
This is a repository copy of Overcoming overfitting in reinforcement learning via Gaussian
Process Diffusion Policy.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/226156/

Version: Accepted Version

Proceedings Paper:
Horprasert, A., Apriaskar, E., Liu, X. et al. (2 more authors) (2025) Overcoming overfitting
in reinforcement learning via Gaussian Process Diffusion Policy. In: Proceedings of the
2025 IEEE Statistical Signal Processing Workshop (SSP). 2025 IEEE Statistical Signal
Processing Workshop (SSP), 08-11 Jun 2025, Edinburgh, United Kingdom. Institute of
Electrical and Electronics Engineers (IEEE) ISBN 9798331518011

https://doi.org/10.1109/SSP64130.2025.11073292

© 2025 The Authors. Except as otherwise noted, this author-accepted version of a journal
article published in Proceedings of the 2025 IEEE Statistical Signal Processing Workshop
(SSP) is made available via the University of Sheffield Research Publications and
Copyright Policy under the terms of the Creative Commons Attribution 4.0 International
License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any
medium, provided the original work is properly cited. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1109/SSP64130.2025.11073292
https://eprints.whiterose.ac.uk/id/eprint/226156/
https://eprints.whiterose.ac.uk/

Overcoming Overfitting in Reinforcement Learning

via Gaussian Process Diffusion Policy

Amornyos Horprasert1, Esa Apriaskar1, 2, Xingyu Liu1, Lanlan Su3 and Lyudmila S. Mihaylova1

1School of Electrical and Electronic Engineering, University of Sheffield, United Kingdom
2Department of Electrical Engineering, Universitas Negeri Semarang, Indonesia

3Department of Electrical and Electronic Engineering, University of Manchester, United Kingdom

AbstractÐOne of the key challenges that Reinforcement Learn-
ing (RL) faces is its limited capability to adapt to a change of
data distribution caused by uncertainties. This challenge arises
especially in RL systems using deep neural networks as decision
makers or policies, which are prone to overfitting after prolonged
training on fixed environments. To address this challenge, this
paper proposes Gaussian Process Diffusion Policy (GPDP), a new
algorithm that integrates diffusion models and Gaussian Process
Regression (GPR) to represent the policy. GPR guides diffusion
models to generate actions that maximize learned Q-function,
resembling the policy improvement in RL. Furthermore, the
kernel-based nature of GPR enhances the policy’s exploration
efficiency under distribution shifts at test time, increasing the
chance of discovering new behaviors and mitigating overfitting.
Simulation results on the Walker2d benchmark show that our
approach outperforms state-of-the-art algorithms under distri-
bution shift condition by achieving around 67.74% to 123.18%
improvement in the RL’s objective function while maintaining
comparable performance under normal conditions.

Index TermsÐReinforcement Learning, Gaussian Process Re-
gression, Diffusion Policy, OpenAI Gym, Walker2d

I. INTRODUCTION

Reinforcement Learning (RL) [1] has been the subject of

intensive research over the past several decades. In complex

problems, the dynamics of the environment are often unknown,

making the modeling of the control system challenging. This

is where RL demonstrates its advantages, as it solely relies

on signals received from the environment to learn the op-

timal control strategies. Despite its impressive performance

across various control applications as empirically shown in

[2]±[5], RL still encounters certain challenges that hinder its

effectiveness toward real-world scenarios. One major challenge

is its poor adaptability to unseen states at test time, where

those states are the results from changing in the environ-

ment’s dynamics or data distribution. The reason behind this

shortcoming is the usage of deep layers of neural networks

as the policy in RL. Once trained on fixed training data

distributions, the policy network often struggles to adapt the

We are grateful to the Office of the Civil Service Commission of Thailand for
funding the PhD research of Amornyos Horprasert, to the UK EPSRC through
Project NSF-EPSRC: ShiRAS. Towards Safe and Reliable Autonomy in Sensor
Driven Systems, under Grant EP/T013265/1, and by the USA National Science
Foundation under Grant NSF ECCS 1903466. This work was also supported by
the UKRI Trustworthy Autonomous Systems Node in Resilience (REASON)
EP/V026747/1 project.

control in different distributions, resulting in an unreliable

behavior. This phenomenon exemplifies the overfitting in RL

due to distribution shift, as studied in [6]±[8].

