
The overall SOC variation can be given by

SOCev;end ¼ SOCev;start þ Δt
Eev

Xt¼tend

t¼tstart

�
Pev;chaðtÞ � P*

ev;disðtÞ
�

(30)

where SOCev, start and SOCev,end are the start and end SOCs; tstart and tend
are the start and end time. It is evident that the power during the start and
end periods satisfies

Preal
ev;starttstart ¼ Pev;startΔt (31)

Preal
ev;endtend ¼ Pev;endΔt (32)

0 < tstart; tend � Δt (33)

where Prealev;start and Prealev;end are the actual powers at the start and end pe-
riods; Pev,start and Pev,end are the average powers at the start and end
periods.
8

SOCev;accepted ¼ SOCev;start þ 0:8� SOCev;expected � SOCev;start (34)

� 	

where SOCev, expected is the expected end SOC after charging completion.
The used NSGA-II algorithm inevitably results in a difference between
SOCev,end and SOCev, expected, which is given by

SOCerror ¼∣ SOCev;end � SOCev;expected ∣ (35)

The error should be maintained within a certain range, which is given
by

SOCerror � 0:1% (36)

4. Control strategy

To enhance the operational efficiency of the charging station,
charging piles are first allocated to the arriving EVs, and then charging
scheduling is implemented.
4.1. Charging pile allocation

Fast charging piles with different maximum powers are installed at
the charging station, while all slow charging piles have the same
maximum power. To efficiently allocate charging piles to the arriving
EVs, a Minimum Power Allocation Method (F-MPAM) and a Random
Power Allocation Method (F-RPAM) are proposed for fast-charging
EVs, and the Random Power Allocation Method (S-RPAM) is pre-
sented for slow-charging EVs. Several assumptions are made for
simplification:



Fig. 9. Flowchart of the proposed EV slow-charging pile allocation method.
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� EVs opting for fast charging will not be assigned to slow-charging
piles, and EVs opting for slow charging will not be assigned to fast-
charging piles.

� There is always a charging pile capable of fulfilling the charging de-
mands when all the charging piles are available at the station.

� The actual departure time is consistent with the estimated departure
time.

� The timewaiting for an available charging pile is not excessively long,
and the longest waiting time satisfies

twait ¼ minð0:3� tpark; 60Þ (37)

where twait is the waiting time and tpark is the expected stay time.
EVs are assumed not to participate in charging scheduling in the

following situations:

� The EV's expected end SOC is below 80%.
� The expected parking time is less than Δt and the parking period
falls within the same time period.

(1) F-MPAM and F-RPAM

Fig. 8 shows the F-MPAM and F-RPAM methods proposed in this
study. The specific steps are as follows:

Step 1: After the vehicle enters the charging station, the EV owner
interacts with the EIDC to obtain information about the current SOC,
expected end SOC, minimum accepted SOC upon departure, and esti-
mated departure time.

Step 2: If charging piles are available, identify all the charging piles
capable of realizing the expected end SOC.

Step 3: If there are charging piles available, the EV participates in
charging scheduling. The charging pile with the lowest power output is
assigned to the EV (F-MPAM), or a charging pile that meets the condi-
tions is randomly selected and assigned to the EV (F-RPAM), and the
charging operation begins.

Step 4: If there are no such piles available, identify all the charging
piles capable of reaching the accepted end SOC.
9

Step 5: If such piles exist, the EV opts for charging with the maximum
power throughout the charging process and will not participate in
charging scheduling. The charging pile with the lowest power output is
assigned to the EV, or a randomly selected pile meeting the criteria is
assigned to the EV, and the charging operation begins.

Step 6: If there are no such piles available, identify all the piles with
which the EV can still reach its target end SOC after waiting for some time.

Step 7: If such piles exist, the EV opts to participate in charging
scheduling. The first available charging pile is assigned to the EV.

Step 8: If there are no such piles available, identify all the piles with
which the EV can reach the accepted SOC after waiting.

Step 9: If such piles exist, the EV does not participate in charging
scheduling. The earliest released charging pile is assigned to the EV, and
the charging operation begins after waiting.

