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Abstract

Background: Motor neuron disease (MND) is a progressive and incurable neurodegenerative disease. The Amyotrophic Lateral
Sclerosis Functional Rating Scale-Revised (ALSFRS-R) is the primary clinical tool for assessing disease severity and progression
in MND. However, despite its widespread use, it does not adequately capture the extent of physical function decline. There is an
urgent need for sensitive measures of disease progression that can be used to robustly evaluate new treatments. Measures of
physical function derived from digital devices are beginning to be used to assess disease progression. There is value in establishing
a consensus approach to standardizing the use of such devices.

Objective: We aimed to explore how digital devices are being used to quantify free-living physical behavior in MND. We
evaluated the feasibility and assessed the implications for monitoring physical behavior for future clinical trials and clinical
practice.

Methods: Systematic searches of 4 databases were performed in October 2023 and June 2024. Peer-reviewed English-language
articles (including preprints) that examined how people living with MND used digital devices to assess their free-living physical
behavior were included. Study reporting quality was assessed using a 22-item checklist (maximum possible score=44 points).

Results: In total, 12 articles met the inclusion criteria for data extraction. All studies were longitudinal and observational in
design, but data collection, analysis, and reporting protocols varied. Quality assessment scores ranged between 19 and 40 points.
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Sample sizes ranged between 10 and 376 people living with MND at baseline, declining over the course of the study. Most studies
used an accelerometer device worn on the wrist, chest, hip, or ankle. Participants were typically asked to continuously wear
devices for 1 to 8 days at 1- to 4-month intervals, with studies running for 12 weeks to 24 months. Some studies asked participants
to wear the device continuously for the full duration. Studies derived traditional end points focusing on duration, intensity, and
frequency of physical activity or nontraditional end points focusing on features of an individual’s movement patterns. The
correlation coefficients (r) between physical behavior end points and ALSFRS-R ranged from 0.31 to 0.78. Greater monitoring
frequencies and improved end point sensitivity were shown to provide smaller sample size requirements and shorter durations
for hypothetical clinical trials. People living with MND found using devices acceptable and reported a low burden. Adherence
assessed in 8 (67%) studies was good, ranging from approximately 86% to 96%, with differences evident between wear locations.

The perspectives of other end users and implications on clinical practice were not explored.

Conclusions:

Remote monitoring of free-living physical behavior in MND is in its infancy but has the potential to quantify

physical function. It is essential to develop a consensus statement, working toward agreed and standardized methods for data

collection, analysis, and reporting.

(J Med Internet Res 2025;27:e68479) doi: 10.2196/68479
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Introduction

Background

Motor neuron disease (MND), a group of progressive
neurodegenerative disorders that includes amyotrophic lateral
sclerosis (ALS), is characterized by loss of motor neurons in
the brain, brainstem, and the spinal cord [1]. Most people living
with MND experience progressive weakness and wasting of
their muscles with a life expectancy of only 2 to 3 years
following symptom onset [2]. There is no cure for MND, and
care is based on providing symptomatic support through
multidisciplinary teams. These teams must carefully monitor
physical function, nutritional status, respiratory function,
cognition, and well-being to inform clinical decision-making
and provide timely and effective support. People living with
MND are usually reviewed every 3 months [3]. However,
disease progression is variable, with some people living with
MND requiring more frequent monitoring, while others need
less frequent input due to slower disease progression.

The most used functional measure of disease severity and
progression in MND is the Amyotrophic Lateral Sclerosis
Functional Rating Scale-Revised (ALSFRS-R) [4]. This
questionnaire measures changes in function across 4 domains
(bulbar, fine motor, gross motor, and respiratory) in the context
of completing activities of daily living [4]. The ALSFRS-R is
predictive of survival and is commonly used as a primary end
point in clinical trials [5,6]. However, it has limitations. It has
been shown that the total score of the ALSFRS-R is
multidimensional and does not accurately capture the
heterogeneity of people living with MND. This means that 2
individuals can have the same total ALSFRS-R score but have
different disease severity, experience different symptoms, and
have different prognoses [7-9]. This can result in under or
overestimating treatment effects in clinical trials [10]. Moreover,
the ALSFRS-R is not particularly sensitive to disease
progression over durations <12 months [9]. Thus, there is a need
for more objective and sensitive ways of characterizing disease
progression in MND. To do this, it is likely that bespoke tools
that provide sensitive assessment across the 4 disease domains

https://www.jmir.org/2025/1/e68479
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must be developed. In this review, we focus on the currently
available tools to assess physical behavior in people living with
MND.