While the overfitting and distribution shift can be viewed

from diverse perspectives, this work primarily focuses on

the overfitting that cause a degradation in performance at

test time. This type of overfitting arises as a consequence

from the distribution shift caused by adversarial attacks or

uncertainties similar to the case studied in [6], [8]. We expect

that overcoming this challenge would represent a significant

advancement of RL toward real-world environments, where

uncertainties are inevitable. For instance, a robot controlled by

RL should be capable of recovering its posture after accidental

fall, even if it has not been trained to perform that before.

In this work, we propose a novel RL framework that

integrates generative diffusion models with a kernel-based

methodÐGaussian Process Regression (GPR)Ðto serve as the

policy. We further demonstrate its effectiveness through a case

study addressing overfitting under distribution shift. This paper

begins by providing backgrounds of RL and diffusion models.

The application of GPR in RL are then demonstrated in Section

III along with an intriguing characteristic that shows potential

in mitigating the overfitting. Finally, the proposed approach

is evaluated on a Walker2D problem from OpenAI Gym [9]

followed by a conclusion of findings and limitations.

II. PRELIMINARIES

Reinforcement Learning. The RL problems are typically

formulated as Markov Decision Process (MDP) [1] with tuples

(S,A, T, r, γ). At each time step t, the agent performs an action

at ∈ A based on its current knowledge or policy π. The agent

then perceives the state st+1 ∈ S as a feedback. The objective

is to acquire a policy that maximizes the expected cumulative

discount reward, expressed as:

J (πθ) = Es0∼d0(s0), at∼πθ(at|st)
st+1∼T (st+1|st,at)

[H−1
∑

t=0

γtr(st,at, st+1)

]

, (1)

where T (st+1|st,at) is the state transition dynamics, d0(s0)
denotes the distribution of initial state, r(st,at, st+1) ∈ R is a

reward function, and γ ∈ [0, 1] is a discount factor. H could

be infinite but in the case where the interaction is episodic, H

is the trajectory length of the episode. The policy πθ(at|st)
is a function parameterized by θ. The policy π can also learn

from a static dataset D, which contains MDP transitions D =
{(sk,ak, rk, sk+1)}n−1

k=0 pre-collected by any behavior policy,

denoted as πb. This area of RL is called Offline Reinforcement

Learning (Offline-RL) [10], [11], where interaction with the

environment is prohibited at the training phase. The proposed

approach is going to be designed as an Offline-RL since it

benefits the learning nature of diffusion models and GPR.

Diffusion Models. Diffusion models, introduced by [12],

[13], are the generative models in the form of latent vari-

ables. They corrupts a complex, intractable data distribution

q(x0) by gradually injecting Gaussian noise according to

a variance schedule β1, β2, ..., βN . The process is referred

to as a forward process, which has a form of q(x0:N) =
q(x0)

∏N
i=1 q(x

i|xi−1). To generate samples, the forward

chain is reversed, creating another trajectory called reverse

process, which remains in the same form as pθ(x
0:N) =

p(xN)
∏N

i=1 pθ(x
i−1|xi). The training involves optimizing a

variational bound on a negative log likelihood E[− log pθ(x
0)].

Diffusion Policies. Diffusion models can be exploited as

the policy π in RL through slight modifications to the Markov

chain, as proposed by [14], [15]. The notation for data variable

is changed from ªxº to ªaº to represent an action, and the

reverse process is conditioned on the state s. However, these

modifications do not alter the form of the reverse diffusion

chain, which is still expressed as:

πθ(at|st) = pθ(a
0:N |st) = p(aN)