Step 10: If no such piles exist, the EV abandon charging.
Step 11: If charging piles are unavailable, go back to Step 6 to Step 10.
When not assigning charging piles (NA), if the EV does not know

when the charging pile will be released and no piles are available, the EV
immediately abandons charging. After completing Step 1 to Step 5,
charging is abandoned directly. Additionally, in Step 3 and Step 5, the EV
randomly selects a charging pile.

(2) S-RPAM

Fig. 9 shows the S - RPAM method proposed in this section. The
specific steps are as follows:

Step 1: After the vehicle for slow charging enters the charging station,
the EV owner interacts with the EIDC to obtain the EV's current SOC,
expected SOC at departure, minimum accepted SOC at departure, and
expected departure time from the charging station.

Step 2: If a charging pile is available, the EV participates in charging
scheduling. A charging pile is randomly assigned to the EV, and the
charging operation begins.

Step 3: If no charging pile is available, obtain all the piles that will be
available before the EV's departure time and can charge the EV to the
expected SOC after being available.



Fig. 10. Illustration of the sliding window mechanism.
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Step 4: If such piles exist, the EV participates in charging scheduling.
The earliest available charging pile is assigned to the EV, and the EV
waits before starting to charge.
Fig. 11. Flowcharts of the NSGA-II a

10
Step 5: If no such piles exist, obtain all the piles that can charge the EV
to the minimum accepted SOC after being available.

Step 6: If such piles exist, the EV does not participate in charging
scheduling. The earliest available charging pile is assigned to the EV, and
the EV waits before starting to charge.

Step 7: If no such piles exist, the EV has to give up charging.
When not performing charging pile allocation (NA), if no charging

pile is available, the EV immediately gives up charging.
4.2. Sliding window mechanism for orderly charging

This section presents a charging scheduling strategy based on a
sliding window mechanism. The NSGA-II and Entropy-TOPSIS methods
are utilized to formulate an efficient charging schedule for each EV. To
verify the superiority of the proposed method, a comparison study with
disorderly charging is carried out.

Charge as soon as possible (ASAP): Once the EV is connected to a
charging pile, it immediately adopts a multi-stage constant-current fast-
nd Entropy-TOPSIS algorithms.



Table 3
Specifications of the fast and slow charging piles.

Pile type Pile power/kW Number

F–C 120 2
45 35
37.5 5
31.5 8

S–C 7 102

Table 4
TOU electricity price in Beijing.

Period Peak Normal Valley

Time 10:00–15:00 07:00–10:00 00:00–07:00
16:00–17:00 15:00–16:00 23:00–24:00
18:00–21:00 17:00–18:00

21:00–23:00
Pricecha 1.468,3 1.044,2 0.661,9
Pricedis 1.200,0 1.200,0 1.200,0

Table 5
The number of EVs arriving at the charging station every day.

Day Mon Tue Wed Thu Fri Sat Sun

F–C 253 279 274 278 243 292 274
S–C 35 41 47 38 38 44 36

Table 6
Parameters of the WT and PV forecasting models.

Parameter vin/(m⋅s-1) vout/(m⋅s-1) v*/(m⋅s-1) PWT/kW ηPV A/m2

Value 3 25 12 300 0.25 300

Table 7
Parameters of the used NSGA-II algorithm.

Parameter Value Parameter Value

μ 50 λ 100
Iterations 200 Population 50
Crossover rate 0.7 Mutation rate 0.2
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charging regime to fulfill the charging demand within the charging
power limits described in Eqs. (23) and (24).

Orderly charging: After the EV is connected to a charging pile, the
EIDC formulates a charging schedule based on the charging demand. It is
worth noting that the EVs under charging operations will not be affected.
The general charging scheduling procedures are as follows:

Step 1: The EV starts the charging operation, and the length of the
scheduling window is determined.

Step 2: The EV determines whether to participate in charging
scheduling.

Step 3: If the vehicle chooses to participate in charging scheduling, a
charging schedule is derived.

Step 4: If the vehicle does not choose to participate in charging
scheduling, ASAP is activated.

