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Abstract

Quantum simulation plays a critical role in advancing our un-
derstanding and development of quantum algorithms, quan-
tum computing hardware, and quantum information science.
Despite the availability of various quantum circuit simula-
tors, they often face challenges in terms of maintainability
and extensibility. In this paper, we introduce Lightweight
Functional Quantum Simulator (LFQS), a compilation-based
framework that addresses these issues by leveraging an inter-
mediate language to synthesize efficient quantum simulators
in C and CUDA. The intermediate language exploits the
underlying structured sparsity behind the matrix represen-
tation of quantum gates. Our framework generates efficient
code for multi-core CPUs and GPUs and outperforms state-
of-the-art simulators, such as Qiskit, Catalyst, and QuEST, as
well as a representative of dense tensor frameworks, NumPy,
in both micro-benchmark and macro-benchmark circuits.

CCS Concepts: · Computer systems organization →
Quantum computing; · Software and its engineering

→ Compilers.
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1 Introduction

Quantum Computing plays an important role in advancing
technology and solving complex problems that classical com-
puters struggle to handle [5, 8, 28, 32]. However, quantum
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machines are not yet fully developed and available. One
of the main tools for studying quantum algorithms is to
simulate them on classical computers. These simulations
are particularly valuable for testing and validating quan-
tum algorithms before deploying them on actual quantum
hardware [31, 32].
Quantum objects can be handled classically as complex

vectors and matrices. However, the size of such quantum vec-
tor spaces grows exponentially with the number of qubits.
Therefore, classical simulation of quantum computing re-
quires huge memory and computational resources. Thus, de-
veloping optimized methods for these linear algebraic trans-
formations is crucial. Currently, several state-of-the-art quan-
tum simulators are available, including open-source frame-
works such as QuEST [21], Qiskit [33] and Catalyst [19].

Existing quantum simulators are developed using hand-
tuned, low-level implementations by computational physi-
cists rather than computer scientists. Despite being very
efficient, they have the following issues. First, although their
low-level codebases contain various optimizations manually
performed by the developers, many optimizations are miss-
ing. Second, the large codebase sizes make the maintenance
challenging; any changes to the data layout, algorithm im-
provements, or additional support for new backends require
modifications or re-implementations of all related functions.

In recent years, significant efforts have been made to uti-
lize intermediate languages for quantum simulations to ad-
dress some of these challenges [7, 12, 20, 26, 30]. However,
they mostly focus on global circuit optimizations rather than
gate-level optimizations; they still rely on low-level gate im-
plementations in their developer-provided runtimes, which
misses optimization opportunities (see Section 7).
Inspired by the techniques employed in optimizing com-

pilers, we developed the first compilation stack to synthesize
an efficient quantum simulator. As opposed to the previous
systems, which rely on developer-provided low-level gate
implementations, we employ a compilation-based approach
to generate these low-level implementations systematically.
Our proposed framework, Lightweight Functional Quantum
Simulator (LFQS), outperforms state-of-the-art quantum sim-
ulators and offers improved maintainability and extensibility.
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This paper makes the following contributions:
Quantum Simulator Synthesis.We built LFQS, a quantum
simulator centered around compilation (Section 3). Start-
ing from the high-level specification of quantum gates and
circuits in linear algebra, LFQS employs an intermediate
language to capture the structure of the computation and
transforms it into a more efficient representation.
Maintainability and Extensibility. Thanks to the frame-
work’s modular design, it has better maintainability than the
hand-tuned competitors. LFQS captures novel algorithms for
quantum simulation as an optimization in the intermediate
language (Section 4). The code generator of LFQS translates
this specification into efficient parallel low-level C and CUDA
code (Section 5.1). However, the modular design of LFQS en-
ables us to extend it with new backends; we only need to
provide an alternative code generator for each new backend.
Furthermore, we showcase the extensibility bymodifying the
data layout of vectors and matrices, and by adding support
for a GPU backend (Sections 5.3, 6.6, 6.7, and 6.8).
Performance Superiority. We demonstrate that LFQS is
competitive with state-of-the-art simulators while being
significantly faster than library-based solutions and tensor
frameworks in handling the quantum circuits (Section 6). For
benchmarking, we investigated the performance of LFQS in
circuits with individual gates as well as multi-gate circuits
from eight real-world quantum circuits that are highly sig-
nificant in quantum computing (Table 1).

2 Background and Related Work

In this section, we first introduce the background for quan-
tum computation. Then, we cover the most relevant state-
of-the-art on quantum simulation. Finally, we introduce the
intermediate language that LFQS uses and extends.

2.1 Basics of Quantum Computation

Qubit. Quantum bit (qubit) [27] is the fundamental unit in
quantum computing. A qubit is a two-level physical system
with quantum behaviour. Quantum states are unit vectors
in a complex-valued vector space with an inner product
equipped with a set of 𝑑 orthonormal vectors called a basis.
In the case of a single qubit where 𝑑 = 2, the following set
of vectors are a complete basis (a.k.a. computational bases):

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]

and any qubit state can be written as |𝜓 ⟩ = 𝛼 |0⟩+𝛽 |1⟩ where
|𝛼 |2 + |𝛽 |2 = 1 for some 𝛼, 𝛽 ∈ C. The above form is called a
superposition of two quantum states. Quantum states can
be composed using the tensor product as

|𝜓𝐴𝐵⟩ = |𝜓𝐴⟩ ⊗ |𝜓𝐵⟩
Here, ⊗ denotes the Kronecker product of two vectors or
matrices [16]. One can describe an n-qubit quantum state in
their composed vector spaceH 2 ⊗ H 2 (e.g. |01⟩ = |0⟩ ⊗ |1⟩).

X (Pauli-X) Y (Pauli-Y) Z (Pauli-Z)[
0 1
1 0

] [
0 −𝑖
𝑖 0

] [
1 0
0 −1

]

H (Hadamard) T-Gate I (Identity)

1√
2

[
1 1
1 −1

] [
1 0

0 𝑒𝑖𝜋/4

] [
1 0
0 1

]

SWAP CNOT CU (Controlled Gate)


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





1 0 0 0
0 1 0 0
0 0 𝑢00 𝑢01
0 0 𝑢10 𝑢11


Figure 1. Matrix representation of common quantum gates.

|01⟩ =
[
1
0

]
⊗
[
0
1

]
=



1

[
0
1

]

0

[
0
1

]



=



0
1
0
0


Quantum Gates. Transformations between pure quantum
states are usually described by unitary matrices; as a result,
such transformations are reversible and preserve the inner
product. When working with qubits, such unitary matrices
are often called quantum gates, as they allow the manip-
ulation of quantum information units, similar to classical
computation. Thus, single-qubit gates are 2 × 2 unitary ma-
trices, and 𝑛-qubit gates are 2𝑛 × 2𝑛 unitaries.
Universal Gates. Quantum computation can be performed
universally with a restricted set of single and two-qubit
gates [4, 27]. The most common single-qubit and multi-qubit
gates are shown in Figure 1 [25]. TheX, Y, Zmatrices known
as Pauli gates (together with the identity matrix I) are a
full basis for the transformation on a qubit space. X gate
is equivalent to a classical bit-flip operation, Z gate acts as
a phase-flip, and Y gate combines the two with a complex
phase. H gate, known as Hadamard, creates a superposition
of the states in a computational basis with equal weight and
transforms between the two bases X and Z. I denotes the
identity matrix in the qubit space and does not change the
state of a qubit. We denote a general n-qubit identity matrix
as I𝑛 . The T gate is a specific rotation gate, which is particu-
larly important for the universality of quantum computation.
One can also define two-qubit gates as not simply combining
two single-qubit gates. The most notable example is CNOT,
which is a controlled gate. It applies an X gate on a target
state if the control qubit is in state |1⟩, and applies nothing,
i.e. identity if it is |0⟩. Similarly, one can define a controlled
gate for any single-qubit unitary U as CU. Finally, SWAP is
a two-qubit gate that swaps the order of qubits applied to,
i.e., SWAP |𝑖 𝑗⟩ = | 𝑗𝑖⟩ for any choice of basis.
Quantum Circuits. A quantum circuit is constructed with
a combination of gates over n-qubits, often followed by mea-
surement at the end, aiming at performing a computation
and extracting the result through measurement. An overall
action of a circuit can be described by a 2𝑛 × 2𝑛 size unitary
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|𝑞1⟩ 𝐻 • •

|𝑞2⟩

|𝑞3⟩ 𝑈

𝐿1 𝐿2 𝐿3

Figure 2. A quantum circuit with 3 gates: a single-qubit
gate (𝐿1: Hadamard gate), an adjacent two-qubit gate (𝐿2:
CNOT gate, not to be confused with direct sum ⊕), and a
non-adjacent two-qubit gate (𝐿3: CU gate).