Digitally-derived measures of physical behavior have been
identified as potential markers of disease onset, progression,
and response to treatment in neurodegenerative diseases. A
recent systematic review of the literature revealed 17 reports of
activity monitoring in people living with Parkinson disease and
highlighted their value and application in well-designed clinical
trials [11].

There has also been growing interest in how digital technologies
can be used to monitor symptoms in people living with MND
[12,13] and several different devices have been used in research
to evaluate motor symptoms associated with MND in people
living with MND. For example, Geronimo et al [14] found that
inertial sensors can collect gait data as a biomarker that is
sensitive to changes in physical function in people living with
MND. This study explored the use of digital devices in the clinic
where patients were guided by a therapist. A review found that
studies have also explored the potential for these devices to
monitor a person’s free-living behavior, which allows
observation of typical behavior in everyday life [15]. For this,
one technology that seems particularly promising is wearable
triaxial accelerometer devices. These small devices can be worn
unobtrusively (eg, on the wrist like a watch or on the waist on
a belt) and detect accelerations of the body in 3 orthogonal
planes. They enable noninvasive monitoring of people
undertaking their free-living, habitual daily activities outside a
clinical or research environment. This includes being active,
sedentary, and sleeping, which, when taken together, can be
considered a person’s physical behavior pattern [16].

Building on the review by Beswick et al [15], it is timely to
investigate current knowledge of physical behavior patterns in
MND and the methods by which this knowledge is being
accrued so that standards for best practice can be identified and
shared. This will not only highlight the potential value of remote
monitoring of physical behavior in people living with MND,

J Med Internet Res 2025 | vol. 27 | e68479 | p. 2
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but may also offer a stepping stone for applying the knowledge
to other progressive diseases.

Objectives

Therefore, this systematic review aimed to (1) explore how
digital devices are being used to quantify free-living physical
behavior in people living with MND, (2) evaluate the feasibility
of using these devices for objectively delineating the physical
impact of MND, and (3) assess the implications of physical
behavior monitoring for clinical trials design and clinical
practice.

Methods

Search Strategy

A systematic review of scientific literature (written in English)
was conducted in October 2023 using 4 databases as follows:
Europe PMC (October 11, 2023), SCOPUS (October 11, 2023),
Web of Science (October 11, 2023), and IEEE Xplore (October
12, 2023). The included articles were not restricted by the date
of publication. The search was performed in line with the current
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) statement [17] (Multimedia Appendix 1).
To ensure the work published here was as current as possible,
an updated search of each database was conducted as follows:
Europe PMC (June 20, 2024), SCOPUS (June 20, 2024), Web
of Science (June 20, 2024), and IEEE Xplore (June 20, 2024).

Textbox 1. Study inclusion and exclusion criteria.

Musson et al

Here, the review period was limited to the years 2023 to 2024,
with the aim of identifying and including any study published
between the date of the initial search and final manuscript
preparation.

The following search strategy was used in each database:
“(MND or ALS or motor neurone disease or motor neuron
disease or amyotrophic lateral sclerosis) AND (physical activity
or exercise or physical behaviour or sedentary behaviour or
mobility) AND (remote monitoring or sensors or digital
technology or accelerometer* or actigraphy or GPS or wearable
technology or objective monitoring or wearable devices).”