Step 5: Slide the window and repeat Steps 1 to 4.
As shown in Fig. 10, EV 1 chooses not to participate in charging

scheduling, while EVs 2 and 3 do. EV 2 has a long idle time and the
scheduling window length is shorter than the EV's parking duration. For
fast charging, it is assumed that the scheduling duration satisfies

tdispatch ¼ minðtpark; tASAP þ 120Þ (38)

For slow charging, the scheduling duration satisfies

tdispatch ¼ minðtpark; tASAP þ 240Þ (39)

where tdispatch is the scheduling window length; tpark is the EV's parking
duration; tASAP is the time required for the EV to charge to the expected
SOC under the ASAP charging strategy, which is derived by

tASAP ¼ Eev

Xi¼I

i¼0

SOCiþ1 � SOCi

Pmax
cha;i

(40)

where I is the number of SOC stage changes, with a maximum value of 4;
Pcha,i is the maximum charging power in the i-th stage, satisfying

SOC0 ¼ SOCev;start (41)

SOCIþ1 ¼ SOCev;expected (42)

Pmax
cha;i ¼ minðηchaPmax

pile;cha;P
c�c
cha Þ (43)

The limitation on the scheduling duration has the following benefits:

� It reduces the number of decision variables, thereby lowering
computational power requirements.

� It reduces the fire hazard caused by EVs being connected to charging
piles for extended periods [53].

� It avoids low end SOCs due to EV owners leaving earlier than
expected.

Combining the orderly charging scheduling method, the decision
variables are given by

½P1
ev;P

2
ev;⋯Pt

ev;⋯PT
ev� (44)

where Ptev is the charging and discharging power of the EV in the t-th time
period, and its value should satisfy the constraints of Eqs. (23)–(26).

4.3. Optimization methods

In this section, the NSGA-II algorithm is employed to obtain the
Pareto-front solutions of the scheduling model, and the Entropy-TOPSIS
method is utilized to determine the optimal solution.

(1) The modified NSGA-II algorithm
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A modified NSGA-II algorithm based on the μþλ evolution is
employed in this study. It has the advantages of maintaining population
diversity, improving search efficiency and convergence speed, and of-
fering flexibility and adaptability for solving various optimization prob-
lems. μ and λ are the two key parameters representing the numbers of the
selected individuals and generated offsprings. Their roles in the
optimization-derivation process are illustrated in Fig. 11.

(2) Entropy-TOPSIS

The Entropy-TOPSIS method is a multi-criteria decision-making
approach based on the information entropy and TOPSIS. By calculating the
entropy between multiple attributes, it avoids the adverse influence of
subjectiveweight assignment on the ranking results. TOPSISdetermines the
best solution by calculating the distance between the weighted ideal and
negative ideal solutions. The computation process is illustrated in Fig. 11.

5. Results

This section focuses on the following aspects based on the scenario
depicted in Fig. 5: the impact of different charging pile allocation
mechanisms on EV charging behaviors and the effects of EV participation



Fig. 12. The results undert the proposed charging pile allocation mechanism: (a) Fast-charging abandonment rate and pile idle rate. (b) Fast-charging waiting rate and
average waiting time. (c) Fast charging pile usage. (d) Slow-charging abandonment rate, waiting rate, average waiting time, and pile idle rate.
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in charging scheduling on optimization objectives under various sce-
narios. The following assumptions are made:

� Each EV is assumed to interact with the charging station in a single
interaction, and the number of charging piles with different power
levels at the charging station remains fixed in different time periods.

� It is assumed that EV owners will not change their charging plans
abruptly and will comply with the charging schedule. The expected
charging energy meets their next trip's requirements.

� It is assumed that the base load of the grid and the renewable energy
generation in different time periods are known, and the power supply
is not affected by spontaneous events.

� The model only considers the EV's behaviors on the time scale and
ignores the potential impact of traffic conditions around the charging
station [54].

Simulation studies were conducted on a computer equipped with an
AMD Ryzen 9 7945HX CPU. The abbreviations used are presented in
Table 2.
5.1. Case studies

This study takes the Lucheng charging station in Beijing as the
research object. The capacity of the distribution transformer is 17,760
12
kVA. It is assumed that all the charging piles have a charging/discharging
efficiency of 0.98. The default simulation time step is 15 min, i.e., Δt ¼
15.