matrix over the space of n-qubits. Thismatrix can be obtained
from the circuit description by matrix multiplication of the
gates one after another. The reverse is also possible. General
methods exist for decomposing n-qubit unitary matrices into
single and two-qubit quantum gates [10, 27]. Figure 2 shows
a quantum circuit with single and two-qubit gates.
Note that in the figure, whenever there is a straight line

with no gate, one can assume an identity gate is applied.
Thus where a single-qubit gateM is present on qubit 𝑖 , can
be written as I(1) ⊗ I(2) ⊗ · · · ⊗ I(𝑖−1) ⊗ M(𝑖 ) ⊗ · · · ⊗ I(𝑛) .
We simplify this notation and introduce the following

notation for the overall transformation matrix G of a gate:

G = I𝐿 ⊗ M ⊗ I𝑅 (1)

whereM is a single or two-qubit gate (adjacent), on a position
where there are L qubits (with identity applied to them)
before and R qubits after. This notation allows us to describe
our simulation techniques clearly in what follows. Also note
that for the two-qubit gates, this notation is only applicable
for adjacent qubits acted by the gate. If the gate acts on two
non-adjacent qubits, one can use a SWAP gate to move them
to the adjacent position, apply the two-qubit gate, and then
move them back (see Section 4.1). The outcome of the circuit,
after application of the gate, on an input state vector |𝜓𝑖𝑛⟩,
would be another state vector |𝜓𝑜𝑢𝑡 ⟩ = G |𝜓𝑖𝑛⟩:

𝑆𝑜𝑢𝑡 = G · 𝑆𝑖𝑛 (2)

The full circuit matrix, represented by D gates, is:

G𝐷G𝐷−1 . . .G1 (3)

2.2 Quantum Simulators

Considering the properties of the vector spaces and the trans-
formation rules dictated by quantum mechanics, several
general methods for quantum simulation1 have been de-
veloped, namely Schrödinger-based, Feynman path integrals,
Heisenberg-based, and hybrid approaches [53]. Most sim-
ulators, including QuEST [21] and Qiskit [33], fall into the

1We use the term quantum simulation to refer to the classical simulation of

quantum computing. This term is also used for simulating the behaviour of

complex many-body physical systems and predicting their behaviour using

quantum computation, which is not the focus of this work.

Schrödinger-based category, which simulates quantum states
and unitary transformations using vectors and matrices [53].

QuEST [21] is a high-performance simulator for quantum
circuits and many-body quantum systems. It is designed to
be highly efficient and platform-independent, supporting
various backends such as CPUs and GPUs. QuEST includes
a comprehensive set of universal and specialised gates, each
with multiple variants to optimise performance across dif-
ferent hardware architectures. Figure 3a is an example of
the function implemented by QuEST to simulate Hadamard
(a single-qubit) gate. However, this approach results in a
complex and extensive codebase, making it challenging to
maintain and extend the simulator.

Qiskit [33] is an open-source software development kit for
working with quantum computers at the level of pulses, cir-
cuits, and algorithms. Qiskit’s simulator component is based
on the Schrödinger method and supports a wide range of
quantum operations. It offers a user-friendly interface and a
rich ecosystem of tools for quantum algorithm development.
However, Qiskit’s performance is inferior to hand-tuned
low-level quantum simulators (e.g., QuEST).
The Catalyst compiler [19] is implemented using MLIR

by adding a quantum-based intermediate representation, re-
ferred to as the QIR dialect in MLIR, to handle quantum
instructions. This enables a high-level intermediate represen-
tation that covers both quantum and classical components
of the program, and results in more effective optimization.
After optimization, the representation lowers to LLVM + QIR
to generate an executable binary file. However, as mentioned
earlier, the optimizations are mostly at the circuit level, and
the gate implementations are provided in the runtime library.

LFQS is a state-vector simulator that produces the interme-
diate states of quantum circuits after each gate. This contrasts
with tensor network contraction methods, which are often
more efficient when only the final measurement outcomes
are required. Consequently, our simulator does not employ
optimization techniques like gate fusion or other methods
typically used in tensor networks at the global level [34].
While the tensor network approach can achieve higher per-
formance for certain types of circuits [53], state-vector sim-
ulation is essential for specific quantum algorithms where
access to intermediate state vectors or mid-circuit measure-
ments is necessary. Additionally, state-vector simulation is a
valuable debugging tool for quantum programmers.

LFQS combines the advantages of the current approaches
in quantum simulation; as demonstrated in Section 6, it sig-
nificantly outperforms library-based solutions (e.g., Qiskit)
and resolves the maintainability challenges available in hand-
tuned low-level quantum simulators (e.g., QuEST). To achieve
this, LFQS uses a compilation-based approach with an inter-
mediate representation to automate the optimization process.
However, unlike the existing approaches in this category,
LFQS focuses on gate-level optimizations by translating the
high-level specification of gates into low-level code.

286



CGO ’25, March 01ś05, 2025, Las Vegas, NV, USA Meisam Tarabkhah, Mahshid Delavar, Mina Doosti, and Amir Shaikhha

for (thisTask=0; thisTask<numTasks; thisTask++) {

thisBlock = thisTask / sizeHalfBlock;

indexUp = thisBlock∗sizeBlock + thisTask%sizeHalfBlock;

indexLo = indexUp + sizeHalfBlock;

stateRealUp=stateVecReal[indexUp]; stateImagUp=stateVecImag[indexUp];

stateRealLo=stateVecReal[indexLo]; stateImagLo=stateVecImag[indexLo];

stateVecReal[indexUp] = recRoot2∗(stateRealUp + stateRealLo);

stateVecImag[indexUp] = recRoot2∗(stateImagUp+stateImagLo);

stateVecReal[indexLo] = recRoot2∗(stateRealUp − stateRealLo);

stateVecImag[indexLo] = recRoot2∗(stateImagUp−stateImagLo);

}

(a) The implementation of Hadamard gate in QuEST.

for (rL= 0; rL<Ls; rL++) {

for (rR= 0; rR<Rs; rR++) {

id1 = rR + (rL ∗ 2) ∗ Rs;

id2 = id1 + Rs;

sid1real = S[id1].real; sid1imag = S[id1].imag;

sid2real = S[id2].real; sid2imag = S[id2].imag;

Out[id1].real = sq2r ∗ (sid1real + sid2real);

Out[id1].imag = sq2r ∗ (sid1imag + sid2imag);

Out[id2].real = sq2r ∗ (sid1real − sid2real);

Out[id2].imag = sq2r ∗ (sid1imag − sid2imag);

} }

(b) Generated code for the Hadamard gate in LFQS.

