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AbstractÐDeep neural networks have demonstrated highly
competitive performance in super-resolution (SR) for natural
images by learning mappings from low-resolution (LR) to high-
resolution (HR) images. However, hyperspectral super-resolution
remains an ill-posed problem due to the high spectral dimension-
ality of the data and the scarcity of available training samples.
Moreover, existing methods often rely on large models with a high
number of parameters or require the fusion with panchromatic
or RGB images, both of which are often impractical in real-world
scenarios. Inspired by the MobileNet architecture, we introduce
a lightweight depthwise separable dilated convolutional network
(DSDCN) to address aforementioned challenges. Specifically, our
model leverages multiple depthwise separable convolutions, sim-
ilar to the MobileNet architecture, and further incorporates a
dilated convolution fusion block to make the model more flexible
for the extraction of both spatial and spectral features. In addition,
we propose a custom loss function that combines mean squared
error (MSE), an L2 norm regularization-based constraint, and
a spectral angle-based loss, ensuring the preservation of both
spectral and spatial details. The proposed model achieves very
competitive performance on two publicly available hyperspectral
datasets, making it well-suited for hyperspectral image super-
resolution tasks. The source codes are publicly available at:
https://github.com/Usman1021/lightweight.

Index TermsÐRemote-sensing, dilated convolution fusion, hy-
perspectral imaging, lightweight model, loss function.

I. INTRODUCTION

Hyperspectral imaging systems capture surface information

across numerous spectral bands, providing richer spectral de-

tails than multispectral or natural images. This enables precise

characterization of ground objects [1]±[4]. Moreover, the wide

spectrum of information makes them extremely valuable for

a variety of applications, including anomaly detection, surveil-

lance, environmental monitoring, and satellite image scene clas-

sification [5]±[9]. However, hyperspectral images often suffer

from low resolution due to environmental factors and sensor

energy limitations [10]. Deep learning-based super-resolution

(SR) methods have shown remarkable success, leveraging large

models to reconstruct high-resolution images from degraded

low-resolution inputs [11], [12]. Nonetheless, due to advance-

ments in deep learning models, the number of parameters in

deep learning networks has increased significantly. As a result,

numerous lightweight super-resolution models have gained

significant attention in recent years [13], focusing on reduc-

ing model parameters and computational complexity through

various strategies.

In particular, knowledge distillation [14] is widely used

for model compression, in which a large model (the teacher

network) is first trained on the original data and then used

to guide the intermediate feature representations of a smaller

model (the student network). For instance, Gao et al. [15]

employ a lightweight student SR model to acquire knowledge

from a deeper teacher SR network. Other model compression

techniques, such as pruning [16] and low-rank factorization

[17], have also proven effective for developing super-resolution

models. For instance, Zhan et al. [16] integrate neural archi-

tecture search with a layer-wise pruning strategy to develop

efficient super-resolution model. Wu et al. [17] propose a

convex regularizer for low-rank solutions, addressing uncon-

strained cases with proximal gradient and a custom PG-like

algorithm. In addition, some quantization-based methods [18],

[19] leverage low-bit representations to enhance the inference

speed of super-resolution models. However, these models often

exhibit a significant performance gap compared to state-of-the-

art super-resolution methods [20].

In order to reduce the size of the neural network, convolu-

tional filters play a crucial role, and significant efforts have been

made to maximize their potential. For instance, MobileNet [21]

model introduces depthwise separable convolution, demonstrat-

ing great potential for network decomposition. Ahn et al. [22]

employ group convolution instead of depthwise convolution

to make model efficiency more adaptable. Kim et al. [23]

propose a deeply recursive convolutional network, arguing

that increasing recursion depth can enhance performance with-

out introducing additional parameters for extra convolutions.

Dilated convolution is another modified version of standard

convolutions that utilizes a distinctive grid structure [24]. It

has been widely adopted to expand the receptive field of

kernels and enhance global information aggregation, leading

to notable improvements over previous methods. However, the

classification accuracy of these models may be compromised

during compression, as a large number of image features are

omitted due to the simplified convolution operations [25].

Our approach is inspired by MobileNet [21], which reduces

the number of parameters and computational costs by intro-



Fig. 1. A detailed overview of the proposed model. Shallow features are initially extracted using a lightweight separable convolutional layer with ReLU
activation. The gray color represent depthwise convolutional blocks for deep feature extraction. The blue block denotes the dilated fusion module, capturing
spatial and spectral features in parallel. The pink block performs upsampling to reconstruct the high-resolution output.

ducing the concept of depthwise separable convolution. In

particular, we aim to combine depthwise separable convolutions

with dilated convolutional fusion blocks [26] to develop a

novel super-resolution model called the depthwise separable di-

lated convolution network (DSDCN) for hyperspectral images.