The number of the charging piles and the TOU electricity prices are
shown in Tables 3 and 4.

Based on real data statistics, the number of EV arrivals at the Lucheng
charging station each day within one week is shown in Table 5.

Considering the location of the Lucheng charging station, the pa-
rameters for the WT and PV generation are listed in Table 6.

The real-time wind speed v and the direct normal irradiation G were
referenced from San Francisco, USA, which has a similar latitude as
Beijing. The parameters of NSGA-II are listed in Table 7.

Five charging scheduling scenarios are considered:
Scenario 0: Disorderly charging.
Scenario 1: No renewable energy generation and no V2G.
Scenario 2: Renewable energy generation and no V2G.
Scenario 3: No renewable energy generation but V2G.
Scenario 4: Renewable energy generation and V2G.
5.2. Simulation results

5.2.1. Comparison of charging pile allocation mechanisms
To quantitatively assess the effectiveness of the charging pile allo-

cation algorithms, simulations were conducted using the TOU electricity



Table 8
Specifications of E.

Parameter Value Parameter Value

SOCev, start/% 36 SOCev, expected/% 100
Eev/kWh 60 Pmax

pile;cha/kW 45

ηcha/ηdis 0.98 tpark/min 124
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price data in Beijing, as presented in Table 3. The evaluation metrics
considered include the charging waiting time, charging abandonment
rate, pile idle rate, waiting rate, average waiting time, and charging times
under different vehicle-to-pile ratios. The definitions of these metrics are
as follows:

� Vehicle-to-pile ratio: The ratio of the number of EVs charging at the
station to the number of charging piles.

� Charging abandonment rate: The proportion of EVs that leave the
station without charging relative to the total number of arriving EVs.

� Pile idle rate: The ratio of the total idle time of charging piles in a day
to the total operating time of the station in a day.
Fig. 13. Single EV regulation results: (a) Charging and discharging prices during the p
distribution network during the parking period with and without charging schedulin
charging scheduling.
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� Waiting rate: The ratio of the number of EVs waiting to charge to the
number of EVs currently being charged.

� Average waiting time: The mean time an EV spends waiting for a
charging pile to become available.

� Charging times: The average number of charging sessions a charging
pile experiences in a day.

The charging abandonment rate, waiting rate, average waiting time,
and pile idle rate for fast charging are illustrated in Fig. 12(a) and (b).
With the increasing vehicle-to-pile ratio, the first three metrics exhibit
noticeable increase while the pile idle rate sees an explicit decline. This
indicates that a high vehicle-to-pile ratio may lead to a higher charging
abandonment rate and longer waiting time, despite reducing the pile idle
rate. The former undermines the customer satisfaction with the charging
service, while the latter can enhance the charging station's operational
efficiency. Thus, it is essential to strike a balance between them. Ac-
cording to the data, an ideal fast-charging vehicle-to-pile ratio of around
7 can balance the charging abandonment and pile idle rate. The statistical
data in Table 5 show that the actual fast-charging vehicle-to-pile ratio of
the studied charging station is between 5 and 6, suggesting its potential
to accommodate more EV charging demands.
arking period; (b) Renewable energy generation, base load, and total load of the
g; (c) The Pareto front; (d) Charging and discharging powers with and without



Table 9
The comparison of various indicators. T ¼ 10.

Objective DNLF EVCC RECD SE

D-C 24.96 43.79 20.25 0
O–C 8.63 34.12 7.09 0.096%

Fig. 14. Weekly simulation results: (a) Basic load and renewable energy generation p
in different scenarios, (c) Scenario 1, (d) Scenario 2, (e) Scenario 3, (f) Scenario 4.
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Compared with the NA method, the F-MPAM and F-RPAM methods
can remarkably reduce the charging abandonment rate, demonstrating
the effectiveness of the proposed allocation schemes. Under high vehicle-
to-pile ratios, the pile idle rate slightly decreases. The reason for the
negligible effect under low vehicle-to-pile ratios is that the pile idle rate
mainly depends on actual EV stay duration. In low-ratio scenarios, the
stay times of the three methods are similar. In high-ratio scenarios, the
ower, (b) Comparison of the total load of orderly charging throughout the week



Fig. 15. Simulation results for Tuesday: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4; (e) Comparison of distribution network load under orderly and
disorderly charging; (f) SOC error.
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Table 10
The participation rate of orderly charging for the entire week.