Figure 3. The correspondence between the sequential implementation of the Hadamard gate in QuEST and LFQS.

2.3 SDQL

We use SDQL [41, 42] as the intermediate language of our
compiler. SDQL is a high-level language that handles various
workloads, including relational query processing [38, 45] and
sparse tensor algebra with built-in optimization capabilities.

A key aspect of SDQL’s ability to optimize and efficiently
translate expressions is its use of semi-ring structures. A
semi-ring is an algebraic structure that consists of a set
equipped with two binary operations (typically called addi-
tion and multiplication) that satisfy certain properties such
as associativity, distributivity, and identity elements. These
structures are useful in various computational contexts, in-
cluding formal languages, automata theory, and optimization
problems [44]. SDQL supports the following data types:
Scalars. In boolean semi-ring, disjunction (∨) and conjunc-
tion (∧) serve as binary operators, while false and true act
as identity elements. Scalars can also be values of type int
and real, forming the Integer (Z) and Real (R) semi-ring.
Dictionaries. A dictionary with keys of type K, and values
of type V, is represented by the data type { K -> V }. If the
value elements with type V form a semi-ring structure, the
dictionary also forms a semi-ring structure known as a semi-
ring dictionary (SD). In this semi-ring, addition is performed
point-wise, meaning the values of elements with the same
key are added. Additionally, elements in an SD with 0𝑉 as
values can be removed from the dictionary. This makes them
appropriate for relations [39, 43] and sparse tensors [36, 40].
Vectors and Matrices. In SDQL, vectors are represented as
dictionaries that map indices to element values. Therefore,
vectors with elements of type S correspond to SDQL expres-
sions of type { int -> S }. Similarly, matrices can be viewed
as dictionaries that map row and column indices to element
values, denoted as { <int, int> -> S }. Alternatively, ma-
trices can be considered as dictionaries that map row indices
to row values, where each row value is another dictionary
(vector) of type S, denoted as { int -> { int -> S } }. We
will use the latter form to represent matrices.2

2The semi-ring properties, such as the associativity and distributivity laws,

are only used for scalar operations, not at the matrix multiplication level.

Example 1. Consider the vector V and the matrixM defined
and presented in SDQL as follows:

𝑉
[
𝑣0 𝑣1 0 𝑣2

]
{0 -> 𝑣0, 1 -> 𝑣1, 3 -> 𝑣2}

M

[
𝑚0 0 0 𝑚1

0 𝑚2 0 𝑚3

]
{0 -> {0 -> 𝑚0, 3 -> 𝑚1},

1 -> {1 -> 𝑚2, 3 -> 𝑚3}}

The expressionM ·𝑉 is evaluated to the following expression:
{ 0 -> 𝑚0 ∗ 𝑣0 +𝑚1 ∗ 𝑣2, 1 -> 𝑚2 ∗ 𝑣1 +𝑚3 ∗ 𝑣2 }

This expression is the dictionary representation of the fol-
lowing vector, which is the result of the matrix-vector multi-
plication:

[
𝑚0 ∗ 𝑣0 +𝑚1 ∗ 𝑣2 𝑚2 ∗ 𝑣1 +𝑚3 ∗ 𝑣2

]
.

Looping. The expression sum(<k, v> in d)e represents iter-
ation over the elements of dictionary d. Each key-value pair
is bound to k and v, respectively. This iteration starts from
an appropriate additive identity element and computes the
summation of the result of expression e using an appropriate
addition operator; the summation uses the scalar addition
operator if e has a scalar type and the SD addition is used
for an SD expression.
Example 2.Consider the expression sum(<k,v> in d)vwhere
d is a dictionarywith the values { "a"-> 3, "b"-> 5, "c"->

1 }. This expression sums the values (3 + 5 + 1) in the dic-
tionary d, evaluating to 9. Now, consider the expression
sum(<k,v> in d){k->v+3}, using the same dictionary d. This
expression evaluates to { "a"->6, "b"->8, "c"->4 }, which
is the result of adding 3 to each value in the dictionary: {
"a"-> 3+3 }, { "b"-> 5+3 }, and { "c"-> 1+3 }.
The sum in the general form of sum(<k,v> in d)e iterates

over the given d, and uses the addition operation of e.
Example 3. Consider the expression sum(<k,v> in V){k

-> {k -> v}} where the body of the summation is a nested
dictionary. This expression converts the vector V as shown in
Example 1, into the expression {0 -> {0 -> 𝑣0}} + {1 ->

{1 -> 𝑣1}} + {3 -> {3 -> 𝑣2}}. Evaluating this expression
results in the following diagonal matrix: {0 -> {0 -> 𝑣0}

, 1 -> {1 -> 𝑣1} , 3 -> {3 -> 𝑣2}}.
LFQS Extensions. This paper extends SDQL [42] by:

• Introducing a Complex (C) type for complex numbers.
• Adding nRows to the vector type.
• Adding nRows and nCols to the matrix type.
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Figure 4. The high-level architecture of LFQS.

• Adding macro definitions denoted by macro(params) to
make the code more concise (cf. Figure 5).

• Using the following syntactic sugar for the iteration over
a nested dictionary to avoid nested sums:

sum(<r,VM> in M)

sum(<c,eM> in VM)

f(r,c,eM)

→ sum(<<r,c>, eM> in M)

f(r, c, eM)

• Using the tupled let-binding, for convenience, as a syntac-
tic sugar for multiple let bindings as follows:

let v1=e1, v2=e2

in ...
→ let v1=e1 in let v2=e2

in ...

3 LFQS Architecture

Figure 4 provides the high-level architecture of the Light-
weight Functional Quantum Simulator (LFQS). LFQS takes as
input the linear algebra specification of a quantum circuit and
represents them in SDQL. Our compiler then transforms the
initial specifications into more optimized expressions. Subse-
quently, the code generator translates these expressions from
SDQL into efficient parallel low-level C and CUDA code.

3.1 Representing Quantum Circuits

We implement each gate of the target quantum circuit in-
dependently, starting with its unoptimized linear algebra
representation. To achieve this, we extend the linear algebra
operations originally supported by SDQL with additional
definitions, as shown in Figure 5. We use Equation (1) to im-
plement a single-qubit gate and an adjacent two-qubit gate.
Figure 6 presents the LFQS representation of a circuit with
multiple gates, where U represents 2 × 2 and 4 × 4 unitary
matrices for single-qubit and two-qubit gates, respectively.
However, this formulation cannot be applied to non-adjacent
qubits; we use the SWAP method (cf. Section 2.1) instead.

3.2 Efficient Simulation of Quantum Circuits

Although the expression in Figure 6 appears straightforward
and correctly represents single-qubit and adjacent two-qubit
gates, it is inefficient in terms of both memory usage and

Expression SDQL representation

eye(I_size)
sum(<rI, _> in 0:I_size)

{ rI -> { rI -> 1 } }

mvdot(M,V)
sum(<<rM, cM>, eM> in M)

{ rM -> eM * V(cM) }

kron(A,B)

sum(<<rA, cA>, eA> in A)

sum(<<rB, cB>, eB> in B)

{ rB+rA*B.nRows ->

{ cB+cA*B.nCols -> eA*eB } }

slice(U,i,j)
sum(<r, _> in 0:2) sum(<c, _> in 0:2)

{ r -> { c -> U(r+i*2)(c+j*2) } }

onehot(i,j) { i -> { j -> 1 } }

Figure 5. Required Expressions to implement a Quantum
gate, with their representation in SDQL.

simulation time. This approach fails to leverage several op-
timizations, such as exploiting the sparsity, specific shapes
and values of the matrices involved and merging operations
to minimize redundant memory and time overhead.
In the next section, we first introduce a vectorized for-

mulation for simulating non-adjacent two-qubit gates (See
Section 4.1) that can replace the inefficient SWAP method.
Then, we show how we can compile a naive expression like
Figure 6 to an efficient expression which can be used to
generate a C code similar to Figure 14b (See Section 4.2-4.6).