Screening for Eligibility

The full inclusion and exclusion criteria are presented in Textbox
1. All references were imported to the Rayyan (Rayyan Systems,
Inc) web tool [18] for initial screening. A total of 336 records
were identified during the initial search of databases. Following
the removal of duplicates (63/336, 18.8%), articles were
screened to assess eligibility. Initial screening was completed
by NM. Studies were initially screened by title alongside the
inclusion and exclusion criteria (ie, titles indicating a systematic
review, investigation of healthy populations, or not specific to
remote monitoring of physical behavior were excluded). This
was followed by abstract and full-text screening. Forward and
backward reference chaining from eligible articles was
completed to identify other studies not captured by the search.
A total of 12 articles met the criteria for data extraction.

Inclusion criteria

e Design: any other design not specified in the exclusion criteria

¢  Date of publication: no restriction

o  Language of publication: English

Exclusion criteria

o  Participants: participant with other neurological conditions

physical behavior

monitoring of prescribed exercises or set movement tasks

o  Setting: face-to-face monitoring in clinical environment

o  Language of publication: non-English

o  Participants: study population includes people living with motor neuron disease

« Intervention of interest: use of remote monitoring devices to assess physical behavior
e Outcome of interest: remote monitoring of physical behavior in free-living conditions
o  Setting: free-living environment, home or domiciliary monitoring, and remote monitoring

o  Type of publication: peer-reviewed journal articles and preprint articles subject to secondary review

¢  Design: animal studies, ongoing trials, systematic reviews, and meta-analysis

o Intervention of interest: devices used for rehabilitation purposes (such as orthoses) and devices measuring any other parameters that are not

e Outcome of interest: gait analysis—gait-specific parameters focused on identifying pathological gait patterns in the clinical environment and

¢  Type of publication: any other publication type (eg, conference abstract and book chapters) and preprints that are now published

https://www.jmir.org/2025/1/e68479
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Data Extraction

A data extraction tool was created by NM with a focus on
extracting information relevant to the study aims (Multimedia
Appendix 2). Two researchers (NM and LSM) independently
extracted information from the identified studies. Once
extracted, these authors compared results for agreement, with
disputes resolved by a third reviewer (EHT).

Quality Assessment

Despite the overarching observational nature of the studies,
there was substantial heterogeneity in study design between
them. Consequently, a decision was made to assess the reporting
quality of the studies to inform future research in this area, and
in doing so, support the evaluation of good practice in use and
reporting of free-living physical behavior in MND. An a priori
decision was made to include all eligible studies in the review
regardless of their quality, due to the infancy of the research
area.

The reporting quality of studies was assessed using the STROBE
(Strengthening the Reporting of Observational Studies in
Epidemiology) statement [19]. The STROBE guidelines provide
researchers with a checklist of 22 items required for good
reporting of observational studies [19]. In this study, an article
was awarded 2 points for each item that was addressed, 1 point
for each item deemed to be partially reported but required further
information, and O when no information was provided. LSM
and NM independently assessed each article using a Microsoft
Excel spreadsheet. LSM and NM then met to confirm and
resolve discrepancies.

Data Collation

Two pairs of articles had identical methods, effectively reporting
different aspects of the same study. In both cases, the first article

https://www.jmir.org/2025/1/e68479

RenderX

Musson et al

of the pair [20,21] focused on the description of the method,
while the second [22,23] summarized methods and focused on
the main research findings. Therefore, when assessing the
methods of data collection, the pairs were considered as 1 study
(ie, the total number of studies for data collection was 10). When
assessing study findings, each study in the pair was considered
separately, so that 12 articles were included in the analysis of
findings. If several studies used the same MND population, the
participant data were taken from the study publishing findings
(rather than articles focusing on methodology or feasibility) or
the study that was published first. Several studies used data
collected on the same participant population. Due to
heterogeneity between the physical behavior end points used
in these studies, we deemed it inappropriate to perform complete
statistical analysis of findings; therefore, we focused on the
narrative review of evidence, descriptive statistics of participant
characteristics, and outcome measures used in the studies.

Results

Overview

Following the removal of duplicates and the full screening
process, 12 articles published between 2019 and 2024 were
included in the review [20-31]. Figure 1 provides a flowchart
of the complete search process. Studies were conducted in 5
countries: Australia, Netherlands, Scotland, United Kingdom,
and United States. We noted 3 overarching aims of investigation
as follows: (1) validating remote monitoring of physical
behavior in MND and finding markers of disease progression;
(2) investigating feasibility of remote monitoring; and (3)
investigating sample size effects of physical behavior end points
to inform clinical trial design.