EVN POCN ACN WCN FSN

2,172 2,122 5 0 0

Table 11
The results of orderly charging scheduling for the entire week. DNLF represents
the total load fluctuation within a week (T ¼ 672), EVCC denotes the average
charging cost of all EVs, and RECD indicates the average renewable energy
consumption deficit per time slot.

Objective DNLF EVCC RECD SE AST

Scenario0 695.11 25.89 192.47 – –

Scenario1 664.67 24.98 – 0.092,7% 2.00
Scenario2 672.16 25.28 188.88 0.092,7% 2.25
Scenario3 647.83 23.83 – 0.088,3% 2.28
Scenario4 667.74 24.71 191.56 0.088,2% 2.37
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NA method abandons charging without waiting for an idle pile, while F-
MPAM and F-RPAM reduce the pile idle rate as EVs are willing to wait.
Compared with F-RPAM, F-MPAM has a slightly lower abandonment rate
and average waiting time while maintaining a similar pile idle rate. This
is because F-MPAM prefers using slow-charging piles for some EVs,
leaving more fast-charging piles available. The usage of fast - charging
piles for fast-charging EVs is depicted in Fig. 12(c). F-RPAM shows a
more uniform preference for all the charging piles. Frequent use of
charging piles can reduce their lifespans [55]. In an orderly charging
scenario, EVs are expected to have sufficient idle time for load shifting.
F-MPAM makes some EVs originally opting for high-power charging
choose low-power charging, reducing their idle time and potentially
limiting their participation in charging scheduling. Therefore, from the
EV user's perspective, F-MPAM slightly reduces the abandonment rate
and average waiting time. From the charging station's perspective,
F-MPAMmay compromise the potential for EVs to participate in charging
scheduling. Thus, the F-RPAM method is more suitable for the Lucheng
charging station, while the F-MPAM method may have better feasibility
when vehicle-to-pile ratios are relatively high.

The abandonment rate, waiting rate, average waiting time, and pile
idle rate of slow-charging EVs are shown in Fig. 12(d). With the
increasing vehicle-to-pile ratio, these metrics change in a similar pattern
to fast-charging EVs under the S-RPAMmethod. When the vehicle -to-pile
ratio is fixed, the abandonment rate under S-RPAM is significantly lower
than that under NA. When the ratio exceeds 1.5, the first three metrics
start to increase while the pile idle rate decreases. Therefore, the S-RPAM
method can effectively balance the operating costs of the charging station
and the satisfaction of EV users, and thus it is adopted as the charging pile
allocation algorithm for slow-charging EVs in subsequent simulation
studies. For the Lucheng charging station, the ideal slow-charging
vehicle-to-pile ratio is around 1.5, while its actual ratio is less than 0.5.

The charging pile allocation mechanism can significantly improve the
operational efficiency of charging stations. The abandonment rate,
charging waiting rate, average charging waiting time, charging pile idle
rate, and charging pile usage can serve as efficient indicators for
comprehensively evaluating charging station operations [56]. For a
charging station with limited charging capacity, the charging pile allo-
cation mechanism is essential for unleashing the potential of charging
scheduling.

5.2.2. Charging scheduling results

(1) Scheduling results for one EV

Analyzing the scheduling results for a single EV provides valuable
insights into the optimization approach. Consider an EV with the basic
information presented in Table 8, operating within a 10-time-slot period
with no other EVs charging simultaneously. In reality, the actual
charging/discharging efficiency of EVs can be influenced by factors such
as battery temperature [57]. However, due to the lack of relevant data,
fixed values were utilized in the simulation. The charging and dis-
charging prices, base load, and forecast renewable energy generation are
illustrated in Fig. 13(a) and (b).

Upon receiving the EV's information, EIDC employs the NSGA-II al-
gorithm to obtain the Pareto-front solution set. Then the Entropy-TOPSIS
method is utilized to determine the optimal charging schedule for the EV.
Fig. 13(c) depicts the Pareto-front, and Fig. 13(d) shows the comparison
between the optimal charging schedule and the disorderly charging load.
The total load comparison is presented in Fig. 13(b). The process of
obtaining the EV information and deriving the optimal charging schedule
takes approximately 2.01 s.