Specifically, the dilated convolutional fusion block consists

of two different types of convolutions: (1) dilated convolu-

tion (spatial branch) and (2) pointwise convolution (spectral

branch). The outputs of the dilated convolution and pointwise

convolution are then concatenated to effectively integrate spatial

and spectral information. By doing so, we make our model

suitable for hyperspectral super-resolution tasks while mini-

mizing the compromise on model parameters compared to the

MobileNet architecture. To further improve the performance

of the proposed method, we employ a custom loss function

that integrates mean squared error (MSE), an L2 regularization-

based constraint, and a spectral angle-based loss to ensure high-

fidelity reconstruction. In summary, our contributions are three-

fold:

1) We present a novel lightweight DSDCN that combines

depthwise separable convolutions, residual connections,

and dilated convolutional fusion to enhance spatial reso-

lution and preserve spectral integrity..

2) A custom loss function is introduced, integrating mean

squared error (MSE), an L2 regularization constraint,

and a spectral angle-based loss to enhance high-fidelity

reconstruction.

3) Experiments on two hyperspectral datasets are conducted

across various resolution degradation-restoration scenar-

ios (2×, 4×, and 8× downsampling), demonstrating

competitive performance on both datasets.

II. METHODOLOGY

Fig. 1 shows the band grouping and the three main com-

ponents of the model: (1) depthwise separable convolutions

with residual connections, (2) dilated convolution fusion, and

(3) upsampling. We first define the band grouping along with

other components. The following subsections detail this and the

custom loss used in the model.

A. Band Grouping

Since hyperspectral images consist of hundreds of spectral

bands, processing all bands together can be computationally

challenging and may introduce redundancy due to the high

spectral correlation between bands. To mitigate this, we utilize

band grouping [27], which involves partitioning adjacent bands

into overlapping groups for seamless integration with our

proposed model. Specifically, hyperspectral bands are organized

into overlapping subgroups by defining a fixed group size with

a designated overlap, ensuring that consecutive subgroups share

common bands.

B. Depthwise Separable Convolution

Given a low-resolution hyperspectral image X ∈ R
H×W×B ,

where H , W , and B denote the spatial height, width, and

number of spectral bands, respectively, our goal is to reconstruct

a high-resolution image X̂ ∈ R
αH×αW×B with an upscaling

factor α. To achieve this, we design a deep neural network

F(X; θ) that learns the LR-to-HR mapping efficiently while

preserving spectral integrity.

We begin by extracting spatial and spectral features using

depthwise separable convolutions. Specifically, we empirically

employ three such blocks, where each block decomposes a

standard convolution into two sequential operations [21]:

X ′
d = Wd ∗X, (1)

where Wd denotes the depthwise convolution kernel applied

independently to each spectral band. Next, a pointwise convo-

lution is applied to combine features across channels:

X ′
p = Wp ∗X

′
d, (2)

where Wp is a 1 × 1 convolution kernel that processes each

spatial location across all channels. To improve training stability



and mitigate vanishing gradients, we incorporate a residual

connection by applying a separate 1 × 1 convolution to the

original input X [28]:

Xres = Ws ∗X, (3)

where Ws is the projection kernel for aligning dimensions. The

final output of the block is obtained by fusing the residual and

transformed features:

Cout = X ′
p +Xres, (4)

where Cout is the output feature map of the depthwise separable

convolution block.

C. Dilated Convolution Fusion

To integrate both local and global spatial dependencies while

maintaining a lightweight structure, we employ a dilated fusion

block composed of three parallel 3 × 3 convolutions with

increasing dilation rates r = {1, 2, 3}. Given an input feature

map Fin ∈ R
H×W×Cin , feature extraction is performed as [26]:

Fi = ReLU(Qi ∗ Fin), i ∈ {1, 2, 3}, (5)

where each Qi ∈ R
3×3×Cin×C is a convolutional kernel with

dilation rate ri ∈ {1, 2, 3}, and C is the number of output

channels per branch. The feature maps F1, F2, and F3 are

obtained by applying ReLU-activated convolutions with kernels

Q1, Q2, and Q3, respectively, to the same input Fin, and are

then concatenated along the channel dimension.

Fconcat = Concat(F1,F2,F3), (6)

The concatenated features are then passed through a final 1×1
convolution to fuse the multi-scale information:

Fout = ReLU(Qf ∗ Fconcat), (7)

where Qf ∈ R
1×1×3C×C is the fusion kernel. The output

Fout ∈ R
H×W×C represents the final feature map enriched

with contextual spatial features.