4 Optimizations

We define several stages of optimization to transform the
naive linear algebra into a more optimized expression. At
each stage, we utilize an optimization technique and apply
some transformation rules to optimize and simplify our ex-
pression compared to the previous stage.
Running Example.We use the Hadamard gate as an exam-
ple of a single-qubit gate to demonstrate the whole transfor-
mation procedure of a naive expression like Figure 9a to an
optimized expression like Figure 12c. Figure 9 summarizes
the transformation procedures for the Hadamard gate. The
procedures for other single-qubit gates and even two-qubit
ones follow a similar process.
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let S_1 = /* H Gate elided for brevity */ in

let U = cnotgate() in

let I_L = eye(0), I_R = eye(1) in

let T1 = kron(I_L, U), T2 = kron(T1, I_R) in

let S_2 = mvdot(T2, S_1) in

let S_3 = /* CU Gate elided for brevity */ in

S_3

Figure 6. The LFQS representation of the quantum circuit
in Figure 2. We only show the code for the CNOT Gate.

|𝑞1⟩ •
|𝑞2⟩
|𝑞3⟩ 𝑈

(a) Non-adjacent 2-Qubit gate.

|𝑞1⟩ •
|𝑞2⟩ × 𝑈 ×
|𝑞3⟩ × ×

(b) Using SWAP method.

Figure 7. 2-Qubit gate on non-adjacent qubits.

4.1 Vectorized Non-adjacent Two-Qubit Gates

While two-qubit gates over adjacent qubits are easy to for-
mulate, the same notation cannot be applied to the case of
non-adjacent qubits. The common approach to address this
is to use the swapping method mentioned earlier (See Sec-
tion 2.1) using several SWAP gates. However, this is a highly
inefficient method for simulation as it requires many unnec-
essary matrix products. Let us consider a 3-qubit circuit as
an example to clarify this issue:
Example 3. Consider a 3-qubit circuit with one two-qubit
gate (CU) applied to qubits 0 and 2, as shown in Figure 7(a).
This circuit is equivalent to Figure 7(b), which uses the SWAP
gate. Based on Equation (3), we simulate this by generating
an 8 × 8 matrix using the following transformation:

G0,2 = (I ⊗ SWAP1,2) (CU ⊗ I) (I ⊗ SWAP1,2) (4)

As an alternative, we propose a novel method for simulat-
ing a non-adjacent two-qubit gate, denoted as below:

Gq1q2 =

1∑︁

𝑖=0

1∑︁

𝑗=0

Xij ⊗ I𝑁 ⊗ Uij (5)

where CU is a two-qubit gate with the following matrix:

CU =



𝑢00 𝑢01 𝑢02 𝑢03
𝑢10 𝑢11 𝑢12 𝑢13
𝑢20 𝑢21 𝑢22 𝑢23
𝑢30 𝑢31 𝑢32 𝑢33


applied on qubits 𝑞1 and 𝑞2, 𝑁 is the number of qubits be-
tween the 𝑞1 and 𝑞2 (we denote that as the gap), and the
matrices Xij and Uij are as follows:

X00 =

[
1 0

0 0

]
U00 =

[
𝑢00 𝑢01

𝑢10 𝑢11

]
X01 =

[
0 1

0 0

]
U01 =

[
𝑢02 𝑢03

𝑢12 𝑢13

]

X10 =

[
0 0

1 0

]
U10 =

[
𝑢20 𝑢21

𝑢30 𝑢31

]
X11 =

[
0 0

0 1

]
U11 =

[
𝑢22 𝑢23

𝑢32 𝑢33

]

Note that Xijs are constructed from the outer product
of different computational bases, i.e., Xij = |𝑖⟩⟨ 𝑗 |. The idea

let I_L=eye(Ls), I_G=eye(Gs), I_R=eye(Rs) in

let T1 = sum(<i,_> in 0:2) sum(<j,_> in 0:2)

let Xij = onehot(i, j), Uij = slice(U, i, j) in

let Tij = kron(Xij, I_G) in

let T2 = kron(I_L, T1), T3 = kron(T2, I_R) in

let Out = mvdot(T3, S) in Out

Figure 8. Vectorized 2-Qubit gate SDQL expression.

behind this formulation is that a two-qubit gate can be de-
composed into 4 blocks, which can be treated as elements of
a single-qubit gate when the composition happens through
tensor product. Thus, one can write the matrix G0,1 when
there are no qubits in between, as follows:

|0⟩⟨0 | ⊗ U00 + |0⟩⟨1 | ⊗ U01 + |1⟩⟨0 | ⊗ U10 + |1⟩⟨1 | ⊗ U11 =

1∑︁

𝑖=0

1∑︁

𝑗=0

Xij ⊗ Uij

If there is a qubit in between to which the gate does not ap-
ply, the resulting matrix should act trivially on that subspace.
This means one can expand the representation by applying
the identity matrix to the space between the qubits through
the tensor product. This is similar to how one formulates
the two-qubit controlled gates, where conditioning on the
control qubit is in the zero state, the gate applied to the sub-
space is identity and the full matrix can be represented as
the linear combination of the two tensor products.

Following above, we rewrite the previous example as Equa-
tion 5, which leads to the following form for G0,2:

G0,2 =



𝑢00 𝑢01 0 0 𝑢02 𝑢03 0 0

𝑢10 𝑢11 0 0 𝑢12 𝑢13 0 0

0 0 𝑢00 𝑢01 0 0 𝑢02 𝑢03
0 0 𝑢10 𝑢11 0 0 𝑢12 𝑢13
𝑢20 𝑢21 0 0 𝑢22 𝑢23 0 0

𝑢30 𝑢31 0 0 𝑢32 𝑢33 0 0

0 0 𝑢20 𝑢21 0 0 𝑢22 𝑢23
0 0 𝑢30 𝑢31 0 0 𝑢32 𝑢33


We note that this reformulation is equivalent to using

2×𝑁 SWAP gates, where 𝑁 is the number of qubits between
the two target qubits, to bring the qubits to the neighbour-
ing position, apply the adjacent two-qubit gate, and then
swap them back to the original position. Figure 8 shows the
vectorized representation of a two-qubit circuit.

For the rest of this section, we focus on the optimizations
applicable to single- and two-qubit gates. However, for the
sake of brevity, we show the application to the single-qubit.

4.2 Operator Fusion

At this stage, we employ the operator fusion technique to
merge the required operations, producing the overall trans-
formation matrix. The Kronecker product of three or more
matrices requires calculating and storing several intermedi-
ate matrices. LFQS merges these steps into a single operation.
Figure 10 shows how we deploy the kron(A,B) (A ⊗ B)

expression from Figure 5 to produce the Kronecker product
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let U = hadmat() in

let I_L = eye(Ls) in

let I_R = eye(Rs) in

let T1 = kron(I_L, U) in

let T2 = kron(T1, I_R) in

let Out = mvdot(T2, S) in Out

(a) Unoptimized SDQL representation.

;

let U = hadmat() in

let I_L = eye(Ls) in

let I_R = eye(Rs) in

let T2 = kron3(I_L,U,I_R) in

let Out=mvdot(T2,S) in Out

(b) After operator fusion.

;

let U = hadmat() in

let T2 = kroneye3(Ls, U, Rs) in

let Out = mvdot(T2, S) in Out

(c) After operator specialization.

let U = hadmat() in

let Out =

kroneye3dot(Ls,U,Rs,S) in

Out

(d) After vector fusion.