N
∏

i=1

pθ(a
i−1|ai, st), (2)

where p(aN) = N (aN |0, I) is a starting point for the chain,

and I is an identity matrix. A sample at the final step is used

for the interaction (i.e., at ∼ pθ(a
0:N |st)). The intermediate

distribution can be estimated followed [13], given by:

pθ(a
i−1|ai, st) = N (ai−1|µθ(st,ai, i),Σθ), (3)

where µθ(st,a
i, i) = 1√

1−β
i (a

i − βi

√
1−ᾱi

ϵθ(st,a
i, i)), βi is

a diffusion rate at diffusion step i , ᾱi =
∏i

j=1(1 − βj),

Σθ = βiI, and ϵθ(st,a
i, i) is a learned residual noise

estimator. The objective function can be simplified from the

intractable negative log likelihood into a tractable form:

Lϵ(θ) = E(s,a,ϵ,i)

[

||ϵ− ϵθ(s,
√
ᾱia+

√

1− ᾱiϵ, i)||2
]

, (4)

where (s,a) ∼ D, ϵ ∼ N (0, I), and i is sampled from a

uniform distribution over diffusion timestep (i ∼ U(1, N)).
The goal of diffusion policy is to imitate or achieve similar

performance to the behavior policy (πθ ≈ πb).

III. GAUSSIAN PROCESS DIFFUSION POLICY

As previously mentioned, the diffusion policy’s objective

is to merely mimic πb but we want πθ to perform better

than πb in terms of maximizing the cumulative reward (i.e.,

J (πθ) ≥ J (πb)). Therefore, it is necessary to evaluate and

improve πθ as in the RL framework. In this section, we present

a way to apply Gaussian Process Regression (GPR) into the

diffusion policy as the policy improvement. Then we design the

policy evaluation process by leveraging an existing algorithm,

resulting in a complete RL framework. Finally, we discuss

an interesting property related to handling uncertainty, which

highlights its potential to mitigate the overfitting challenge

mentioned earlier.

Gaussian-Guided Reverse Process. As proposed in [12],

the reverse process can be modified by multiplying it with

another sufficiently smooth distribution, denoted as g(y). This

creates another form of the intermediate distribution that has a

perturbation on its mean, given by:

p̃θ(a
i−1|ai, st) = N (ai−1|µθ +Σθg,Σθ), (5)

where g = ∂ log g(y)
∂y

∣

∣

y=µ
θ

, and to make the notation cleaner,

we abbreviate µθ(st,at, i) = µθ . As a result, the reverse

process can be guided towards a specific output by the guid-

ance made from the distribution g(y). The reverse Markov

chain also remains in the same form as p̃θ(a
0:N |st) =

p̃(aN)
∏N

i=1 p̃θ(a
i−1|ai, st) and p̃(aN) = N (aN |0, I).

In [12], [16], g(y) was exploited as a learned classifier

to guide the diffusion model in generating desired images.

In this work, the use of g(y) is adapted to RL problems.

gω(y) is assumed to be a Gaussian distribution (i.e., gω(y) =
N (y|µω,Σω)), with sufficient smoothness and parameterized

by ω. Under these assumptions, substituting the density func-

tion of gω(y) into (5) allows a closed-form derivation as:

p̃θ(a
i−1|ai, st) = N (ai−1|µθ −ΣθΣ

−1
ω (µθ − µω),Σθ). (6)

Here, the perturbation on the mean µθ of the reverse process

is described by the probabilistic properties of gω(y). We

construct this perturbed form as the policy (πθ(a
0|st) =

p̃θ(a
0:N |st)). Although, gω(y) can be estimated through vari-

ous approaches, the GPR method is a suitable choice for this

role, as its predictive distribution is inherently Gaussian as

mentioned in [17], [18]. Additionally, the kernel-based nature

of GPR can enhance the diffusion policy with the uncertainty

awareness capability, which is an essential feature that will be

discussed in more detail later in this chapter.

Estimating the Guidance Distribution. Let the trajectory

length H be the number of samples stored in the training

matrices. To adapt the notation for RL problems, we define a

matrix of training input as a state matrix S = [s0, s1, ..., sH−1],
where each state vector has d dimensions (S ∈ R

H×d).

