
This is a repository copy of LVFGen: Efficient Liberty Variation Format (LVF) generation
using variational analysis and active learning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/226187/

Version: Published Version

Proceedings Paper:
Zhou, J. orcid.org/0009-0009-6317-6373, Xia, H. orcid.org/0009-0007-8115-1693, Xing, W.
orcid.org/0000-0002-3177-8478 et al. (3 more authors) (2025) LVFGen: Efficient Liberty
Variation Format (LVF) generation using variational analysis and active learning. In:
Posser, G. and Held, S., (eds.) ISPD '25: Proceedings of the 2025 International
Symposium on Physical Design. ISPD '25: International Symposium on Physical Design,
16-19 Mar 2025, Austin, Texas. ACM , pp. 182-190. ISBN 9798400712937/25/03

https://doi.org/10.1145/3698364.3705359

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC)
licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new
works must also acknowledge the authors and be non-commercial. You don’t have to license any derivative
works on the same terms. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

LVFGen: Efficient Liberty Variation Format (LVF) Generation
Using Variational Analysis and Active Learning

Junzhuo Zhou∗

junzhuo22@g.ucla.edu

University of California, Los Angeles,

United States

Haoxuan Xia
hxia0118@g.ucla.edu

University of California, Los Angeles,

United States

Wei Xing2

w.xing@sheffield.ac.uk

The University of Sheffield, Sheffield,

United Kingdom

Ting-Jung Lin∗

tlin@idt.eitech.edu.cn

Ningbo Institute of Digital Twin,

Eastern Institute of Technology,

Ningbo, China

BTD Inc, Ningbo, China

Li Huang
lhuang03@btd.tech

Engineering Research Center of

Chiplet Design and Manufacturing of

Zhejiang Province, Ningbo, China

Lei He2

lhe@ee.ucla.edu

University of California, Los Angeles,

United States

Abstract

As transistor dimensions shrink, process variations significantly

impact circuit performance, signifying the need for accurate statis-

tical circuit analysis. In digital circuit timing analysis, the Liberty

Variation Format (LVF) has emerged as an industrial leading rep-

resentation of timing distributions in cell libraries at 22 nm and

below. However, LVF characterization relies on the Monte Carlo

(MC) method, which requires excessive SPICE simulations of cells

with process variations. Similar challenges also exist for uncer-

tainty propagation and quantification in chip manufacturing and

the broader scientific communities. To resolve this foundational

challenge, this paper presents LVFGen, a novel method that reduces

the simulation costs of MC while generate high-accuracy LVF li-

brary. LVFGen utilizes an active learning strategy based on vari-

ational analysis to identify process variation samples that impact

timing distributions more significantly. Compared to the state-of-

the-art Quasi-MC method, LVFGen demonstrates an overall 2.27×
speedup in LVF library generation within an accuracy level of 5k-

sample MC and a 4.06× speedup within a 100k-sample MC accuracy.

CCS Concepts

· Mathematics of computing → Stochastic processes; · Hard-

ware → Statistical timing analysis; Modeling and parameter

extraction.

Keywords

Statistical library generation, Yield, Active learning, Uncertainty

quantification, LVF

ACM Reference Format:

Junzhuo Zhou, Ting-Jung Lin, Haoxuan Xia, Li Huang, Wei Xing, and Lei

He. 2025. LVFGen: Efficient Liberty Variation Format (LVF) Generation

Using Variational Analysis and Active Learning. In Proceedings of the 2025

International Symposium on Physical Design (ISPD ’25), March 16ś19, 2025,

∗Both authors contributed equally to this research.
2Corresponding authors.

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

ISPD ’25, Austin, TX, USA

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1293-7/25/03
https://doi.org/10.1145/3698364.3705359

Austin, TX, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/

3698364.3705359

1 Introduction

The ongoing scale-down of devices significantly amplifies the im-

pacts of process variations on circuit performance. To account for

increasing manufacturing uncertainties, a global derate value is

typically added in corner-based digital circuits’ Static Timing Anal-

ysis (STA) techniques. However, this coarse granularity results in

excessive pessimism and suboptimal designs, which severely limit

circuit performance. To address these challenges, more effective

On-Chip Variation (OCV) characterizations have gained increasing

attention [1ś3].

There have been several OCV formats which represent each tim-

ing entry as a probability distribution rather than a deterministic

value. The formats are applied in Statistical Static Timing Analysis

(SSTA). Relying on the distribution profiles of cells along critical

paths, SSTA accurately evaluates chip timing performance during

the sign-off stage. Liberty Variation Format (LVF) is the latest in-

dustry leading OCV representation in standard cell libraries at 22

nm and below [4].

While the conventional non-linear delay model (NLDM) mea-

sures deterministic timing values for each timing arc, LVF extends

every measurements into a distribution and thus delivers a much

higher accuracy. Modern moment-based LVF captures details in tim-

ing distributions by incorporating mean-shift, standard deviation,

and skewness [5]. This comes at the costs of much longer runtime

of library generation, which primarily relies on the Monte Carlo

(MC) method. MC is considered the gold standard for statistical cir-

cuit analysis under process variations [6]. It provides trustworthy

approximations but requires evaluating excessive process variation

samples using SPICE simulations. As a vast number of cells and

arcs need to be evaluated across multiple corners, millions of SPICE

simulations have become a bottleneck in cell library generation,

limiting large-scale applications of LVF [3].

The quasi-Monte Carlo (QMC) method boasts faster convergence

and higher efficiency for statistical circuit analysis [6]. However,

generating uniformly distributed QMC samples is challenging in

sufficiently large dimensions [7]. A practical definition of a high-

dimensional problem is when constructing equidistributed QMC

points becomes problematic.

182

ISPD ’25, March 16ś19, 2025, Austin, TX, USA Junzhuo Zhou et al.

Traditional optimization techniques for LVF library generation

have attempted to improve efficiency by employing machine learn-

ing for LVF data prediction [3]. Incomplete LVF data acquired by

MC is used as training sets to facilitate data prediction for the re-

maining distributions. For example, a delay table indexed by input

slews and output loads contains correlated delay distributions for

different slew-load pairs. [8] addressed intra-table correlations and

proposed using MC for some distributions while predicting others

with machine learning. Similar correlations were observed in the

same cell type with different driving strengths or across process,

voltage, and temperature (PVT) corners [9]. Although these studies

improved the characterization efficiency through partial data pre-

diction, no mature method has aimed to minimize the simulation

costs of a single MC for LVF library generation.

Previous work has explored the possibility of speeding up MC

by importance sampling in statistical timing analysis [10ś12]. How-

ever, the methods were primarily effective in finding the boundary

of yield rather than the entire timing distributions required by LVF.

Besides, they did not consider the impact of uncertainty quantifi-

cation (UQ). UQ analysis is an essential practice that facilitates

quantitative understanding of uncertainty in a model. It provides

the information for predicting possibilities, inferring the outcome

with the highest probability, and calibrating the model. In a broader

community of UQ, it is possible to accelerate the estimation of the

distribution function using active learning [13]. Despite that they

can deal with arbitrarily targeted distribution, such flexibility comes

with a higher computational costs. This hinders its applications in

LVF that focuses on the first three moments.

This paper presents LVFGen, a novel method that addresses the

above challenges by significantly reducing the simulation costs

while generating highly accurate LVF library. LVFGen utilizes vari-

ational analysis and active learning to identify process variation

samples with larger impacts on delay and transition distributions.

Compared to MC and QMC, LVFGen achieves the same accuracy

with much fewer SPICE simulations. We summarize our key contri-

butions as follows.

• We apply variational analysis to derive a tractable analysis

of the uncertainty propagation and an acquisition function

for downstream applications like active learning.

• We introduce a dimension pruning method based on the-

oretical circuit analysis, enabling the surrogate model to

achieve more accurate predictions of timing performance

with uncertainties.

• LVFGen demonstrates a 2.27× overall speedup in LVF library

generation with an accuracy level of 5k MC and a 4.06×
speedup with a 100k-MC accuracy, compared to QMC.