;

let U = hadmat() in

let Out =

single_qbit(Ls,U,Rs,S) in

Out

(e) After loop unrolling.

;

let Out =

hadgate(Ls, Rs, S) in

Out

(f) After static matrix specialization.

Figure 9. Optimization steps applied to the Hadamard gate.

let D = // kron(A,B)

sum(<<rA,cA>,eA> in A)

sum(<<rB,cB>,eB> in B)

{rB+rA*B.nRows ->

{cB+cA*B.nCols->eA*eB

} } in // kron(D,C)

sum(<<rD,cD>,eD> in D)

sum(<<rC,cC>,eC> in C)

{rC+rD*C.nRows ->

{cC+cD*C.nCols->eD*eC}}

;

//kron3(A,B,C)

sum(<<rA,cA>, eA> in A)

sum(<<rB,cB>, eB> in B)

sum(<<rC,cC>, eC> in C)

let rD=rB+rA*B.nRows,

cD=cB+cA*B.nCols,

eD=eA*eB in

{ rC+rD*C.nRows ->

{ cC+cD*C.nCols ->

eD*eC } }

Figure 10. Operator fusion translates the Kronecker product
of three matrices expressed by a chain of kron into kron3.

of 3 matrices (A⊗B⊗C), named kron3(A,B,C). Thus, instead
of calculating A ⊗ B ⊗ C in two steps, i.e., (1) D = A ⊗ B and
(2) D ⊗ C, the whole process can be done in one step, saving
the time and memory required for calculating D.

Employing this technique to the naïve simulation shown
in Figure 6 will merge the two steps of calculations of T1
and T2 into one, eliminating the overhead associated with
computing T1 separately.

4.3 Operator Specialization

Generatedmatrices are very sparse and if not considered, will
result in unnecessary calculations over zero-value elements.
Since identity matrices significantly influence the shape and
sparsity of the resulting transformation matrix, we merge
the identity matrix in the Kronecker product calculation to
create amore optimized version of the overall transformation
matrix. This also improves memory consumption as identity
matrices are no longer required to produce and store.
Figure 11b demonstrates how the eye(n) (I𝑛) expression

from Figure 5 is used to transform the Kronecker prod-
uct of 3 arbitrary matrices kron3(A,B,C) (A ⊗ B ⊗ C) into
kroneye3(Ls,U,Rs). This method allows us to bypass the cre-
ation of I𝐿 and I𝑅 and the subsequent calculation of I𝐿⊗U⊗I𝑅 ,
which involves numerous unnecessary computations with

zero. Instead, we perform only the required calculations for
non-zero elements, significantly reducing the overhead.

4.4 Vector Fusion

Typically, updating the state vector is a two-step procedure.
The first step involves computing a very large transformation
matrix (I𝐿 ⊗U ⊗ I𝑅). The second step immediately multiplies
this large matrix by the state vector to obtain the new state
vector. Given the size of the state vector (2𝑛) and the transfor-
mation matrix (2𝑛 × 2𝑛), this approach requires a significant
amount of memory to store the intermediate matrix and a
long computation time.
At this stage, we apply the vector fusion technique to

merge the overall transformation matrix calculation with the
matrix-to-vector multiplication, creating a single expression
to compute the new state vector in one step. This technique
significantly reduces the required time and memory by elim-
inating the overhead of separately computing the overall
transformation matrix.

Figure 11c illustrates howwe deploy the mvdot(M,V) (M·𝑉 )
expression from Figure 5 together with kroneye3(Ls,U,Rs) to
produce kroneye3dot(Ls,U,Rs,S). This allows us to calculate
the new state vector in a single step instead of two.

4.5 Loop Unrolling

The application of the vector fusing technique resulted in the
removal of one loop from the expression by fusing the outer
loop for creating the intermediate matrix with the one for
multiplying the vector. The final expression in Section 4.4
features two loops with a fixed number of iterations over
the rows and columns of the gate matrix. These iterations
are independent of the type of gate, the number of qubits in
the circuit, or the index of the target qubit. Here, we use the
loop unrolling technique (similar to [17]) to turn loops with
fixed iteration sizes into a sequence of statements, enhancing
performance by eliminating the time overhead associated
with the nested sum required to loop over the gate matrix.
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let L = // eye(Ls)

sum(<rI,_> in 0:Ls) {rI->{rI->1}} in

let R = // eye(Rs)

sum(<rI,_> in 0:Rs) {rI->{rI->1}} in

let M = // kron3(L,U,R)

sum(<<rL,cL>, eL> in L)

sum(<<rU,cU>, eU> in U)

sum(<<rR,cR>, eR> in R)

let rD=rU+rL*U.nRows in

let cD=cU+cL*U.nCols, eD=eL*eU in

{rR+rD*R.nRows->{cR+cD*R.nCols ->

eD*eR } } in // mvdot(M,S)

sum(<<rM, cM>, eM> in M)

{ rM -> eM * S(cM) }

(a) Before applying operator specialization.

;

let M =

//kroneye3(Ls,U,Rs)

sum(<rL,_> in 0:Ls)

sum(<<rU,cU>, eU> in U)

sum(<rR,_> in 0:Rs)

let rD=rU+rL*U.nRows in

let cD=cU+rL*U.nCols in

{rR+rD*Rs->{rR+cD*Rs ->

eU}} in // mvdot(M,S)

sum(<<rM, cM>, eM> in M)

{ rM -> eM * S(cM) }

(b) After operator specialization.

;

//kroneye3dot(Ls,U,Rs,S)

sum(<rL,_> in 0:Ls)

sum(<<rU,cU>, eU> in U)

sum(<rR,_> in 0:Rs)

let rD=

rU+rL*U.nRows in

let cD=

cU+rL*U.nCols in

let rM=rR+rD*Rs in

let cM=rR+cD*Rs in

{ rM -> eU*S(cM) }

(c) After applying vector fusion.

Figure 11. Applying operator specialization to translate the Kronecker product of three arbitrary matrices expressed by kron3

into kroneye3 and vector fusion to translate the matrix to the vector product expressed by kroneye3 and mvdot into kroneye3dot.

Figure 12b demonstrates the transformation of kroneye3dot
into single_qbit, focusing on a single-qubit gate matrix U,
which transforms expressions in form of

let U = {0->{0->u00,1->u01},1->{0->u10,1->u11}} in

sum(<<rU,cU>, eU> in U) f(rU, cU, eU)

into a sequence of statements in the form of
f(0,0,u00)+ f(0,1,u01)+ f(1,0,u10)+ f(1,1,u11)

4.6 Static Matrix Specialization

At this stage, we further simplify the gate expressions and
specialize expressions for each gate type (e.g., Hadamard, X,
T-gate, etc.) utilizing the known matrices values for these
gates (refer to Figure 1). These specific expressions are then
incorporated into the general expressions for one and two-
qubit gates. Depending on the shape or sparsity of the ma-
trix, this approach can capture the additional sparsity in the
system (e.g., CNOT and SWAP gates) and eliminate time
overhead associated with unnecessary operations such as
duplicated calculations (e.g., Hadamard and Pauli gates).

Figure 12c shows howwe convert the generic single_qbit
expression into the gate-specific expression hadgate.

5 Implementation

For the quantum simulator, we utilize Python, C, and CUDA;
Python is employed for developing the naïve version, while
C and CUDA are utilized for the optimized version. Addi-
tionally, Python executes the Qiskit and Catalyst simulators.