Similarly, since the GPR is employed to predict actions for

RL, the observation matrix is replaced by a training action

matrix, denoted as A = [a0,a1, ...,aH−1], where each action

a vector has m dimensions (A ∈ R
H×m). The µω and Σω in

(6) can be obtained from (7) and (8), which are probabilistic

properties of the distribution over zero-mean function given the

noisy action matrix A with variance σ2
n as given by:

µω = KS∗S(KSS + σ2
nI)

−1A, (7)

Σω = KS∗S∗
−KS∗S(KSS + σ2

nI)
−1KSS∗

, (8)

where S∗ represents a matrix of test input, corresponding to the

next observation at time t, i.e., S∗ = st+1 ∼ T (st+1|st,at),
KSS∗

= [k(sx, st+1)]
H−1
x=0 ∈ R

H×1 denotes the kernel matrix,

where k(·, ·) is a kernel function computed at all pair of training

and test input point, and similarly for other matrices KS∗S =
K⊤

SS∗

,KSS = [k(sx, sw)]
H−1
x,w=0 ∈ R

H×H , and KS∗S∗
=

k(st+1, st+1) ∈ R. The kernel function choice is flexible and

depended on the problem’s complexity. We choose the basic

square exponential (SE) kernel as we found that it can provide

a decent performance for the experiment carried out in this

work. The SE kernel function can be expressed as:

k(s1, s2) = σ2
p exp (−

1

2ℓ2
∥s1 − s2∥2), (9)

where σp and ℓ are hyperparameters, s1 and s2 denote re-

spectively the entries of input matrices S or S∗, depending on

which kernel matrix is being derived. It can be found from

the SE kernel’s expression (9) that there are two hyperpa-

rameters that need to be optimized. Combining them with the

observation variance σ2
n, a set of hyperparameters ω contains

ω = {σn, σp, ℓ}. The parameter ω is optimized by minimizing

the negative marginal log-likelihood given by:

Lg(ω) =
1

2
A⊤(KSS + σ2

nI)
−1A+

1

2
log |KSS + σ2

nI|

+
H

2
log 2π.

(10)

Imitating Policy Improvement via Gaussian Processes. To

acquire J (πθ) ≥ J (πb), the standard GPR method is required

to be modified according to the following procedures.

First, the states of best trajectory from the dataset are stored

in the training state matrix (S ← S ∪ {sbest
0 , sbest

1 , ..., sbest
H−1}).

This implies that the MDP transitions stored in D must be

time-dependent, meaning that the RL problem is episodic. If

not, the problem should be formulated such that the states

associated with the best reward can be accessed from the initial

state s0. Otherwise, the agent will be unable to reach those

states, resulting in high variance in the predictions from GPR.

Additionally, care must be taken regarding the size of S. It

should be limited to a few thousand data points due to the

use of exact inference, which possesses the time complexity

of O(H3) from the inversion of the kernel matrix.

Intuitively, after the states of best trajectory are stored, the set

of observation A should be stored with the actions associated

to the best trajectory as well. However, since we seek our

policy to perform better than πb, the set of observation will

be stored by actions that ªgreedilyº maximize the expected

cumulative reward at each time step in the trajectory, denoted

as aalt
t (A ← A ∪ {aalt

0 ,aalt
1 , ...,aalt

H−1}). The aalt
t can be

deterministically sampled from the expression below:

aalt
t = argmax

â0
l

Qϕ(s
best
t , â0l), (11)

where Qϕ(s,a) is a learned expected cumulative reward func-

tion given state and action or Q-function parameterized by ϕ,

â0l ∼ pθ(a
0:N |sbest

t) for l = 0, 1, ...,M . The idea behind

this process is to sample M − 1 candidate actions in a given

state sbest
t from the diffusion policy without guidance (2), then

select the action that maximizes learned Q-function. By doing

so, we can expect that the GPR will give a distribution of aalt
t

with low variance as an output, if the GPR is confident in the

assessment on the input (e.g., S∗ ⊆ S). This altered observation

process resembles sampling actions from the greedy policy in

conventional Q-learning algorithms [2], [5], [19].

Policy Evaluation. According to (11), we need an approach

to learn Qϕ. A challenge is that the diffusion policy is not

explicitly optimized, but rather implicitly improved via the

GPR. This raises a problem since most Q-learning algorithms

rely on bootstrapping method, where the policy network is

required to predict at+1 during the training of Q-function.