A comparison of various indicators is presented in Table 9. It is
evident that the proposed scheduling method leads to remarkable re-
ductions in total load fluctuation, user charging cost, and renewable
energy curtailment.
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(2) Scheduling results over a week

This section takes into account the charging behaviors of both fast-
and slow-charging EVs on weekends and weekdays. Using the actual
daily arrival numbers of EVs shown in Table 5 and integrating with the
renewable energy generation forecast model, a week-long simulationwas
conducted for the Lucheng charging station. In the simulation, each EV
was first assigned to a charging pile, and then a charging schedule was
developed and implemented. Four orderly charging scheduling scenarios
were considered:

Scenario 1: The optimization objective solely focuses on DNFL and
EVCC, neglecting the constraints of renewable energy generation and
V2G capability.

Scenario 2: All three objectives are considered, except for the V2G
capability constraint.

Scenario 3: The optimization model only considers DNFL and EVCC,
neglecting the renewable energy generation constraint.

Scenario 4: The optimization model takes into account both the ob-
jectives and constraints.

The basic load data of a residential community in Beijing were used as
the predicted basic load of one week, as shown in Fig. 14(a). By incor-
porating real-time wind speed and light intensity data from San Fran-
cisco, the predicted power curves for wind turbines and photovoltaic
power generation were derived. The charging scheduling results for a
week are presented in Fig. 14. For clarity, the results for Tuesday are
separately illustrated in Fig. 15, with different colors representing TOU.
The changes in the total load combining the base and EV loads are
depicted in Figs. 14(b) and Fig. 15(e). It can be observed that, compared
to disorderly charging, the total load fluctuation is reduced in all the four
scenarios, with the load shifting from the peak to the valley period. This
load shifting is beneficial for the grid as it helps balance the power de-
mand over time. The charging scheduling results in Fig. 14(c)–(f) indi-
cate that the EV charging loads shift from the peak to the normal period
in all the four scenarios. The total V2G discharging power during the
valley period is significantly lower than that during the normal and peak
periods. The RECD fluctuates around 0, suggesting that renewable energy
is effectively utilized in real-time during the charging and discharging
processes. As shown in Fig. 15(f), the deviations between the expected
and actual end SOCs are within a reasonable range.

The charging scheduling results for the entire week are presented in
Tables 10 and 11, with the daily simulation results provided in Appendix
A-1. The abandonment rate, waiting time, and charging scheduling
participation rate are 0.23%, 0%, and 97.70%, respectively, and the
success rate of solving the optimization formulation is 100%. These
verify the effectiveness of the proposed charging scheduling scheme and
its ability to meet real-time implementation requirement.



Fig. 16. Comparison at different time resolutions: (a) Orderly charging load. (b) Solution derivation time.
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Furthermore, fluctuations in charging demand and variations in
renewable energy generation emerge as two sensitivity factors that
significantly influence the attainment of the study's objectives. Con-
cerning charging demand fluctuations, as vividly illustrated in Figs. 3 and
15, the number of EVs arriving at the charging station varies across
different periods throughout the day. Fewer EVs charge from
04:00–08:00 and 20:00–04:00, with lower overall load and reduced
fluctuation at night compared to 08:00–20:00. Fig. 14 indicates that
renewable energy generation on Tuesday is much higher than on Friday,
with its consumption curve fluctuating around zero. This means EV
charging mainly employ renewable energy. Appendix 1 shows higher
renewable energy generation reduces the values of the three proposed
indicators. It indicates that the proposed charging scheduling scheme can
effectively balance the conflicting objectives. Moreover, it can efficiently
integrate driving behaviors into the charging scheduling process, while
also taking into account the concerns of grid operation, charging costs,
and renewable energy integration.

(3) Impact of time step selection

The simulation encompasses 503 EVs, among which there are 350
fast-charging EVs and 153 slow-charging EVs. The vehicle-to-charging
pile ratio is set to be the same as that in Section 5.2.1. The renewable
energy generation and the basic load are presented in14(a), and it is
designated as Scenario 4.