To the best of our knowledge, this is the first in-depth study diving

into the acceleration of characterizing a specific probability density

function (PDF) by its statistical moments using a rigorous math-

ematical analysis tool. The key ideas of this work also benefit a

broader community of UQ instead of just the EDA community.

The rest of the paper is organized as follows. Section 2 presents

preliminaries and problem formulation. Section 3 introduces the

proposed algorithm. Section 4 presents experimental results and

Section 5 concludes the paper.

2 Preliminaries

2.1 Problem Formulation

Statistical cell library generation is used to obtain varied circuit

timing performance considering process variations. This process

typically involves two steps to obtain an accurate estimation of

timing performance.

The first step is MC simulation, where the sample set with numer-

ous process variation samples X = {𝒙𝑛 | 𝑛 = 1, 2, ..., 𝑁 } is generated
as input (with other circuit parameters fixed) for SPICE simulations.

The timing analysis is obtained from the simulated waveform. This

procedure can be represented as follows:

𝒚𝑛 = 𝑓 (𝒙𝑛), (1)

where 𝒙𝑛 ∈ R𝑑 represents the process variation samples from the

𝑑-dimension variation space. 𝒚𝑛 = [𝑦 (1)𝑛 , 𝑦
(2)
𝑛 , ... , 𝑦

(𝑡)
𝑛]𝑇 is the

𝑡-dimensional results vector. Each 𝑦
(𝑖)
𝑛 represents one deterministic

timing performance, which can be one of the delay, transition, and

constraint (in sequential circuits) values.

The second step involves fitting the measured timing values into

a specific statistical model. LVF employs three statistical moments,

mean 𝜇, standard deviation 𝜎 , and skewness 𝛾 , to depict the timing

distributions. With the collected timing result set Y = {𝒚𝑛 | 𝑛 =

1, 2, ..., 𝑁 } from simulations of the first step, the three moments of

the 𝑖-th timing performance are estimated by:

Y (𝑖)
= {𝑦 (𝑖)𝑛 | 𝑛 = 1, 2, ..., 𝑁 },

𝜇 = E[Y (𝑖)],

𝜎̂ = E[(Y (𝑖) − E[Y (𝑖)])2]1/2,

𝛾 = E[(Y (𝑖) − E[Y (𝑖)])3]1/3 .

(2)

The skew-normal (SN) distribution generalizes the normal distri-

bution with skewness. There exists a bijection between statistical

moments and SN parameters: location 𝜉 , scale 𝜔 , and shape 𝛼 [14].

In most applications, the statistical moments of LVF define an SN

distribution whose PDF is:

𝑓LVF (𝑥 |𝜇, 𝜎,𝛾) = 𝑓SN (𝑥 |𝜉, 𝜔, 𝛼) =
2

𝜔
𝜙 (𝑥 − 𝜉

𝜔
)Φ(𝛼 𝑥 − 𝜉

𝜔
), (3)

where 𝜙 is the PDF of normal distribution, and Φ is the cumulative

distribution function (CDF) of normal distribution.

The Central Limit Theorem (CLT) plays a crucial role in MC

simulation, implying that the estimation error tends to zero as the

number of samples increases with a convergence rate of 𝑂 (1/
√
𝑁)

[15]. To reduce the number of SPICE simulations, we formulate

moment-based statistical characterization as a UQ optimization

problem. For the 𝑖-th timing performance, the goal is to minimize

the distance between the estimated timing distribution and the real

distribution. That is,

minimize L (𝑖)

subject to L (𝑖)
= 𝐷 [𝐿𝑉 𝐹 (𝜇, 𝜎̂2, 𝛾3) |𝐿𝑉 𝐹 (𝜇, 𝜎2, 𝛾3)],

(4)

where L (𝑖) is the objective function for 𝑖-th timing performance,

𝐿𝑉 𝐹 (𝜇, 𝜎̂2, 𝛾3) is the timing distribution given estimated moments,

𝐿𝑉 𝐹 (𝜇, 𝜎2, 𝛾3) is the (unknown) real distribution, and 𝐷 [·|·] is the
distance between two distributions, which is typically a divergence

measure.

183

LVFGen: Efficient Liberty Variation Format (LVF) Generation Using Variational Analysis and Active Learning ISPD ’25, March 16ś19, 2025, Austin, TX, USA

LocalMaxBandit

variation
space

sampling

sampling

candidate
samples fit

Surrogate
Model

...
MLP GP

labeled
 timing

yes

estimated
distribution

distribution

N
1

delay

selected
samples

M
1

M
1

Vin

Vout

predicted
 timing

N
1

delay

transition

transition

Variational Analysis

no

constraint
transition

…

acquisition
scores

N1

...

3.1.1 Init

3.1.2 Train
x

3.1.3 Predict

3.1.4 Evaluate

End?

3.1.5

x

x

3.1.6
Selection

SPICE
3.1.6

delay

y

y

Figure 1: Overview of our algorithm, a general active learning framework [13] application for LVF generation.

2.2 Active Learning

Active learning [16] is a subfield of machine learning. By actively

selecting data for learning, it can yield superior performance com-

pared to merely receiving static data points during training. Active

learning often achieves heightened accuracy with fewer labeled

instances. It finds widespread application in scenarios where data

abundance contrasts with label scarcity. The primary framework

in active learning is uncertainty sampling. This strategy aims to

diminish model variance by incorporating instances with the high-

est uncertainty regarding their labels into the training set during

subsequent iterations of model refinement.

2.3 Gaussian Process

The main feature of Gaussian process (GP) is that it can predict both

the mean function 𝜇 (𝒙) of the objective 𝑓 (𝒙) and the covariance

matrix 𝑘 (𝒙, 𝒙′) simultaneously [17]:

𝜇 (𝒙) = E[𝑓 (𝒙)],
𝑘 (𝒙, 𝒙′) = E[(𝑓 (𝒙) − 𝜇 (𝒙)) (𝑓 (𝒙′) − 𝜇 (𝒙′))] . (5)

When provided with input 𝒙 , the mean function 𝜇 (𝒙) serves
to estimate the objective value. The prevalent expression for the

covariance function 𝑘 (𝒙, 𝒙′) is:

𝑘 (𝒙, 𝒙′) = 𝜆2 exp

(

−1

2
(𝒙 − 𝒙

′)TΛ(𝒙 − 𝒙
′)
)

, (6)

where Λ = 𝑑𝑖𝑎𝑔(𝜆1−2, 𝜆2−2, ..., 𝜆𝑑−2) represents the square inverse
singular matrix of covariance matrix 𝑘 (𝒙, 𝒙′). In our experiment,

the input features comprise process variation samples, while the

output objectives consist of timing performance vector with propa-

gation delay, transition, and constraint if applicable:

𝒚̂𝑛 = 𝑔(𝒙𝑛) ∼ N (𝜇 (𝒙𝑛), 𝑣 (𝒙𝑛)) . (7)

Here 𝑣 (𝒙𝑛) represents the predicted variance of timing vector. GP

typically serves as a surrogate model adept at offering uncertainty

values. It provides direct insights into the process of active learning,

while the underlying real model operates as a black-box function.

However, GP has its limitations in high-dimensional and non-

stationary functions [18]. This suggests that it is hard for GP to

predict accurately with larger problem scales or non-linear circuit

behaviors.

3 Proposed Algorithm

This section presents LVFGen, a statistical cell library generation

algorithm that employs variational analysis to estimate the LVF

timing distributions. LVFGen realizes co-optimization by selecting

the effective process variation samples, whose corresponding tim-

ing results enable the surrogate model to more accurately estimate

the entire distributions of delay and transition for specific circuits.

The illustration in Figure 1 is assumed for combinational cells with

delay and transition time. The framework is similar for sequential

cells that have setup or hold time.

3.1 Procedures Framework

As depicted in Figure 1, LVFGen involves an iteration, each consist-

ing of two steps. The first step labels the process variation samples

with timing results using SPICE simulations, and the second step

determines the most effective samples using a surrogate model

combined with variational analysis. The basic procedures of the

184

ISPD ’25, March 16ś19, 2025, Austin, TX, USA Junzhuo Zhou et al.