However, Implicit Q-learning (IQL), proposed by [11] is a

suitable choice for this role. The IQL enables the learning of Q-

function in an offline manner without the need of bootstrapping

to approximate true Q-functions. An additional benefit of using

the IQL is that it avoids evaluating out-of-distribution actions

(OOD) caused by bootstrapping methods, which is another

challenge in Offline-RL. The Q-function Qϕ(st,at), learns

through minimizing the IQL’s objective expressed as:

LQ(ϕ) = E(st,at,st+1)∼D[(Q(st,at)−Qϕ(st,at))
2], (12)

where Q(st,at) = r(st,at, st+1) + γVψ(st+1), and Vψ(st+1)
is a value function given the next state st+1 parameterized by

ψ, which is learned via minimizing the expectile regression on

the temporal difference (TD) error, expressed as:

LV (ψ) = E(st,at)∼D[L
T
2 (Qϕ̂(st,at)− Vψ(st))], (13)

where LT
2 (u) = |τ − 1(u < 0)|u2, u = Q

ϕ̂
(st,at) − Vψ(st),

τ ∈ (0, 1) is an expectile of u or TD error, and ϕ̂ is a set of

parameters of a target Q-function network, which is updated

using soft method as in [4], [5], [11].

Enhancing Policy’s Exploration Capabilities under Dis-

tribution Shifts. Due to GPR’s ability to quantify uncertainty,

the predictive mean and covariance can be varied according

to the correlation between S∗ and S. An interesting situation

arises when uncertainty causes a shift in the transition dynam-

ics T , leading to a new distribution, denoted as TU (st+1|st,at).
Given that S∗ = st+1 ∼ TU (st+1|st,at), the correlation

between S∗ and S can be significantly low. In the case, where

the correlation is minimal (i.e., ∥S∗ − S∥2 = 0), µω and Σω
approximately become 0 and KS∗S∗

respectively. Substituting

these values into (6) changes the expression to:

p̃θ(a
i−1|ai, st) ≈ N (ai−1|µθ,Σθ) = pθ(a

i−1|ai, st). (14)

Notably, the perturbation term in the mean of the guided

reverse process is vanished. As a result, the guided form reverts

to the reverse process without guidance as (3). This situation

allows the diffusion policy to sample from the full range of

possible actions in the uncertain state st+1, rather than greedy

actions sampled from (11). Consequently, this behavior can

lead the agent to explore a new set of actions that may yield

a better reward under the shifted transition dynamics.

It is important to note that st+1 should be treated as an

anomaly with respect to the GPR, but must be presented in

the main dataset ({st+1 ∼ TU (st+1|st,at)} ∈ D). Otherwise,

the diffusion policy may provide an unreliable output, as the

model has not seen this state during training.

In summary, the diffusion policy achieves a better policy

than πb by incorporating the guidance made from GPR, which

predicts actions that greedily maximize learned Q-function,

resembling the policy improvement. Additionally, the GPR

converts the guided diffusion policy to non-guided form, as in

(14) when encountering novel situations caused by distribution

shifts. By the combination of these components, we refer to

this framework as Gaussian Process Diffusion Policy (GPDP).

IV. EVALUATIONS & RESULTS

The proposed algorithm is evaluated on the Walker2d prob-

lem, which is a bipedal robot with three controllable joints on

each leg (at ∈ R
1×6). The motions of all joints are observed

as a state st ∈ R
1×17, which have dynamics followed the

kinematic of the robot (T (·|st+1,at+1)). For baseline compar-

ison, we implement Soft Actor-Critic (SAC), proposed by [4],

[20]. A trained SAC agent utilizing a stochastic policy (SAC-

S), is employed to generate a dataset D with n ≈ 106. The

dataset contains an equal amount of sample from expert be-

haviors (fully completed the episode) and medium-performance

behaviors (early terminated the episode). This configuration of

D is inspired by how the datasets are constructed in the D4RL

[21], a well-known Offline-RL benchmark.