5.1 Compiler

We use Scala to implement our compiler, which serves op-
timization tasks and includes a code generator translating
SDQL expressions into C and CUDA code.
Frontend. Our compiler takes inputs as SDQL source code.
We encode different gates using their naïve representation in

SDQL. Then, the source code for these expressions is passed
to a parser that creates the SDQL IR.
Transformation. At each stage of optimization, we inline
the definition of macros to update the required symbols
with new expressions, then main rewrite rules, including
the loop transformations (cf. Figure 13) are applied until a
fix-point is reached. Finally, generic optimizations (e.g., CSE
and algebraic simplifications) are applied.
Code Generator. The code generator translates SDQL ex-
pressions into C and CUDA code, enabling us to produce the
quantum simulator with any desired level of optimization.
Generating code for SDQL is generally simple due to the

first-order nature of most of its constructs; SDQL’s design
avoids the complexities of compiling polymorphic higher-
order functional languages. The main challenge is the sum-
mation construct, which we convert into for-loops. We only
need to define the backend-specific code generation rules to
generate code for other backends, as demonstrated next.

5.2 Parallelization

The code generation process for the parallel version is very
similar to that of the sequential version. In the parallel ver-
sion, the code generator adds the necessary commands for
multi-threaded execution of the loops. Figure 14 shows the
optimized expression (Figure 12c partially translated to A-
Normal Form [11]) for the Hadamard gate alongside the
equivalent generated parallelized C and CUDA code. As
shown in Figure 14b, the code generator creates a list of
shared and private variables used inside the loops (lines 3,4).
The number of nested loops is also counted to generate the
collapse clause which specifies how many loops should be
merged into a single loop (line 5). This maximizes workload
distribution and improves the efficiency of parallel execution.
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let sq2r = 0.7071,

u00=sq2r,u01=sq2r,u10=sq2r,u11=-sq2r,

U = {0->{0->u00,1->u01},

1->{0->u10,1->u11}} in

//kroneye3dot(Ls,U,Rs,S)

sum(<rL,_> in 0:Ls)

sum(<<rU,cU>, eU> in U)

sum(<rR,_> in 0:Rs)

let rD=rU+rL*U.nRows in

let cD=cU+rL*U.nCols in

{ rR+rD*Rs -> eU*S(rR+cD*Rs) }

(a) Before applying loop unrolling.

;

let sq2r = 0.7071,

u00=sq2r, u01=sq2r,

u10=sq2r, u11=-sq2r in

//single_qbit(Ls,U,Rs,S)

sum(<rL,_> in 0:Ls)

sum(<rR,_> in 0:Rs)

let id1=rR+(rL*2)*Rs in

let id2=id1 + Rs in

{id1->u00*S(id1)+u01*S(id2)}

+

{id2->u10*S(id1)+u11*S(id2)}

(b) After loop unrolling.

;

let sq2r = 0.7071 in

//hadgate(Ls,Rs,S)

sum(<rL,_> in 0:Ls)

sum(<rR,_> in 0:Rs)

let id1=rR+(rL*2)*Rs in

let id2=id1 + Rs in

{id1->sq2r*(S(id1)+S(id2))}

+

{id2->sq2r*(S(id1)-S(id2))}

(c) Most optimized version.

Figure 12. Applying loop unrolling to translate into single_qbit, and static matrix specialization to translate into hadgate.

sum(<k, v> in {r1->e1}) e2 let k=r1, v=e1 in e2

sum(<k1,v1> in

sum(<k2,v2> in e2) e1) e3

sum(<k2,v2> in e2)

sum(<k1,v1> in e1) e3

sum(<k,v> in e1) e2 +

sum(<k,v> in e1) e3
sum(<k,v> in e1) e2+e3

sum(<k,v> in

{r1->e1,r2->e2}) e3

let k=r1, v=e1 in e3 +

let k=r2, v=e2 in e3

Figure 13. Selected loop transformations in our optimizer.

Additionally, as the input state vector (S) is not needed
later, we can use an in-place update to avoid creating a new
state vector (Out) by reusing the existing state vector (S).
This approach improves efficiency by reducing the memory
overhead of managing an additional state vector. Also, it
improves memory locality, helping to keep data close to the
processing cores. In-place updates allow the state vector to
remain in the cache, reducing the need for costly memory
transfers between different levels of the memory hierarchy
(e.g., from RAM to cache). To enable this, a list of temporary
variables is generated to store the necessary elements of the
input vector (lines 10,11), and these variables are then used
to update the input vector directly with the output of the
calculations (lines 12-15). Finally, the in-place update can
also eliminate unnecessary calculations when the new values
are the same as the old ones (e.g., in CNOT or SWAP gates).

GPU code generation follows a similar approach. The key
difference here is that a separate kernel function is used
to run across many threads in parallel instead of loops in
the main function. Figure 14c shows the generated kernel
function; the main function assigns values (lines 1,2) and
invokes the kernel function (omitted here). If there are mul-
tiple nested loops, we apply the loop-flattening technique
and merge them into a single loop, where the total number
of iterations is calculated by multiplying the iterations of
each individual loop (line 2). A combined iterator is used for
the flattened loop (line 4) and the loop’s termination con-
dition is replaced by an if statement (line 5). Each thread
computes the original loop counters based on the value of
the combined iterator (lines 6,7).

5.3 Runtime

The runtime environment for LFQS is lightweight. The key
challenge is to handle vectors andmatrices of complex values,
for which we consider two different data layouts:
Array of Structs (AOS). An array of complex numbers rep-
resents the state vector, and a 2-dimensional array of structs
(array of arrays of complex numbers) represents quantum
gate matrices.
Struct of Arrays (SOA). A struct of two arrays (of float
numbers) represents the real and imaginary parts of the
state vector and two 2-dimensional arrays (arrays of arrays
of float numbers) represent quantum gate matrices.

6 Experiments

We evaluate the performance of our generated quantum sim-
ulator against state-of-the-art quantum simulators on eight
real-world quantum circuits (Section 6.2). Then, we study
the impact of the number of qubits using a GSC circuit. The
unoptimized version is compared with a Python implemen-
tation using NumPy functions for the same linear algebra
operations, while the LFQS (optimized version) is compared
with Qiskit, Catalyst, and QuEST (Section 6.3). We compare
the scalability of LFQS with QuEST, using the RQC circuit
(Section 6.4). We examine the impact of each optimization
level on a circuit with a single H or CNOT gate (Section 6.5).
Additionally, we study the performance of each data lay-
out using RQC circuit (Section 6.6). Finally, we evaluate the
performance of LFQS against QuEST on eight real-world
quantum circuits over GPU (Section 6.7). Furthermore, we
showcase the maintainability of LFQS compared to QuEST
in three scenarios: adding a new gate, modifying the data
layout, and adding a GPU backend (Section 6.8). We use the
Array of Structs data layout in all experiments, apart from
Section 6.6, where we study the impact of data layouts.

6.1 Experimental Setup

Our experiments are conducted on a system featuring an
Intel Xeon Silver 12-Core Processor operating at 2.2GHz,
with 250GB of DDR3 RAM, running Ubuntu 22.04.4 OS. We
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1 let sq2r = 0.7071 in

2

3

4

5 let Out =

6 sum(<rL,_> in 0:Ls)

7 sum(<rR,_> in 0:Rs)

8 let id1=rR+(rL∗2)∗Rs in

9 let id2=id1 + Rs in

10 let s1 = S(id1) in

11 let s2 = S(id2) in

12 { id1 −> sq2r∗(s1 + s2) }

13 +

14 { id2 −> sq2r∗(s1 − s2) }

15 in

16 Out
(a) Optimized SDQL expression.

1 sq2r = 0.7071;

2 #pragma omp parallel default (none) \

3 shared (Rs, Ls, sq2r, S) \

4 private (rL, rR, s1r, s1i, s2r, s2i, id2, id1) {

5 #pragma omp for schedule(static) collapse(2)

6 for (rL= 0; rL<Ls; rL++) {

7 for (rR= 0; rR<Rs; rR++) {

8 id1 = rR + (rL ∗ 2) ∗ Rs;

9 id2 = id1 + Rs;

10 s1r = S[id1].real; s1i = S[id1].imag;

11 s2r = S[id2].real; s2i = S[id2].imag;

12 S[id1].real = sq2r ∗ (s1r + s2r);

13 S[id1].imag = sq2r ∗ (s1i + s2i);

14 S[id2].real = sq2r ∗ (s1r − s2r);

15 S[id2].imag = sq2r ∗ (s1i − s2i);

16 } } }
(b) Generated C code.