LVFGen algorithm are listed as follows. More details are discussed

in Sections 3.2-3.4.

3.1.1 Initialization (set 𝑘 = 0).

• Create a large process variation sample set X = {𝒙𝑛 | 𝑛 =

1, 2, ..., 𝑁 }, to include all the candidate samples. Use quasi-

random sequence to populate the entire process variation

space.

• Take the first𝑀 samples to form the initial sample set X0 =

{𝒙𝑛 | 𝑛 = 1, 2, ..., 𝑀}, 𝑀 ≪ 𝑁 .

• Based on SPICE simulation results, label the initial sample

set X0 with timings to obtain Y0 = 𝑓 (X0) = {𝑓 (𝒙𝑛) | 𝑛 =

1, 2, ..., 𝑀}.
• Calculate the mean 𝜇0 and standard deviation 𝜎0 of Y0 for

each timing metric. Obtain the normalized initial timing

performance Y′
0 = (Y0 − 𝜇0)/𝜎0.

3.1.2 Training the Surrogate Model.

• The sample sets X0 to X𝑘 have been labeled with SPICE

simulation results. Incrementally train the surrogate model

with the labeled sets {(X0,Y′
0), ..., (X𝑘 ,Y

′
𝑘
)}.

3.1.3 Timing Prediction by Surrogate Model.

• Use the surrogate model to predict the timing of all the

candidate process variation samples in X and obtain Ŷ′
=

{𝒚̂′𝑛 | 𝒚̂′𝑛 = 𝑔(𝒙𝑛), 𝑛 = 1, 2, ..., 𝑁 }.

3.1.4 Candidate Evaluation.

• Evaluate the acquisition score A(𝒙𝑛) for each candidate

sample in X, which will be used for sample selection in step

3.1.6.

3.1.5 Termination Criterion Check.

• If 𝑘 > 𝑘𝑚𝑎𝑥 or𝑚𝑎𝑥{A(𝒙𝑛) | 𝑛 = 1, 2, ..., 𝑁 } < A𝑚𝑖𝑛 ,

terminate with the distribution of {Ŷ′ × 𝜎0 + 𝜇0}. The final
distribution is determined by the timing predictions Ŷ′ based
on the surrogate model trained by𝑀×(𝑘+1) selected process
variation samples.

• Else, proceed to step 3.1.6.

3.1.6 Sample Selection & Labeling by Simulation (set 𝑘 = 𝑘 + 1).

• Select another𝑀 effective samples from X to form the 𝑘-th

sample set, X𝑘 = {𝒙𝑛 | 𝑛 = 𝑆1, 𝑆2, ..., 𝑆𝑀 }.
• Label the new process variation samples with SPICE simula-

tion results to obtainY𝑘 = 𝑓 (X𝑘) = {𝑓 (𝒙𝑛) | 𝑛 = 𝑆1, 𝑆2, ..., 𝑆𝑀 }.
• Normalize the timing performance by Y′

𝑘
= (Y𝑘 − 𝜇0)/𝜎0.

• Back to step 3.1.2

3.2 Dimension Pruning

LVFGen employs a surrogate model to predict the circuit’s tim-

ing performance from process variables. However, in standard cell

SPICE simulations, the numerous devices and extensive process

parameters result in excessively large dimensions. When GP is used

directly as the surrogate model, it will be affected by the curse

of dimensionality, leading to inaccurate predictions. Fortunately,

the effective dimension in stochastic circuit problems can be much

smaller than the intrinsic dimension of the circuit. Take a 2-input

NAND circuit in Figure 2 as an instance. When the input 𝐴2 stays

VDD
MP2

MN1

MN2

MP1

A1

A2

ZN

(a) 𝐴1 rising, 𝑍𝑁 falling

VDD
MP2

MN1

MN2

MP1

A1

A2

ZN

(b) 𝐴1 falling, 𝑍𝑁 rising

Figure 2: Dimension pruning for NAND2

high and 𝐴1 goes rising or falling, the transistor𝑀𝑃2 always stays

off, and the process variations within 𝑀𝑃2 only weakly impact

timing performance by influencing the drain parasitic capacitance

on node 𝑍𝑁 . We denote the inactive transistors in similar circum-

stances as dark transistors. Besides, conducting transistors may have

some less significant process variations.

The above phenomena become more significant in large-scale

circuits with more dark transistors. This implies that we can merge

and prune the less significant dimensions to reduce the effective

dimensionality, and thus mitigate the curse of dimensionality. In

LVFGen, a multi-layer perceptron (MLP) with a fully connected

activation layer is employed to perform dimension pruning. It can

recognize both linear and non-linear relationships from the process

variation space (up to 200 dimensions) to the pruned variable space

(fewer than 20 dimensions) during the gradient descent phase of

training. The pruned variables are then sent to the GP model to

predict multiple timing performances with uncertainty. Now, the

surrogate model of LVFGen can be presented as follows:

𝒚̂𝑛 = 𝑔(𝒙𝑛) = 𝑔2 (𝑔1 (𝒙𝑛)) ∼ N (𝜇 (𝒙𝑛), 𝑣 (𝒙𝑛)),

𝑦
(𝑖)
𝑛 ∼ N(𝜇 (𝑖) (𝒙𝑛), 𝑣 (𝑖) (𝒙𝑛)) .

(8)

Here 𝑔1 : R
𝑑 ↦→ R𝑝 and 𝑔2 : R

𝑝 ↦→ R𝑡 represents the MLP and GP

transformation. R𝑑 is process variation space, R𝑡 is timing perfor-

mance space, R𝑝 is pruned variable space. The setting of pruned

variables dimension 𝑝 should consider both the prior circuit scale

and the performance of the GP model in practice. Each predicted

timing performance within 𝒚̂𝑛 follows the Gaussian distribution

with mean 𝜇 (𝑖) (𝒙𝑛) and variance 𝑣 (𝑖) (𝒙𝑛).

3.3 Acquisition by Variational Analysis

Recall that for 𝑖-th timing performance, our goal is to minimizeL (𝑖)

in Eq. (4). However, it is impossible to obtain the real distribution

in practice, and the direct computation is infeasible. Thus we need

to define an acquisition function to guide our optimization. The

strategy of LVFGen aims to diminish the uncertainty of objective

function L (𝑖) , in the approach of finding and labeling the candidate

samples who contribute the most to the uncertainty. The acquisition

score provides an evaluation of the contribution, which can be

formalized as follows:

A (𝑖) (𝒙𝑛) = Var[L (𝑖)]C𝒙𝑛
. (9)

Here A (𝑖) (𝒙𝑛) is the acquisition score of the candidate sample 𝒙𝑛 ,

and Var[L (𝑖)]C𝒙𝑛 represents the contribution of 𝒙𝑛 to the variance

of objective function L (𝑖) . Next, we will employ the chain rule to

185

LVFGen: Efficient Liberty Variation Format (LVF) Generation Using Variational Analysis and Active Learning ISPD ’25, March 16ś19, 2025, Austin, TX, USA

express the propagation of gradient and uncertainty. Notice that

for clarify, we will leave out all (𝑖) flags on statistical moments

within this section.

3.3.1 Uncertainty Propagation along Moments. Given the predicted

timing set by the surrogate model {𝒚̂𝑛 |𝒚̂𝑛 = 𝒚̂
′
𝑛 × 𝜎0 + 𝜇0, 𝑛 =

1, 2, ..., 𝑁 }, we want to express expectations and variances of the

three statistical moments defined in Eq. (2). Since each 𝑦𝑛 holds an

equal probability, we can rewrite Eq. (2) as follows:

𝜇 =

∑𝑁
𝑛=1 𝑦

(𝑖)
𝑛

𝑁
,

𝜎̂2 =

∑𝑁
𝑛=1 (𝑦

(𝑖)
𝑛 − 𝜇)2

𝑁
,

𝛾3 =

∑𝑁
𝑛=1 (𝑦

(𝑖)
𝑛 − 𝜇)3

𝑁
.