A Multi-layer Perceptron (MLP) with three hidden layers,

followed by Mish activation function [22] is served as the

architecture for function approximators, θ,ϕ, ϕ̂, and ψ. We

fix the σp = 2, resulting in ω = {σn, ℓ}. For the diffusion

part, we adopt the variance preserving stochastic differential

equation (VP-SDE), as suggested in [23], [24]. All parameters

are optimized by Adam [25]. The source code and further

implementation details are available online 1.

Performance Evaluation. Apart from the baseline (SAC-

S), we also compare the performance of GPDP with certain

state-of-the-art algorithms with respect to the non-discounted

cumulative reward derived from (1) without the expectation

and γ = 1. The first method is SAC-D, which is derived

from SAC-S but the stochasticity is removed at test time [4].

Another method is Diffusion-QL, denoted as D-QL [3], which

demonstrates superior performance among diffusion-based RL

algorithms. Each algorithm is evaluated over 10 Monte Carlo

runs with different seeds. Results on normal situation (no

distribution shift) are quoted in the ªNormalº test condition

rows in Table I. While GPDP is slightly inferior to SAC-D

and D-QL in average reward, it outperforms SAC-S (baseline)

in both average and maximum by achieving 17.19% and 4.31%

higher results respectively.

Simulating Distribution Shift. To emulate the distribution

shift caused by environmental uncertainty, all joints in one leg

of the robot are disabled after it has been operating for a certain

1https://github.com/AmornyosH/GPDP IEEE SSP 2025

TABLE I
NON-DISCOUNTED CUMULATIVE REWARD ON THE WALKER2D. THE

RESULTS ARE AVERAGED OVER 10 MONTE CARLO RUNS. THE MAXIMUM

RESULTS ARE QUOTED FROM THE RUNS THAT GET HIGHEST REWARD.

Test

Condition

Reward

Condition

Non-Discounted Cumulative Reward

SAC-S SAC-D D-QL GPDP

Normal
Average 4580.59 5367.99 5325.85 5301.57

Maximum 5170.57 5367.99 5362.50 5367.99

Distribution Average 1899.57 1982.94 1763.53 2357.63

Shift Maximum 2518.87 1982.94 1893.16 4225.14

period. This disruption persists long enough to ensure that the

robot falls to the ground. Once the functionality of the leg

is restored, the robot must find a way to regain its reward

from a new dynamics (i.e., T is shifted to TU). This scenario

is illustrated in Fig. 1, and the results are presented in the

ªDistribution Shiftº rows in Table I. The GPDP surpasses other

algorithms in both reward conditions especially in maximum,

where it obtains around 67.74% to 123.18% improvement in

regaining the cumulative rewards.

V. CONCLUSION

This work introduces GPDP, a novel RL framework that

integrates a diffusion policy with Gaussian Process Regression

(GPR) to serve as the policy. The performance of GPDP is

demonstrated in the Section IV, where it outperforms state-of-

the-art algorithms especially in the distribution shift condition.

The reported results imply that the exploration capability of

GPDP elaborated at the end of Section III, are capable of

discovering new set of actions under unseen states, mitigating

the overfitting problem as expected. However, GPDP still

possesses several challenges. For instance, the limited sample

size in GPR may constrain the overall performance of GPDP,

as only a small portion of the dataset is utilized for GPR’s train-

ing. Another challenge lies in the stochasticity of the policy.

The results under distribution shift reveal a significant margin

between average and maximum score, suggesting inconsistent

performance across multiple runs.

1

2

3

1

2

3

Fig. 1. Illustration of Distribution Shift. The left side shows screenshots
from Walker2d, while the right side presents immediate reward over time in a
single trajectory under shifted condition. 1⃝ represents the interval of normal
situation. 2⃝ marks the moment when the uncertainty is introduced to the
robot. Lastly, 3⃝ indicates when the distribution shift has fully occurred.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: The MIT Press, second edition ed., 2018.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, ªPlaying Atari with Deep Reinforcement Learn-
ing,º arXiv preprint arXiv:1312.5602, 2013.

[3] Z. Wang, J. J. Hunt, and M. Zhou, ªDiffusion Policies as an Expressive
Policy Class for Offline Reinforcement Learning,º in Proceedings of the

11th International Conference on Learning Representations, 2023.