1 sq2r = 0.7071; //Main Function

2 iters = Ls∗Rs; //Main Function

3 //CUDA Kernel Function

4 rI = blockIdx.x∗blockDim.x + threadIdx.x;

5 if (rI < iters) {

6 rL = rI / Rs;

7 rR = rI % Rs;

8 id1 = rR + (rL ∗ 2) ∗ Rs;

9 id2 = id1 + Rs;

10 s1r = S[id1].real; s1i = S[id1].imag;

11 s2r = S[id2].real; s2i = S[id2].imag;

12 S[id1].real = sq2r ∗ (s1r + s2r);

13 S[id1].imag = sq2r ∗ (s1i + s2i);

14 S[id2].real = sq2r ∗ (s1r − s2r);

15 S[id2].imag = sq2r ∗ (s1i − s2i);

16 }
(c) Generated CUDA code.

Figure 14. Translation of the most optimized expression into parallelized C and CUDA code.

Table 1. Quantum circuits used in our evaluation with the number of qubits in each section.

Circuit Description Section Qubits

Google’s Sycamore quantum supremacy

Circuit (GSC) [3]

A class of random quantum circuits used to demonstrate quantum advantage for a

sampling problem.

6.2, 6.7 26

6.3 2-14

Random Quantum Circuit (RQC) [9] (a.k.a.

Brickwork circuits)

Specified by a fixed repeatable structure that is used to generate random and pseu-

dorandom quantum objects.

6.2, 6.4, 6.7 26

6.6 2-20

Quantum Phase Estimation (QPE) [22] Used both independently and as a subroutine in several quantum algorithms includ-

ing estimating eigenvalues of matrices or period finding.

6.2, 6.7 26

Quantum Fourier Transform (QFT) [35] A linear transformation on quantum bits, which is an important subroutine for

many quantum algorithms, including the QPE and Shor’s algorithm.

6.2, 6.7 26

Variational Quantum Eigensolver algo-

rithm (VQE) [50]

A hybrid quantum-classical algorithm commonly used for solving quantum chem-

istry problems and finding ground state energies of molecules.

6.2, 6.7 26

Greenberger-Horne-Zeilinger states

(GHZ) [27]

Used to create multi-qubit quantum entangled states involving three or more parti-

cles, where the particles are maximally entangled.

6.2, 6.7 26

Grover’s algorithm [15] (a.k.a. quantum

search algorithm)

Used for unstructured search to find the input to a black box function with a partic-

ular output value.

6.2, 6.7 26

Shor’s algorithm [46] Used for finding the prime factors of an integer. 6.2, 6.7 26

compile the generated C code using gcc 11.4.0 with the O2
optimization flag. For GPU experiments, we use an NVIDIA
GeForce RTX 3070 and compile the code using nvcc 12.0.
Our competitors include QuEST, which utilizes the same sys-
tem and compiling flags, as well as Catalyst v0.8, and Qiskit,
which operate on Python 3.10.12 with NumPy 1.26.4. We
observed similar behaviour with other dense tensor frame-
works, thus, we only include the results for NumPy as a
representative of them. In Section 6.7, we present the results
of experiments conducted on a GPU, while all other exper-
iments are executed on the CPU. Section 6.4 uses varying
numbers of threads, Section 6.5 uses a single thread, and all
other experiments use 48 threads.

In all cases, we measure the execution time for the circuit
simulation and report the average of five runs. We limit the
number of qubits for the naïve versions to restrict the mem-
ory usage and execution time. We consider two workloads:

Real-World Circuits. We evaluate the performance of our
simulator on eight real-world quantum circuits with varying
numbers of qubits. Table 1 shows the quantum circuits used
in our evaluation with the number of qubits used for them
in each section.
Individual Gates. We generate a circuit with a single H
gate on the 2nd qubit, and the other one with a CNOT gate
where the 1st qubit is the control and the 2nd qubit is the
target. We investigate the performance of our simulator by
varying numbers of qubits.

6.2 End to End Performance Evaluation

We compare the performance of the LFQS with QuEST, Cat-
alyst, and Qiskit on different quantum circuits. We have
set the number of qubits to 26 in this study. We have set
a maximum of 2 hours simulation limit, which has termi-
nated the simulation of the Grover and Shor circuits in Qiskit.
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Figure 15. Performance of LFQS for multi-core CPU.

Figure 16. Impact of the number of qubits on performance.

Figure 15 presents the results of this study. As shown, on av-
erage LFQS performs 3.45× faster than QuEST, 32.71× faster
than Catalyst, and 205.56× faster than Qiskit.

6.3 Impact of Number of Qubits

Figure 16 shows the performance of LFQS on GSC circuits
with varying numbers of qubits. As the number of qubits
increases, the performance of the simulator decreases. The
unoptimized (C version) outperforms the NumPy version
for circuits with fewer qubits. This performance difference
diminishes as the number of qubits increases, becoming min-
imal beyond eight qubits.
Similarly, Qiskit and Catalyst exhibit lower performance

for circuits with fewer qubits. Their performance are less
than that of the naive C and NumPy versions for circuits
with less than 6 qubits. However, beyond this point, they
perform better than both, though they still lag behind QuEST.
The optimized LFQS consistently outperforms QuEST, being
1.16× faster on average.

6.4 Scalability Experiment

We have used an RQC circuit with 26 qubits to study the
scalability performance of the LFQS using different numbers
of threads for execution. As shown in Figure 17 both systems
have similar trends while LFQS performs 5.81× faster than
QuEST on average.

6.5 Impact of Individual Optimization

As shown in Figure 18, each optimization stage slightly im-
proves performance. Table 2 shows the average speed-up
values for each optimization (compared to the previous stage).
The most substantial improvement occurs with the applica-
tion of Vector Fusion, which significantly enhances perfor-
mance. This indicates that merging the calculation of the

Figure 17. Scalability experiment using RQC circuit.

Table 2. Average speed-up values for each individual opti-
mization, compared with the previous stage (cf. Figure 18).

Optimization H gate CNOT gate

Operator Fusion 1.2 1.48

Operator Specialization 2.09 2.49

Vector Fusion 1557.45 684.13

Loop Unrolling 2.62 2.65

Static Matrix Specialization 2.09 6.02

Figure 18. Impact of each optimization on performance.

overall transformation matrix with the matrix-to-vector mul-
tiplication into a single step has the most significant impact.
This optimization not only improves execution time but also
drastically reduces memory consumption by eliminating the
need to create temporary complex matrices of size 2𝑛 × 2𝑛 .

6.6 Impact of Data Layout

We have generated two different versions of C code using
different data layouts to store the state vectors and matrices,
both derived from the same optimized SDQL expression.
Both data layouts exhibit reasonable performance on RQC
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Figure 19. Impact of the data layout on performance.

circuits. However, as shown in Figure 19, AOS performs on
average 1.19× faster than SOA.

6.7 GPU Performance Evaluation

We generated a CUDA version from optimized SDQL expres-
sions and compared the performance of LFQS with QuEST
on various quantum circuits running on the GPU. For this
study, we set the number of qubits to 26. The results, shown
in Figure 20, indicate that LFQS performs, on average, 1.6×
faster than QuEST.