(10)

Begin with the analysis of 𝜇, the
∑𝑁
𝑛=1 𝑦𝑛 term is a sum of normally

distributed random variables. Thus, we can directly express its

expectation and variance as:

E[𝜇] =
∑𝑁
𝑛=1 𝜇

(𝑖) (𝒙𝑛)
𝑁

,

Var[𝜇] =
∑𝑁
𝑛=1 𝑣

(𝑖) (𝒙𝑛)
𝑁

.

(11)

For 𝜎̂ and 𝛾 , we can find that they have a common (𝑦 (𝑖)𝑛 − 𝜇) term,

which is also a normally distributed random variable essentially:

(𝑦 (𝑖)𝑛 − 𝜇) ∼ N (𝜇′𝑛, 𝑣 ′𝑛),

𝜇′𝑛 = 𝜇 (𝑖) (𝒙𝑛) − E[𝜇],

𝑣 ′𝑛 = 𝑣 (𝑖) (𝒙𝑛) + Var[𝜇] .

(12)

With the above knowledge, we can have the expressions for 𝜎̂2:

E[𝜎̂2] =
∑𝑁
𝑛=1E[(𝑦

(𝑖)
𝑛 − 𝜇)2]
𝑁

=

∑𝑁
𝑛=1 (𝜇′2𝑛 + 𝑣 ′𝑛)

𝑁
,

Var[𝜎̂2] =
∑𝑁
𝑛=1Var[(𝑦

(𝑖)
𝑛 − 𝜇)2]

𝑁
=

∑𝑁
𝑛=1 (4𝜇′2𝑛 𝑣 ′𝑛 + 2𝑣 ′2𝑛)

𝑁
.

(13)

and the the expressions for 𝛾3,

E[𝛾3] =
∑𝑁
𝑛=1E[(𝑦

(𝑖)
𝑛 − 𝜇)3]
𝑁

=

∑𝑁
𝑛=1 (𝜇′3𝑛 + 3𝜇′𝑛𝑣

′
𝑛)

𝑁
,

Var[𝛾3] =
∑𝑁
𝑛=1Var[(𝑦

(𝑖)
𝑛 − 𝜇)3]

𝑁
=

∑𝑁
𝑛=1 (9𝜇′4𝑛 𝑣 ′𝑛 + 36𝜇′2𝑛 𝑣

′2
𝑛 + 15𝑣 ′3𝑛)

𝑁
.

(14)

We have forwardly expressed the expectations and variances for

three statistical moments in terms of 𝒙𝑛 , with which we can easily

get the gradients∇𝑣 (𝒙𝑛)Var[𝜇],∇𝑣 (𝒙𝑛)Var[𝜎̂2], and∇𝑣 (𝒙𝑛)Var[𝛾3]
using computation tools like PyTorch. Finally, we express the con-

tribution from each 𝒙𝑛 to three statistical moments’ uncertainty:

Var[𝜇]C𝒙𝑛
= ∇𝑣 (𝒙𝑛)Var[𝜇] · 𝑣 (𝒙𝑛),

Var[𝜎̂2]C𝒙𝑛
= ∇𝑣 (𝒙𝑛)Var[𝜎̂2] · 𝑣 (𝒙𝑛),

Var[𝛾3]C𝒙𝑛
= ∇𝑣 (𝒙𝑛)Var[𝛾3] · 𝑣 (𝒙𝑛) .

(15)

And the estimated origin distribution statistical moments for

current stage are as follows:

𝜇𝑘 = 𝜎0E[𝜇] + 𝜇0,

𝜎̂2
𝑘
= 𝜎20E[𝜎̂

2],

𝛾3
𝑘
=

𝜎20E[𝛾
3]

2
.

(16)

3.3.2 Variational Analysis for Objective Function. Now we need to

quantify the three statistical moments’ uncertainty that influences

our objective function to conduct active learning. Although direct

computation is infeasible, we luckily find a way to approximately

obtain the derivative using the property of distance and variational

analysis. Take 𝜎̂2 as an example:

∇𝜎̂2L (𝑖)

= lim
𝛿→0

1

𝛿
(𝐷 [𝐿𝑉 𝐹 (E[𝜇], E[𝜎̂2] + 𝛿, E[𝛾3]) |𝐿𝑉 𝐹 (𝜇, 𝜎2, 𝛾3)]

− 𝐷 [𝐿𝑉 𝐹 (E[𝜇], E[𝜎̂2], E[𝛾3]) |𝐿𝑉 𝐹 (𝜇, 𝜎2, 𝛾3)])
≈ lim
𝛿→0

𝐷 [𝐿𝑉 𝐹 (E[𝜇], E[𝜎̂2] + 𝛿, E[𝛾3]) |𝐿𝑉 𝐹 (E[𝜇], E[𝜎̂2], E[𝛾3])]
𝛿

.

(17)

Here we apply the perturbation theory into variational analysis,

avoiding to directly compute the L. Then ∇𝜇L and ∇𝛾3L can be

obtained using the same approach as Eq. (17).

3.3.3 The Last Step. We now assemble the variational analysis to

derive a total variance change caused by each new samples as

Var[L (𝑖)]

=

(

∇𝜇L (𝑖)
)2
·Var[𝜇] +

(

∇𝜎̂2L (𝑖)
)2
·Var[𝜎̂2] +

(

∇𝛾3L (𝑖)
)2
·Var[𝛾3]

+ 2∇𝜇L · ∇𝜎̂2L · Cov[𝜇, 𝜎̂2]

+ 2∇𝜇L · ∇𝛾3L · Cov[𝜇,𝛾3]

+ 2∇𝜎̂2L · ∇𝛾3L · Cov[𝜎̂2, 𝛾3]

=

(

∇𝜇L (𝑖)
)2
·Var[𝜇] +

(

∇𝜎̂2L (𝑖)
)2
·Var[𝜎̂2] +

(

∇𝛾3L (𝑖)
)2
·Var[𝛾3] .

(18)

Here the co-variances between statistical moments are zeros. Com-

bining the Eqs. (9), (15), and (18), we finally obtain the acquisition

score of each candidate samples to 𝑖-th timing performance:

A (𝑖) (𝒙𝑛) = Var[L (𝑖)]C𝒙𝑛

=

(

∇𝜇L (𝑖)
)2
·Var[𝜇]C𝒙𝑛

+
(

∇𝜎̂2L (𝑖)
)2
·Var[𝜎̂2]C𝒙𝑛

+
(

∇𝛾3L (𝑖)
)2
·Var[𝛾3]C𝒙𝑛

=

(

∇𝜇L (𝑖)
)2
·∇𝑣 (𝒙𝑛)Var[𝜇] · 𝑣 (𝒙𝑛)

+
(

∇𝜎̂2L (𝑖)
)2
·∇𝑣 (𝒙𝑛)Var[𝜎̂2] · 𝑣 (𝒙𝑛)

+
(

∇𝛾3L (𝑖)
)2
·∇𝑣 (𝒙𝑛)Var[𝛾3] · 𝑣 (𝒙𝑛).

(19)

186

ISPD ’25, March 16ś19, 2025, Austin, TX, USA Junzhuo Zhou et al.

3.4 Multi-timing Co-optimization

Having an acquisition function that only addresses single-timing

performance is insufficient, as one SPICE simulation yields mul-

tiple timing results (such as transition and delay) simultaneously.

Therefore, it is crucial for our algorithm to support multi-timing

co-optimization, both in evaluating candidate acquisitions and in

selecting effective samples.

3.4.1 Acquisition Evaluation. We use an intuitive weighting ap-

proach to evaluate the acquisition scores of candidate samples for

multi-timing objective functions:

A(𝒙𝑛) =
𝑡
∑︁

𝑖=1

(

𝑤𝑖 · A (𝑖) (𝒙𝑛)
)

. (20)

Here A(𝒙𝑛) is the overall acquisition scores of candidate sample

𝒙𝑛 , and𝑤𝑖 is the weight factor for the 𝑖-th timing distribution.