[4] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar,
H. Zhu, A. Gupta, P. Abbeel, et al., ªSoft Actor-Critic Algorithms and
Applications,º arXiv preprint arXiv:1812.05905, 2018.

[5] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, ªContinuous Control With Deep Reinforcement
Learning,º arXiv preprint arXiv:1509.02971, 2015.

[6] C. Zhang, O. Vinyals, R. Munos, and S. Bengio, ªA Study on Overfitting
in Deep Reinforcement Learning,º arXiv preprint arXiv:1804.06893,
2018.

[7] E. Nikishin, M. Schwarzer, P. D’Oro, P.-L. Bacon, and A. Courville,
ªThe Primacy Bias in Deep Reinforcement Learning,º in Proceedings

of International Conference on Machine Learning, pp. 16828±16847,
PMLR, 2022.

[8] T. Fujimoto, J. Suetterlein, S. Chatterjee, and A. Ganguly, ªAssessing the
Impact of Distribution Shift on Reinforcement Learning Performance,º
in Proceedings of NeurIPS 2023 Workshop on Regulatable ML, 2023.

[9] G. Brockman, ªOpenAI Gym,º arXiv preprint arXiv:1606.01540, 2016.

[10] S. Levine, A. Kumar, G. Tucker, and J. Fu, ªOffline Reinforcement
Learning: Tutorial, Review, and Perspectives on Open Problems,º arXiv

preprint arXiv:2005.01643, 2020.

[11] I. Kostrikov, A. Nair, and S. Levine, ªOffline Reinforcement Learning
with Implicit Q-Learning,º in Proceedings of International Conference

on Learning Representations, 2022.

[12] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, ªDeep
Unsupervised Learning Using Nonequilibrium Thermodynamics,º in
Proceedings of the 32nd International Conference on Machine Learning,
pp. 2256±2265, PMLR, 2015.

[13] J. Ho, A. Jain, and P. Abbeel, ªDenoising Diffusion Probabilistic
Models,º in Proceedings of Advances in Neural Information Processing

Systems (H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
eds.), vol. 33, pp. 6840±6851, Curran Associates, Inc., 2020.

[14] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake,
and S. Song, ªDiffusion Policy: Visuomotor Policy Learning via
Action Diffusion,º The International Journal of Robotics Research,
p. 02783649241273668, 2023.

[15] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu,
S. V. Macua, S. Z. Tan, I. Momennejad, K. Hofmann, and S. Devlin,
ªImitating Human Behaviour with Diffusion Models,º in Proceedings of

the 11th International Conference on Learning Representations, 2023.

[16] P. Dhariwal and A. Q. Nichol, ªDiffusion Models Beat GANs on Image
Synthesis,º in Proceedings of Advances in Neural Information Processing

Systems (A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds.),
2021.

[17] C. M. Bishop, Pattern Recognition and Machine Learning (Information

Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[18] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine

Learning. The MIT Press, 2006.

[19] S. Fujimoto, H. Hoof, and D. Meger, ªAddressing Function Approx-
imation Error In Actor-Critic Methods,º in Proceedings of the 35th

International Conference on Machine Learning, pp. 1587±1596, PMLR,
2018.

[20] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ªSoft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor,º in Proceedings International Conference on Machine

Learning, pp. 1861±1870, PMLR, 2018.

[21] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, ªD4RL:
Datasets For Deep Data-Driven Reinforcement Learning,º arXiv preprint

arXiv:2004.07219, 2020.

[22] D. Misra, ªMish: A Self Regularized Non-Monotonic Activation Func-
tion,º in Proceedings of British Machine Vision Conference, 2020.

[23] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and
B. Poole, ªScore-Based Generative Modeling through Stochastic Dif-
ferential Equations,º in Proceedings of International Conference on

Learning Representations, 2021.

[24] Z. Xiao, K. Kreis, and A. Vahdat, ªTackling the Generative Learning
Trilemma with Denoising Diffusion GANs,º in Proceedings of Interna-

tional Conference on Learning Representations, 2022.
[25] D. P. Kingma and J. Ba, ªAdam: A method for stochastic optimization,º

arXiv preprint arXiv:1412.6980, 2014.