6.8 Maintainability

We investigate how the LFQS architecture influences the
maintainability of the quantum simulator. Table 3 shows the
number of lines of code (LoC) required to change in order to
add a new gate or to change the data layout for a multi-core
CPU backend, as well as supporting a new backend in LFQS
compared to the same scenario in QuEST. We report the
average and total number of LoC for QuEST based on its
source code.
Adding a new gate. On average, QuEST requires manually
implementing 46 LoC to add a new single-qubit gate and
48 LoC for a new two-qubit gate. This can be generated in
LFQS without any changes in the code and only by using
the gate matrix for the desired gate during łStatic Matrix
Specializationž with a single LoC.
Changing data layout. QuEST requires manually hand-
tuning an average of 10 LoC per function to change the data
layout. Assuming the available native/general single-qubit
and two-qubit gates and just in the CPU version, 128 LoC
must be modified. This can be easily addressed in LFQS by
only modifying 5 LoC in our code generator; we need to
change the code generator rules for accessing the element
of a vector/matrix.
Supporting a new backend. Adding a new backend in
QuEST requires manually re-implementing the code for all
gates. This results in 542 LoC for the available native/general
single-qubit and two-qubit gates to support the GPU. This
can be handled in the LFQS by modification of 90 LoC in the
code generator.

Figure 20. GPU performance for LFQS and QuEST.

Table 3. Required LoC changes in LFQS and QuEST.

Scenario LFQS QuEST

Adding a new single-qubit gate (CPU) 1 46

Adding a new two-qubit gate (CPU) 1 48

Changing data layout (CPU) 5 128

Supporting a new backend (GPU) 90 542

7 More Related Work

This section presents the related work from two dimensions.
First, we cover different approaches for quantum simulation.
Then, we cover different tensor compilers.

7.1 Quantum Simulators

There are several approaches for simulating quantum cir-
cuits on classical computers, each with its own advantages
and limitations. Here, we present the main approaches; how-
ever, we refer to the comprehensive surveys [53] for more
information.
Stabilizer Circuits. For quantum circuits consisting only of
Clifford gates (which map Pauli operators to Pauli operators
under conjugation) and computational basis state prepara-
tions/measurements, there exist efficient classical simulation
algorithms based on the stabilizer formalism. These algo-
rithms have polynomial complexity in the number of qubits
and gates, enabling efficient simulation even for large cir-
cuits within this restricted gate set. Simulators like Qiskit
Aer [33] and CHP [1] implement this approach.
Tensor Network Contraction. This approach represents
the quantum state as a tensor network and simulates the
circuit by contracting the network. It can achieve significant
computational speedups over naive state vector simulations
in certain cases, especially for circuits with limited entan-
glement [37, 52]. The key idea is to exploit the low-rank
structure of the quantum state by approximating it with a
tree tensor network. This reduces the memory requirements
and computational cost compared to storing the full state
vector. Examples of simulators using this approach include
Qiskit Aer [33], Perceval [18], and Yao [24].
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General Purpose Simulators. These simulators can sim-
ulate arbitrary quantum circuits, albeit with varying per-
formance and scalability. Examples include Intel Quantum
Simulator, Qrack, and QuEST. LFQS falls into the last cate-
gory, it is designed for general-purpose simulation, handling
a broad range of quantum gates, thus providing greater ver-
satility.
LFQS does not utilize tensor network contraction as it

aims to provide a general-purpose simulation approach that
can handle a wide variety of circuits without relying on spe-
cific low-rank approximations. Furthermore, tensor network
contraction does not expose intermediate states which is es-
sential for debugging in quantum simulation. LFQS provides
a robust approach for efficiently simulating quantum circuits.
The framework’s modular design provides better maintain-
ability for LFQS compared to its competitors like QuEST
and allows us to capture new algorithms and extend to new
backends much more easily than the other competitors.
MLIR-QIR Based Simulations. In recent years, significant
efforts have been made to utilize compilation frameworks, in
particular LLVM and MLIR, for quantum computing IRs. The
Quantum Intermediate Representation (QIR) [12] provides a
language- and hardware-agnostic IR for integrating classical
and quantum programs, utilizing LLVM’s compiler infras-
tructure. QIRO [20] and QSSA [30] have expanded on this
by defining specialized dialects within MLIR for quantum-
classical co-optimization and SSA-based quantum IRs, respec-
tively. McCaskey and Nguyen [26] also introduced a new
MLIR dialect that translates quantum assembly languages to
executable binaries using QIR.

These studies mainly focus on compiling high-level quan-
tum programs into the LLVM-based QIR and applying global
optimizations at the circuit level. The gate-level optimiza-
tions are handled manually in the runtime implementation
of the gates, which need to be redone for different choices
of data layout or new gates. Instead, LFQS concentrates
on individual gates and automates gate-level optimization
through compiler optimizations, reducing the engineering
effort needed for building the runtime implementation of
gates. Global circuit optimizations are left as future work.

7.2 Tensor Compilers

Dense Tensor Frameworks. Inspired by the recent ad-
vances in AI and ML, there has been significant progress in
tensor compilers. Tensor frameworks such as TensorFlow [2],
PyTorch [29], and TVM [6] optimize computations for dense
data without considering any inherent structure, leading
to unnecessary computations for structured data. Similarly,
polyhedral-based frameworks [51] cannot fully leverage such
inherent structures.
Sparse Tensor Compilers. Tensor frameworks such as
TACO [23], SPF [49], and SPLATT [47] handle sparse tensors
by performing computations only over non-zero elements.
However, these frameworks manage sparsity at runtime,

resulting in irregular memory access patterns that are not
cache-friendly and are hard to optimize.
Structured Tensor Compilers. LGen [48] captures specific
structural patterns like symmetry or fixed-size constraints at
compile time. However, it is limited to small-scale matrices
and does not support the flexible, variable-sized structures of-
ten encountered in real-world applications. StructTensor [14]
and DASTAC [13] aim to resolve these limitations. However,
they fail to capture the static structures with irregular shapes,
e.g., SWAP gate (cf. Figure 1).
Quantum simulation involves sparse matrices with re-

peating structures, exemplified by the identity matrix in
the Kronecker product, which introduces a structured spar-
sity. Existing frameworks fail to efficiently handle this sce-
nario because they (1) overlook the structural redundancy
(dense/sparse frameworks), (2) are constrained to fixed sizes
(LGen [48]), or (3) cannot capture the quantum-specific struc-
ture (StructTensor [14]). LFQS addresses these limitations by
employing an algebraic intermediate language that exploits
the quantum-specific structure in compilation time.

8 Conclusion and Outlook

This paper presented LFQS, a new approach for efficiently
simulating quantum circuits. Our compilation stack starts
with unoptimized, high-level linear algebra descriptions of
the quantum gates and circuits. It then applies a series of
optimization techniques including operator fusion, operator
specialization, vector fusion, loop unrolling, and static matrix
specialization, using an intermediate language to produce
an efficient representation. At the end, this representation
is translated into low-level C and CUDA code using code
generation. Through several experiments on various types
of circuits, we demonstrated that LFQS consistently outper-
forms existing simulators like QuEST, Catalyst, and Qiskit,
particularly in circuits involving a higher number of qubits.

The framework’smodular design provides bettermaintain-
ability for LFQS compared to its competitors. For example,
we easily changed the data layout in our simulator, where
the AOS layout slightly outperforms the SOA layout. This
modularity allows us to capture new algorithms and extend
to new backends more easily than competitors. In the future,
we plan to explore alternative backends, including QPUs.
Furthermore, we plan to capture the SIMD vectorization as
a transformation on the intermediate language.
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