3.4.2 Effective Sample Selection. A higher acquisition score means

a larger contribution to the uncertainty. However, in practice, we

find that the rare tail samples tend to have high acquisition scores,

while the extensive body samples typically have lower acquisition

scores. Hence, the sample selection strategy needs to consider the

candidate samples’ locations in the distribution, rather than simply

basing decisions on the acquisition scores. The algorithm firstly

applies a local max operation to identify the local maximum acqui-

sition scores {A(𝒙𝑛), 𝑛 = 𝐿1, 𝐿2, ..., 𝐿𝑀 ′ } considering the samples’

locations. Then we use normalized acquisition values as the proba-

bilities for selecting𝑀 effective samples from the local maximum

samples:

𝑃 (𝒙𝑛) =
A(𝒙𝑛)

∑𝐿𝑀′
𝑛=1 A(𝒙𝑛)

𝑛 = 𝐿1, 𝐿2, ..., 𝐿𝑀 ′ . (21)

Finally, this multi-armed bandit problem will return the selected

effective sample set for 𝑘-th iteration X𝑘 = {𝒙𝑛, 𝑛 = 𝑆1, 𝑆2, ..., 𝑆𝑀 }.
The new samples set will be labeled with SPICE simulations and

used to train the surrogate model for next iteration.

4 Experiment Results and Discussions

4.1 Experiment Setting

The experiments use the TSMC 22nm standard cells under 0.8V,

25◦𝐶 , and TTGlobal_LocalMC cornerwith all local variations turned
on. The proposed method is implemented in PyTorch and assessed

by HSPICE on Linux machines with NVIDIA 3090 GPU and 8-core

Intel Xeon 6348 CPU, each machine running 8 tasks simultaneously.

For other algorithms, we use pure CPU machines (as they are not

designed to utilize the GPU). All the runtime reported below has

been converted to that of a single thread.

We compare three algorithms: LVFGen, Sobol’s QMC [19], and

Random MC. Sobol’s QMC is a state-of-the-art algorithm with no-

table enhancement in convergence for stochastic circuit problems.

Random MC refers to random sampling, serving as the baseline.

We report the comparisons for one standard cell in Section 4.2 and

a library of 26 typical cells in 4.3. Applications of the generated LVF

to SSTA are presented in Section 4.4.

We use results obtained from Random MC with 100k samples

as golden. To evaluate the accuracy of the estimated distributions,

we use JensenśShannon divergence (J-divergence) as the metric to

measure the distance between the estimate and golden. J-divergence

is a symmetric measure and it satisfies the triangular inequality [20],

which reduces the approximation error of Eq. (17). The definition

of J-divergence is:

𝐷 𝐽 [𝐿𝑉 𝐹1∥𝐿𝑉 𝐹2] = 𝐷𝐾𝐿 [𝐿𝑉 𝐹1∥𝐿𝑉 𝐹2] + 𝐷𝐾𝐿 [𝐿𝑉 𝐹2∥𝐿𝑉 𝐹1],

𝐷𝐾𝐿 [𝐿𝑉 𝐹1∥𝐿𝑉 𝐹2] =
∫

𝑓LVF1 (𝑥) log(
𝑓LVF1 (𝑥)
𝑓LVF2 (𝑥)

) 𝑑𝑥.
(22)

Here 𝐷𝐾𝐿 is the Kullback-Leibler divergence, and 𝑓LVF (𝑥) is the
PDF of LVF timing.

For ease of reading, we denote the J-divergence between golden

and the estimation of Random MC of 5k samples as 5k Accuracy

With similar conventions, we also define [10k, 25k, 50k, 100k]

Accuracy. The algorithms are assessed under different accuracy

requirements to provide a comprehensive comparison.

In experiments, we have the candidate sample set X with size

𝑁 = 220. The selected sample set X𝑘 has size 𝑀 = 64 for the 𝑘-

th iteration. The pruned variable dimension varies from 10 to 16,

depending on the circuit scale. Parameters of the surrogate model

are initialized randomly. SPICE simulation labels each sample with

one delay and one transition. Since cell delays are more significant

than transitions in timing propagation [21], we weigh the delay

and transition acquisition scores with 0.7 and 0.3 respectively in

Eq. (20).

4.2 Convergence for OR2 Cell
This experiment assesses LVFGen using a 48-dimensional OR2X2

cell. The timing arc has one input rising and the other staying low,

resulting in a rising output.

Figure 3 presents the delay and transition distributions estimated

by LVFGen, along with the acquisition scores for each potential

candidates. The 𝐷 𝐽 values are the J-divergence from golden to the

estimated distribution. Figures 3a-3e show how the estimations

improve over iterations. We can see the curves rapidly converge to

golden along with smaller values of J-divergence. The projection

plots of acquisition scores evidence that the selection strategy suc-

cessfully identifies the most contributing samples from millions of

candidates, with a balanced population in distribution body and

tail. Additionally, we observe that the acquisition scores decrease

over iterations. This indicates that the surrogate model can effec-

tively generalize the mapping from process variations to timing

performances based on previous learning, thereby reducing the

acquisition scores of unlabeled samples.

Figures 4a compare the efficiency of Random MC, Sobol’s, and

LVFGen in estimating delay distributions. The plots are in log10 − log10
scale, where the slopes of the linear fitting indicate the convergence

rates. The 𝑂 (1/𝑁) convergence rate of Random MC is aligned

with the theoretical 𝑂 (1/
√
𝑁) convergence rate of CLT since the

J-divergence is a square measure. The rapid decreasing trend of

LVFGen demonstrates its strength in fast convergence.

Figure 4c shows the accuracy of LVFGen prediction reaches sat-

uration quickly after achieving 100k accuracy level. We believe

the saturation happens due to a more complex mapping from pro-

cess variations to transitions, which diminishes the effectiveness of

LVFGen. Considering transition’s self-adaptive property in timing

propagation [22, 23], the 100k accuracy with J-divergence below

10−4 only has a light impact on SSTA. Figure 3e proves that LVFGen

187

LVFGen: Efficient Liberty Variation Format (LVF) Generation Using Variational Analysis and Active Learning ISPD ’25, March 16ś19, 2025, Austin, TX, USA
D
e
la
y
D
is
t.

T
ra
n
si
ti
o
n
D
is
t.

A
cq

u
is
it
io
n
S
co

re

(a) Init

3 2 1 0 1 2 3
Normalized Delay

0.0

0.1

0.2

0.3

0.4
DJ=0.0331 Golden

Estimated

3 2 1 0 1 2 3
Normalized Transition

0.0

0.1

0.2

0.3

0.4
DJ=0.0446 Golden

Estimated

3 2 1 0 1 2 3
Normalized Delay

10 19

10 18

10 17

Candidate LocalMax Selected

(b) Iteration 1

3 2 1 0 1 2 3
Normalized Delay

0.0

0.1

0.2

0.3

0.4 DJ=0.0114 Golden
Estimated

3 2 1 0 1 2 3
Normalized Transition

0.0

0.1

0.2

0.3

0.4 DJ=0.0163 Golden
Estimated

3 2 1 0 1 2 3
Normalized Delay

10 20

10 19

10 18

10 17

10 16

Candidate LocalMax Selected

(c) Iteration 2

3 2 1 0 1 2 3
Normalized Delay

0.0

0.1

0.2

0.3

0.4
DJ=0.000483 Golden

Estimated

3 2 1 0 1 2 3
Normalized Transition

0.0

0.1

0.2

0.3

0.4
DJ=8.65e 05 Golden

Estimated

3 2 1 0 1 2 3
Normalized Delay

10 21

10 20

10 19

10 18

10 17

Candidate LocalMax Selected

(d) Iteration 4

3 2 1 0 1 2 3
Normalized Delay

0.0

0.1

0.2

0.3

0.4
DJ=4.43e 05 Golden

Estimated

3 2 1 0 1 2 3
Normalized Transition

0.0

0.1

0.2

0.3

0.4
DJ=0.000152 Golden

Estimated

3 2 1 0 1 2 3
Normalized Delay

10 22

10 21

10 20

10 19

10 18

10 17

Candidate LocalMax Selected

(e) Iteration 8

3 2 1 0 1 2 3
Normalized Delay

0.0

0.1

0.2

0.3

0.4
DJ=1.46e 06 Golden

Estimated

3 2 1 0 1 2 3
Normalized Transition

0.0

0.1

0.2

0.3

0.4
DJ=6.67e 05 Golden

Estimated

3 2 1 0 1 2 3
Normalized Delay

10 22

10 21

10 20

10 19

10 18

10 17

Candidate LocalMax Selected

Figure 3: Convergence of delay and transition distributions for OR2 cell.