D. Upsampling with Transpose Convolution

To increase spatial resolution, we employ an upsampling

block based on transpose convolution [29]. Given a low-

resolution feature map Uin ∈ R
H×W×Cu , we apply a learnable

transpose convolution defined as:

Utr = Ktr ∗Uin, (8)

where Ktr ∈ R
k×k×Cu×Co is the transpose convolution kernel,

and Utr ∈ R
αH×αW×Co is the upsampled output. Here, Cu is

the number of input channels, and Co is the number of output

channels after upsampling. The upsampled output is then passed

through a non-linearity:

Uact = ReLU(Utr). (9)

Furthermore, we employ a skip connection by projecting and

upsampling the input feature map:

Uskip = Kskip ∗ Up(Uin), (10)

TABLE I
QUANTITATIVE RESULTS AND MODEL COMPLEXITY

Ablation study on PaviaC (2×)

Model Variant MSSIM↑ MPSNR↑

DSDCN w/o band grouping 0.9482 35.017

DSDCN w/s 16 0.9558 35.447

DSDCN + w/s 32 0.9578 36.434

DSDCN w/s 48 0.9502 35.861

DSDCN + w/o custom loss 0.9507 36.127

Model Complexity

Model Scale Parameters

ERCSR [30] 4 1.59M

MCNet [31] 4 2.17M

PDENet [11] 4 2.30M

CSSFENet [20] 4 1.61M

DSDCN (Ours) 4 0.96M

where Kskip ∈ R
1×1×Cu×Co is a projection kernel. The final

output is obtained by summing the skip and upsampled features:

Uout = Uact +Uskip, (11)

where Uout ∈ R
αH×αW×Co is the resulting feature map.

E. Custom Loss Function

We employ a custom loss function that combines three

components: mean squared error (MSE), spectral angle mapper

(SAM) loss, and ℓ2 loss. This combination ensures both pixel-

wise accuracy and spectral fidelity in hyperspectral reconstruc-

tion. The total loss is defined as:

Ltotal = LMSE + λ1 · LSAM + λ2 · Lℓ2 , (12)

where: LMSE = 1
N

∑N

i=1(y
(i)
true − y

(i)
pred)

2 minimizes pixel-wise

differences, LSAM = 1
N

∑N

i=1 cos
−1

(

⟨y
(i)
true ,y

(i)
pred

⟩

∥y
(i)
true∥·∥y

(i)
pred

∥

)

measures

the angular discrepancy between predicted and ground-truth

spectral vectors, Lℓ2 = 1
N

∑N

i=1 ∥y
(i)
true − y

(i)
pred∥

2
2 reinforces

global spectral consistency. Here, λ1 and λ2 are weighting

coefficients that balance the influence of SAM and ℓ2 loss, re-

spectively. In our experiments, we set λ1 = 0.5 and λ2 = 0.03.

III. EXPERIMENTAL SETUP

A. Datasets and Implementation

Two publicly available hyperspectral datasets, PaviaC and

PaviaU, containing 102 and 103 spectral bands, respectively,

are used in our study. We used a patch size of 144 × 144,

following the protocol of previous work [20], for training and

testing the datasets. Specifically, the test set patch is extracted

from the bottom center of the PaviaC dataset and the top left

of the PaviaU dataset, while the remaining image regions are

used for training [20].

To generate low-resolution images, we employ area-based

sampling and downscale them by factors of 2×, 4×, and 8×.

During training, the Adam optimizer was employed with a

batch size of 4. Additionally, an early stopping function was

used to prevent fixed epochs and avoid overfitting. Both datasets

were divided into band groups of size 32, with one-fourth



TABLE II
EVALUATION ON DATASETS (PAVIAC, PAVIAU) IN DIFFERENT SCALING SETUPS. THE COMPARISON RESULTS ARE REPORTED FROM [20].

Scale Factor Model
PaviaC PaviaU

MPSNR↑ MSSIM↑ SAM↓ MPSNR↑ MSSIM↑ SAM↓

2×

VDSR [32] 34.879 0.9501 3.689 34.038 0.9524 3.258
MCNet [31] 34.626 0.9455 3.865 33.743 0.9502 3.359
EDSR [33] 34.580 0.9452 3.898 33.985 0.9511 3.334

MSDformer [12] 35.028 0.9493 3.691 34.159 0.9553 3.211
MSFMNet [34] 35.200 0.9506 3.656 34.980 0.9582 3.160

AS3 ITransUNet [35] 35.221 0.9511 3.612 35.163 0.9591 3.149
PDENet [11] 35.244 0.9519 3.595 35.275 0.9594 3.142