The duration of the time step for charging scheduling is adjustable. To
determine the optimal time step, simulations were carried out with the
durations of 3 min, 5 min, and 15 min. The results are presented in
Fig. 16(a) and Table 12. It is evident that increasing the time-step
Table 12
Comparison of different time steps. (DNLF represents the total load fluctuation
within a day (T ¼ 96), EVCC denotes the average charging cost of all EVs, and
RECD indicates the average renewable energy consumption deficit per time slot.)

Time step/min DNLF EVCC RECD AST FSN

3 694.56 11.77 377.01 6.84 6
5 686.06 11.81 374.08 5.09 0
15 676.73 11.53 370.87 2.96 0
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duration has only little influence on the performance of the proposed
scheme but can remarkably reduce the computational intensity. In
practical applications, when the idle time of EVs is sufficiently long, a
long time-step duration is recommended to shorten the optimization-
solving time; when the EV idle time is restricted, a short time-step
duration is advisable to better accomodate renewable energy generation.

6. Conclusion

This paper proposes a real-time charging scheduling scheme to enable
efficient Vehicle-to-Grid interactions and facilitate renewable energy
integration at public charging stations. A charging pile allocation
mechanism is proposed, which can increase the utilization rate of
charging piles, reduce EV waiting time, waiting rate, and abandonment
rate, and determine the optimal vehicle-to-charging pile ratio. An orderly
charging scheme based on a sliding window mechanism is also devel-
oped. Numerical results show that the proposed scheme can reduce the
distribution network load fluctuation, average charging cost, and real-
time energy consumption difference. Future research will further incor-
porate the impacts of traffic flow and distribution capacity limitations.
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Table A-1
Specific numerical values of various indicators calculated for the entire week. (DNLF
average charging cost of all EVs, and RECD indicates the average renewable energy c

Part Day Mon Tue Wed

Indicators EVN 288 320 321
POCN 277 310 313
ACN 1 1 1
WCN 0 0 0

Scenario0 DNLF 671.92 667.31 685.9
EVCC 26.12 25.62 25.3
RECD 182.89 103.55 188.8

Scenario1 DNLF 651.73 628.90 674.0
EVCC 25.07 24.95 24.2

Scenario2 DNLF 657.81 632.09 685.2
EVCC 25.33 25.06 24.5
RECD 168.12 117.52 212.6

Scenario3 DNLF 632.70 614.12 657.9
EVCC 23.74 23.97 23.1

Scenario4 DNLF 647.53 627.72 680.8
EVCC 24.59 24.32 24.0
RECD 170.44 120.16 216.4
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A Appendix.
represents the total load fluctuation within a day (T ¼ 96), EVCC denotes the
onsumption deficit per time slot.)

Thu Fri Sat Sun

316 281 336 310
310 278 331 303

1 0 0 1
0 0 0 0

5 665.47 672.17 627.70 785.10
2 25.39 26.79 26.33 25.73
0 165.49 224.10 199.95 176.43
9 628.81 644.00 636.58 758.03
6 24.68 25.82 25.14 25.04
5 636.11 655.07 642.39 765.70
8 24.94 26.37 25.50 25.30
4 165.27 229.82 240.47 188.30
6 608.90 625.44 616.12 746.40
8 23.45 24.40 24.08 24.04
0 628.05 650.77 639.60 767.55
3 24.48 25.69 24.99 24.96
6 176.13 230.20 240.29 187.26
Table A-2
Partial entries of the preprocessed electric vehicle charging behavior database.

Start time End time Start SOC/% End SOC/% Battery/kWh Fast/Slow charging Workday/Holiday
2021-01-09 21:09:56
 2021-01-10 02:07:45
 15
 98
 52
 Fast charging
 Holiday

2021-01-10 02:07:46
 2021-01-10 20:08:31
 8
 100
 65
 Slow charging
 Holiday

2021-01-20 08:04:31
 2021-01-20 10:03:22
 11
 100
 52
 Fast charging
 Workday

2021-01-21 09:09:06
 2021-01-21 21:46:21
 5
 98
 48
 Slow charging
 Workday
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