D
J
C
o
n
v
e
rg
e
n
ce

S
p
e
e
d
u
p

(a) Delay #sim convergence

Acc.
5k
10k
25k
50k
100k

100 500 1k 5k 10k 25k 50k 100k
#Simulation

10 6

10 5

10 4

10 3

10 2

10 1

exp10(0.98× log10(n) + 0.48)

exp10(1.87× log10(n) + 2.23)exp10(2.44× log10(n) + 2.21)

Random
Sobol's
LVFGen

(e) Delay #sim speedup

5k 10k 25k 50k 100k
Accuracy Level

1×
20×
40×

80×

160×
Random
Sobol's
LVFGen

(b) Delay runtime convergence

Acc.
5k

10k
25k
50k

100k

101 102 103 104
Overall Time (s)

10 6

10 5

10 4

10 3

10 2

10 1

exp10(0.98× log10(t) 0.51)

exp10(1.87× log10(t) + 0.35)exp10(2.09× log10(t) 0.58)

Random
Sobol's
LVFGen

(f) Delay runtime speedup

5k 10k 25k 50k 100k
Accuracy Level

1×
10×
20×

40×

80×

140× Random
Sobol's
LVFGen

(c) Transition #sim convergence

Acc.
5k
10k
25k
50k
100k

100 500 1k 5k 10k 25k 50k 100k
#Simulation

10 6

10 5

10 4

10 3

10 2

10 1

exp10(1.00× log10(n) + 0.39)

exp10(1.21× log10(n) + 0.11)

exp10(1.59× log10(n) + 0.37)

Random
Sobol's
LVFGen

(g) Transition #sim speedup

5k 10k 25k 50k 100k
Accuracy Level

1×

10×

20×

30×

40×

50×

60×

70× Random
Sobol's
LVFGen

(d) Transition runtime converg.

Acc.
5k

10k
25k
50k

100k

101 102 103 104
Overall Time (s)

10 6

10 5

10 4

10 3

10 2

10 1

exp10(1.00× log10(t) 0.62)

exp10(1.21× log10(t) 1.11)

exp10(1.35× log10(t) 1.48)

Random
Sobol's
LVFGen

(h) Transition runtime speedup

5k 10k 25k 50k 100k
Accuracy Level

1×

10×

20×

30×

40×
Random
Sobol's
LVFGen

Figure 4: Comparison of speedup between LVFGen, Random MC, and Sobol’s for OR2 cell.

already achieves sufficient accuracy in predicting transition distri-

butions. In summary, LVFGen achieves the 100k accuracy level with

only ~300 simulations, compared to the 100k simulations required

by Random MC and ~5k simulations by Sobol’s.

Similarly, Figures 4e and 4g plot the speedup rates of Sobol’s and

LVFGen in terms of the reduction in simulation times across sev-

eral accuracy levels. LVFGen demonstrates a significant speedup in

estimating both delay and transition distributions compared to Ran-

dom MC and Sobol’s. Furthermore, LVFGen proves its effectiveness

with even larger improvements at higher accuracy requirements.

For fair comparisons, we include the overhead of active learning

computations rather than just the simulation times. Figures 4b and

4d present the convergence comparisons with runtime. Figures 4f

and 4g plot the runtime improvements.

Although the algorithm overhead degrades the efficiency of LVF-

Gen, it still achieves significant speedup. Compared to RandomMC,

LVFGen saves up to 140× and 40× runtime for delay and transition

estimations, the speedups for Sobol’s are up to 27× and 13×. Com-

pared to Sobol’s QMC, the speedups for LVFGen are to 5× and 3×,
respectively.

4.3 Speedup for Cell Library

To prove the generalization of LVFGen, we conduct an extensive

experiment over 26 distinct standard cells, with dimensions ranging

from 36 to 156. According to design complexities, we cluster those

cells into three categories: low-dimension, middle-dimension, and

high-dimension. The evaluated accuracy level ranges from 5k to

100k, covering the basic requirements in practice [24ś27].

We assess each cell with RandomMC, Sobol’s QMC and LVFGen,

each estimating 8×8 slow-load pairs’ timing distributions of selected

arcs. Table 1 summarizes the results.

We assume six variation variables for each transistor. Cells with

the same function but different drive strengths may use different

numbers of transistors, which results in different number of vari-

ables. However, the variations of parallel transistors tend to have a

similar effect on timing. Thus, we hypothesize that the MLP can

identify the similarity and merge the variables for dimension re-

duction. Consequently, the pruned dimensions are determined by

the complexity of schematic topology rather than the number of

transistors.

188

ISPD ’25, March 16ś19, 2025, Austin, TX, USA Junzhuo Zhou et al.

Table 1: Speedup Comparison Using Standard Cell Library.

Cell

Type∗
#Tran-

sistor

Origin

dim.

Pruned

dim.

Delay Runtime Speedup† (×) Transition Runtime Speedup† (×)
5k Accuracy 10k Accuracy 50k Accuracy 100k Accuracy 5k Accuracy 10k Accuracy 50k Accuracy 100k Accuracy

Sobol’s Ours Sobol’s Ours Sobol’s Ours Sobol’s Ours Sobol’s Ours Sobol’s Ours Sobol’s Ours Sobol’s Ours

OR2X1 6 36 12 9.23 34.99 10.95 46.00 15.91 85.02 18.54 110.71 4.36 10.62 4.60 11.51 5.30 12.96 5.68 13.30

OR2X2 8 48 12 8.45 26.80 10.41 42.11 15.89 118.03 18.67 182.37 4.99 10.29 6.25 13.57 10.15 25.28 12.40 32.24

NOR2X1 4 24 10 8.99 56.35 9.95 74.81 12.48 142.98 13.75 187.76 3.31 5.45 3.66 5.08 4.48 3.76 4.86 3.13

NOR2X2 8 48 10 3.56 9.30 3.72 12.66 4.07 25.63 4.21 34.99 2.15 1.37 2.34 1.42 2.85 1.51 3.10 1.54

AND2X1 6 36 10 26.02 63.02 33.54 90.60 60.51 207.56 78.24 294.38 10.88 11.30 11.88 11.23 14.51 10.10 15.68 9.34

AND2X2 8 48 10 17.59 48.12 22.22 73.23 38.08 196.07 47.80 298.94 7.13 16.84 7.97 22.15 10.04 39.51 10.97 51.11

NAND2X1 4 24 12 82.08 247.67 114.61 365.67 254.07 876.82 360.19 1262.33 19.07 11.11 25.65 10.49 49.33 9.37 64.52 8.34

NAND2X2 8 48 12 8.86 20.58 10.20 28.64 14.11 62.54 16.22 87.48 4.89 1.92 5.57 2.00 7.46 2.16 8.43 2.23

AOI21X1 6 36 16 62.72 156.12 95.28 258.62 250.36 825.74 378.69 1354.56 20.16 34.11 28.00 48.22 59.59 102.51 82.32 138.16

OAI21X1 6 36 16 37.83 106.35 48.08 157.71 83.02 396.32 104.60 584.31 11.79 3.99 13.78 3.19 19.79 1.70 23.05 1.26

Low-dim. Avg. 26.53 76.93 35.90 115.01 74.85 293.67 104.09 439.78 8.87 10.70 10.97 12.89 18.35 20.89 23.10 26.06