CSSFENet [20] 35.522 0.9544 3.542 35.924 0.9625 3.038

DSDCN (Ours) 36.434 0.9578 3.538 35.941 0.9442 3.703

4×

EDSR [33] 28.591 0.7782 6.573 29.894 0.7791 5.074
VDSR [32] 28.317 0.7707 6.514 29.904 0.7753 4.997
MCNet [31] 28.756 0.7826 6.385 29.993 0.7835 4.917

MSDformer [12] 28.810 0.7833 5.897 30.098 0.7905 4.885
MSFMNet [34] 28.873 0.7863 6.300 30.283 0.7948 4.861

AS3 ITransUNet [35] 28.874 0.7893 5.972 30.289 0.7940 4.859
PDENet [11] 28.951 0.7900 5.876 30.295 0.7944 4.853

CSSFENet [20] 29.054 0.7961 5.816 30.689 0.8107 4.839
DSDCN (Ours) 29.665 0.8152 4.826 30.524 0.7958 4.807

8×

VDSR [32] 24.804 0.4944 7.588 27.028 0.5962 7.133
EDSR [33] 25.067 0.5282 7.507 27.467 0.6302 6.678
MCNet [31] 25.096 0.5391 7.429 27.483 0.6254 6.683

MSDformer [12] 25.215 0.5462 7.427 27.323 0.6341 6.668
MSFMNet [34] 25.257 0.5464 7.449 27.586 0.6356 6.615

AS3 ITransUNet [35] 25.258 0.5435 7.417 27.689 0.6413 6.574
PDENet [11] 25.288 0.5436 7.402 27.738 0.6457 6.531

CSSFENet [20] 25.359 0.5493 7.306 27.825 0.6569 6.505
DSDCN (Ours) 25.463 0.5553 6.345 27.827 0.6235 6.487

overlap between them. We adopted several widely used metrics

to evaluate the quality of reconstructed images quantitatively,

including mean peak signal-to-noise ratio (MPSNR), mean

structural similarity index (MSSIM), and Spectral Angle Map-

per (SAM) [36].

B. Ablation Study on Band Grouping

Table I presents an ablation study evaluating the effects of

band grouping size and the custom loss function on the perfor-

mance of the proposed DSDCN model. The baseline without

band grouping yields an MSSIM of 0.9482 and an MPSNR

of 35.017 dB. It can be observed that using a band grouping

size of 16 improves performance, while a grouping size of 32

achieves the best results (MSSIM: 0.9578, MPSNR: 36.434

dB). However, increasing the group size to 48 slightly reduces

accuracy, suggesting that excessive grouping may weaken the

spatial-spectral feature alignment. Performance is also reported

using only the MSE loss (without the custom loss), with

the group size fixed at 32. This results in a performance

drop (MSSIM: 0.9507, MPSNR: 36.127 dB), highlighting the

benefits of incorporating spectral angle and L2 constraints into

the loss function.

C. Comparison with State-of-the-Art Methods

As shown in Table I, we compare the parameter count of our

proposed model with several state-of-the-art super-resolution

methods, including ERCSR (1.59M) [30], MCNet (2.17M)

[31], PDENet (2.30M) [11], and CSSFENet (1.61M) [20].

DSDCN contains only 0.96 million parameters, substantially

fewer than those of the other methods.

Table II presents a detailed quantitative comparison under

multiple scaling factors (2×, 4×, and 8×) on both the PaviaC

and PaviaU datasets. The comparison includes various state-

of-the-art methods such as VDSR [32], EDSR [33], MCNet

[31], MSDformer [12], MSFMNet [34], AS3 ITransUNet [35],

PDENet [11], and CSSFENet [20]. Despite its lightweight

nature, our model ranks first in the PaviaC dataset and achieves

competitive performance on the PaviaU dataset in terms of

PSNR and SAM. These results emphasize the strength of our

architecture in capturing both spatial and spectral information

for hyperspectral image super-resolution.

IV. CONCLUSION

In this study, we introduced a lightweight depthwise separa-

ble dilated convolutional network (DSDCN) for hyperspectral

super-resolution. The model leverages depthwise separable con-

volutional blocks with a dilated convolution fusion mechanism

to improve spatial and spectral feature extraction. Additionally,

we proposed a custom loss function that integrates MSE, L2

regularization, and a spectral angle-based loss to ensure high-

fidelity reconstruction. Experimental results demonstrate that

our approach achieves competitive performance on two publicly

available hyperspectral datasets while maintaining a relatively

compact model size. This makes our method a practical and

efficient solution for real-world hyperspectral image super-

resolution tasks.
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