XNOR2X1 12 72 16 30.13 34.35 34.25 53.61 44.88 150.67 50.22 234.26 12.61 26.34 14.19 40.22 18.14 106.02 19.87 160.88

XNOR2X2 14 84 16 5.99 18.60 6.19 27.24 6.50 65.76 6.58 95.91 2.89 14.65 3.21 21.32 4.07 50.70 4.53 73.46

XOR2X1 12 72 16 8.47 25.85 9.98 38.81 14.16 98.52 16.40 146.28 12.34 25.30 13.55 37.96 17.09 97.25 18.34 145.01

XOR2X2 14 84 16 22.37 31.83 29.92 50.72 58.24 150.20 77.72 239.00 8.24 22.39 10.58 34.32 18.57 91.10 23.38 137.97

AOI21X2 12 72 16 11.06 20.28 13.57 31.52 21.56 87.20 26.17 134.96 4.17 3.97 4.68 4.37 6.10 4.93 6.80 5.02

OAI21X2 12 72 16 4.13 20.39 4.56 30.40 5.70 76.58 6.26 113.99 1.43 5.29 1.47 6.68 1.57 11.28 1.61 14.02

Middle-dim. Avg. 13.69 25.22 16.41 38.72 25.17 104.82 30.56 160.73 6.95 16.32 7.95 24.15 10.92 60.21 12.42 89.39

OR2X4 16 96 12 16.92 19.25 20.48 29.95 31.80 82.82 38.37 128.05 9.77 10.84 12.40 15.66 21.27 36.51 26.55 52.39

NOR2X4 16 96 10 8.38 13.36 9.75 19.88 13.87 49.44 16.13 72.82 4.16 5.26 4.79 6.87 6.51 12.57 7.38 16.18

AND2X4 16 96 10 16.66 16.93 22.55 27.65 44.73 85.25 59.73 137.77 9.53 8.43 12.80 12.54 24.54 30.93 32.11 45.27

NAND2X4 16 96 12 2.50 1.96 2.51 2.30 2.53 3.21 2.54 3.65 1.50 1.32 1.44 1.34 1.31 1.36 1.26 1.36

HA1X1 20 120 16 15.28 11.38 19.48 17.27 32.88 45.37 41.04 68.49 9.10 4.82 10.36 6.64 14.10 13.72 16.24 18.60

HA1X2 24 144 16 10.12 6.02 11.53 9.02 15.96 22.82 18.52 33.95 3.63 2.82 4.20 4.02 6.11 9.07 7.18 12.85

XNOR2X4 26 156 16 5.14 2.07 5.85 2.86 7.77 6.03 8.73 8.29 4.14 1.41 4.80 1.87 6.73 3.59 7.77 4.73

XOR2X4 26 156 16 7.48 1.89 8.62 2.57 11.13 5.17 12.10 6.93 4.57 1.96 4.98 2.66 6.07 5.29 6.60 7.05

AOI21X4 24 144 16 6.14 3.60 7.97 5.38 14.69 13.69 19.18 20.45 2.51 2.10 3.30 3.00 6.24 6.81 8.20 9.67

OAI21X4 24 144 16 3.88 4.50 4.19 6.53 4.93 15.51 5.27 22.51 1.56 1.83 1.54 2.43 1.47 4.66 1.43 6.13

High-dim. Avg. 9.25 8.10 11.29 12.34 18.03 32.93 22.16 50.29 5.05 4.08 6.06 5.70 9.44 12.45 11.47 17.42

∗ One timing arc test for each cell type, containing 8×8 delay and transition distributions; † Runtime speedup compared to Random MC.

Overall 16.92 38.52 21.94 57.91 41.53 149.81 55.61 225.58 6.96 9.45 8.38 12.72 13.21 26.72 16.16 37.35

Speedup Compare to Sobol’s 1× 2.28× 1× 2.64× 1× 3.61× 1× 4.06× 1× 1.36× 1× 1.52× 1× 2.02× 1× 2.31×

Table 2: Accuracy Comparison for ISCAS’89 circuits, Golden Uses 100k Accuracy for Cells.

Benchmark #Gates
Mean for Critical Delay (ns) Std. Dev. for Critical Delay (ns)

MC 100k Sobol’s 5k LVFGen 0.7k MC 100k Sobol’s 5k LVFGen 0.7k

s27 15 13.031190(0‰) 13.031190 (0‰) 13.031192 (1.53E-04‰) 0.000956(0‰) 0.000955 (1.05‰) 0.000956 (0‰)
s298 106 0.086129(0‰) 0.086129 (0‰) 0.086129 (0‰) 0.007545(0‰) 0.007545 (0‰) 0.007545 (0‰)
s641 129 13.197377(0‰) 13.197379 (1.52E-04‰) 13.197384 (5.30E-04‰) 0.003137(0‰) 0.003134 (9.56E-01‰) 0.003139 (6.38E-01‰)
s1196 519 13.194728(0‰) 13.194734 (4.55E-04‰) 13.194733 (3.79E-04‰) 0.002978(0‰) 0.002976 (6.72E-01‰) 0.002979 (3.36E-01‰)
s15850 589 13.025476(0‰) 13.025476 (0‰) 13.025476 (0‰) 0.001611(0‰) 0.001611 (0‰) 0.001613 (1.24‰)
s9234_1 1045 13.053585(0‰) 13.053590 (3.83E-04‰) 13.053593 (6.13E-04‰) 0.001939(0‰) 0.001938 (5.16E-01‰) 0.001940 (5.16E-01‰)
s13207 1067 13.024756(0‰) 13.024757 (7.68E-05‰) 13.024757 (7.68E-05‰) 0.001007(0‰) 0.001006 (9.93E-01‰) 0.001010 (2.98‰)
s5378 1524 13.132874(0‰) 13.132888 (1.07E-03‰) 13.132887 (9.90E-04‰) 0.003658(0‰) 0.003656 (5.47E-01‰) 0.003664 (1.64‰)

∗ Mean Relative Absolute Error.

MRAE∗ - 1× , 2.67E-4‰ 1.29× , 3.43E-4‰ - 1× , 0.59‰ 1.55× , 0.92‰

The runtime speedup is evaluated similarly to the previous ex-

periment. The results in Table 1 indicate that, in almost all cases,

LVFGen achieves a higher speedup than Sobol’s compared to Ran-

dom MC. Generally, we observe that the speedup of Sobol’s is not

promising as the circuit dimension increases. Although LVFGen

encounters the same high-dimension issue, it is still faster than the

other two algorithms.

To summarize, at a 5k accuracy level, LVFGen achieves 38.43×
and 2.27× overall speedups compared to Random MC and Sobol’s

in predicting delay distributions, and 9.46× and 1.23× for transi-

tion distributions. LVFGen demonstrates more improvements with

higher accuracy requirements. At the 100k accuracy level, LVFGen

achieves 225.58× and 4.06× speedups in estimating delay distri-

butions, 37.35× and 2.31× in estimating transition, compared to

Random MC and Sobol’s QMC algorithms.

4.4 Application to Timing Analysis

At timing sign-off, larger-scale circuits demand accurate timing dis-

tributions of cells to reduce the impacts of accumulated errors along

timing propagation. In this experiment, we utilize the standard sta-

tistical timing analysis tool, PrimeTime, to assess the accuracy of

LVF library characterized by LVFGen. The benchmarks circuits are

selected from ISCAS’89 with scales up to 1,524 gates [28].

We first prepare three LVF libraries with the same 100k-MC ac-

curacy level, generated by Random MC with 100k samples, Sobol’s

QMC with 5k samples, and LVFGen with 0.7k samples. In terms of

library generation efficiency, the runtime for Sobol’s QMC is ~290

hours, whereas LVFGen requires only ~80 hours.

For the SSTA procedure, the critical path is initially identified

under the Golden design flow. Subsequently, we compared the path

delays with three different LVF library files. We observe extremely

small errors across the benchmarks shown in Table 2. The relative

absolute error of LVFGen is no more than 1E-3‰ for mean delay,

189

LVFGen: Efficient Liberty Variation Format (LVF) Generation Using Variational Analysis and Active Learning ISPD ’25, March 16ś19, 2025, Austin, TX, USA

and no more than 3‰ for standard deviation. The mean relative

absolute error (MRAE) LVFGen achieves is remarkably close to

Sobol’s, with only 1.29× that of Sobol’s in mean, and 1.55× in

standard deviation of the critical path delay. In summary, the entire

library generation of LVFGen achieves is about 3.5× faster than

Sobol’s QMC, providing a more-than-sufficient accuracy level in

real applications.

5 Conclusion

This paper presents a novel method, LVFGen, which generates

highly accurate LVF library with much less simulation costs com-

pared to conventional Monte Carlo (MC) and quasi Monte Carlo

(QMC) methods. LVFGen utilizes variational analysis and active

learning to identify process variation samples with larger impacts

on delay and transition distributions. Experimental results based

on TSMC 22nm standard cells prove LVFGen’s stability and effi-

ciency in real applications. LVFGen achieves up to 225.58× and

4.06× overall speedups compared to MC and Sobol’s QMC on delay

estimation, 37.35× and 2.31× overall speedups compared to MC

and Sobol’s on transition estimation. With a real circuit and cell

library, LVFGen shows a 3.5× statistical library generation speedup

with competitive accuracy in SSTA evaluation. We hope the idea of

LVFGen can inspire more interesting researches that adopt UQ to

solve circuit problems. The further extension includes extending

LVFGen with transfer learning to let one surrogate model learn the

timing information from different circuits.

Acknowledgments

The authors would like to thank Tao Bai, for assistance in the circuit

path experiment.

References
[1] Hanif Fatemi, Shahin Nazarian, and Massoud Pedram. Statistical logic cell delay

analysis using a current-based model. In Proceedings of the 43rd annual Design
Automation Conference, pages 253ś256, 2006.

[2] Leronq Cheng, Jinjun Xiong, and Lei He. Non-Gaussian Statistical Timing Analy-
sis Using Second-Order Polynomial Fitting. In 2008 Asia and South Pacific Design
Automation Conference, pages 298ś303, 2008.

[3] Eunice Naswali, Namhoon Kim, and Pravin Chandran. Fast and Accurate Library
Generation Leveraging Deep Learning for OCV Modelling. In 2021 22nd Inter-
national Symposium on Quality Electronic Design (ISQED), pages 349ś354. IEEE,
2021.

[4] Tan and Dyck. Advanced solutions for LVF .LIB. Siemens Digital Industries
Software, 2023. https://www.eda-solutions.com/app/uploads/2023/08/Siemens-
Advanced-solutions-for-LVF-.LIB-WP-82833-C1.pdf.

[5] Synopsys. Liberty Release Notes Version 2017.06. https://www.synopsys.com/cgi-
bin/tapin/docsdl/Liberty_2017.06_relnotes.pdf.

[6] Amith Singhee and Rob A. Rutenbar. Why Quasi-Monte Carlo is Better Than
Monte Carlo or Latin Hypercube Sampling for Statistical Circuit Analysis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
29(11):1763ś1776, 2010.

[7] A.B. Owen. Monte Carlo extension of quasi-Monte Carlo. In 1998 Winter Simula-
tion Conference. Proceedings (Cat. No.98CH36274), volume 1, pages 571ś577 vol.1,
1998.

[8] Eunice Naswali, Adalberto Claudio Quiros, and Pravin Chandran. DNNLibGen:
Deep Neural Network Based Fast Library Generator. In 2019 26th IEEE Inter-
national Conference on Electronics, Circuits and Systems (ICECS), pages 574ś577.
IEEE, 2019.

[9] Tianliang Ma, Zhihui Deng, Xuguang Sun, and Leilai Shao. Fast Cell Library
Characterization for Design Technology Co-Optimization Based on Graph Neural
Networks. In 2024 29th Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 472ś477. IEEE, 2024.

[10] Jun Tao, Shupeng Sun, Xin Li, Hongzhou Liu, Kangsheng Luo, Ben Gu, and Xuan
Zeng. Fast Statistical Analysis of Rare Circuit Failure Events. Machine Learning
in VLSI Computer-Aided Design, pages 349ś373, 2019.

[11] Liang Pang, Mengyun Yao, and Yifan Chai. An efficient SRAM yield analysis
using scaled-sigma adaptive importance sampling. In 2020 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 97ś102. IEEE, 2020.

[12] Mariam Rakka, Rouwaida Kanj, and Ragheb Raad. Hybrid importance splitting
importance sampling methodology for fast yield analysis of memory designs. In
2020 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1ś5.
IEEE, 2020.

[13] Ziqi Wang and Marco Broccardo. A novel active learning-based Gaussian process
metamodelling strategy for estimating the full probability distribution in forward
UQ analysis. Structural Safety, 84:101937, 2020.

[14] Adelchi Azzalini and Antonella Capitanio. Statistical applications of the multi-
variate skew normal distribution. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 61(3):579ś602, 1999.

[15] W. Feller. An Introduction to Probability Theory and Its Applications, volume 1.
Wiley, January 1968.

[16] Burr Settles. Active learning literature survey. 2009.
[17] Qi Sun, Tinghuan Chen, Siting Liu, Jianli Chen, Hao Yu, and Bei Yu. Corre-

lated multi-objective multi-fidelity optimization for HLS directives design. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 27(4):1ś27,
2022.

[18] Yucen Lily Li, Tim GJ Rudner, and Andrew Gordon Wilson. A study of
Bayesian neural network surrogates for Bayesian optimization. arXiv preprint
arXiv:2305.20028, 2023.

[19] I. M. Sobol’. The distribution of points in a cube and the accurate evaluation of
integrals. USSR Computational Mathematics and Mathematical Physics, 7(4):86ś
112, 1967.

[20] Javier E. Contreras-Reyes and Reinaldo Boris Arellano-Valle. Kullback-Leibler Di-
vergence Measure for Multivariate Skew-Normal Distributions. Entropy, 14:1606ś
1626, 2012.

[21] P. Maurine, M. Rezzoug, N. Azemard, and D. Auvergne. Transition time model-
ing in deep submicron CMOS. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 21(11):1352ś1363, 2002.

[22] D. Blaauw, V. Zolotov, S. Sundareswaran, C. Oh, and R. Panda. Slope Prop-
agation in Static Timing Analysis. In IEEE/ACM International Conference on
Computer Aided Design. ICCAD - 2000. IEEE/ACM Digest of Technical Papers (Cat.
No.00CH37140), pages 338ś343, 2000.

[23] S. Nazarian, M. Pedram, E.T. Tuncer, Tao Lin, and A.H. Ajami. Modeling and
Propagation of NoisyWaveforms in Static TimingAnalysis. InDesign, Automation
and Test in Europe, pages 776ś777 Vol. 2, 2005.

[24] Lerong Cheng, Jinjun Xiong, and Lei He. Non-Gaussian Statistical Timing Analy-
sis Using Second-Order Polynomial Fitting. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 28(1):130ś140, 2009.

[25] Debjit Sinha, Vasant Rao, Chaitanya Peddawad, Michael Wood, Jeffrey Hemmett,
Suriya Skariah, and Patrick Williams. Statistical timing analysis considering
multiple-input switching. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pages 1ś6, 2020.

[26] C. Visweswariah, K. Ravindran, K. Kalafala, S.G. Walker, S. Narayan, D.K. Beece,
J. Piaget, N. Venkateswaran, and J.G. Hemmett. First-Order Incremental Block-
Based Statistical Timing Analysis. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 25(10):2170ś2180, 2006.

[27] Lizheng Zhang, W. Chen, Y. Hu, and C.C. Chen. (statistical static timing analysis
with conditional linear max/min approximation and extended canonical timing
model). IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 25(6):1183ś1191, 2006.

[28] F. Brglez, D. Bryan, and K. Kozminski. Combinational Profiles of Sequential
Benchmark Circuits. In 1989 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1929ś1934 vol.3, 1989.

190

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Formulation
	2.2 Active Learning
	2.3 Gaussian Process

	3 Proposed Algorithm
	3.1 Procedures Framework
	3.2 Dimension Pruning
	3.3 Acquisition by Variational Analysis
	3.4 Multi-timing Co-optimization

	4 Experiment Results and Discussions
	4.1 Experiment Setting
	4.2 Convergence for OR2 Cell
	4.3 Speedup for Cell Library
	4.4 Application to Timing Analysis

	5 Conclusion
	Acknowledgments
	References