J Med Internet Res 2025 | vol. 27 | e68479 | p. 4
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart of the search process, which includes the initial
search in October 2023 and search update completed in June 2024 (date limit: 2023-2024). The number of articles at each stage was reported separately
for each search. ALS: amyotrophic lateral sclerosis; MND: motor neuron disease.
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Reporting Quality

Overall, the scores from the reporting quality assessment ranged
between 19 and 40 (maximum available points=44; Table 1).
The only item that was fully addressed by every article (100%)
was the limitations of the study. While all articles attempted to
discuss generalizability to all people living with MND (eg, limb
vs bulbar onset), the reviewers agreed that all the articles would
have benefited from providing more details about this. The most

https://www.jmir.org/2025/1/e68479
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address potential sources of bias, with all 12 (100%) articles
failing to address this. In total, 8 (67%) articles did not explain
how the study size was determined, and 3 (25%) articles failed
to provide the eligibility criteria of participants or the methods
of participant selection. In total, 2 (17%) articles failed to
describe their statistical methods, and 2 (17%) articles failed to
define all outcomes, exposures, predictors, potential
confounders, and effect modifiers.
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Table 1. Scores from the reporting quality assessment for each item of the STROBE (Strengthening the Reporting of Observational Studies in
Epidemiology) statement for all studies included in the systematic review.

Study (by author)

STROBE state- vanEijk Garcia- Karaset Kellyet Rutkove Rutkove Holdom Johnson Guptaet van Un- Beswick Straczkiewicz
ment et al Gancedoet al [25] al [22] et al et al et al et al al [28] nik etal etal etal [31]
[24] (38 al [20] (31 (36 (35 [217(19 [23](25 [26] (36 [27]1(36 (27 [29] (40 [30] (37 (37 points)
points)  points) points)  points) points) points) points) points) points) points)  points)
Title and ab- 2 2 1 2 2 2 2 1 1 2 2 1
stract
Introduction
Background 1 2 2 2 1 1 2 2 1 2 2 2
and rationale
Objectives 1 2 2 2 2 1 1 2 1 1 2 2
Methods
Study design 2 2 1 2 2 2 2 2 1 2 2 1
Setting 2 1 2 1 1 1 2 2 1 2 1 2
Participants 2 2 2 2 0 0 1 2 0 2 2 2
Variables 2 1 2 1 0 0 2 2 1 2 2 2
Data sources 2 2 2 2 1 1 2 2 1 2 1 2
and measure-
ment
Bias 0 0 0 0 0 0 0 0 0 0 0 0
Study size 2 2 0 2 0 0 0 0 0 2 0 0
Quantitative 2 0 2 1 1 1 2 2 2 2 2 2
variables
Statistical 2 0 2 1 0 1 1 2 1 2 1 2
methods
Results
Participants 1 2 2 2 1 2 2 1 1 1 2 2
Descriptive 2 2 2 2 1 1 2 2 2 2 2 2
data
Outcome da- 2 1 2 2 0 1 2 2 2 2 2 2
ta
Main results 2 1 2 1 0 1 2 2 2 2 2 2
Other analy- 2 1 2 1 0 1 2 2 2 2 2 2
ses
Discussion
Key results 2 2 2 2 1 2 2 2 2 2 2 2
Limitations 2 2 2 2 2 2 2 2 2 2 2 2
Interpreta- 2 1 1 2 1 2 2 2 2 2 2 2
tion
Generaliz- 1 1 1 1 1 1 1 1 1 2 2 1
ability
Funding 2 2 2 2 2 2 2 1 1 2 2 2

device setup, and (4) other outcome measures, described in

Data Collection .
subsequent sections.

All 10 (100%) studies used a longitudinal observational study
design; however, methods were very heterogeneous. There were
4 elements identified as important to data collection methods A summary of participant characteristics is presented in Table
as follows: (1) participant characteristics, (2) follow-up, (3) 2. The participant sample size varied across studies (10-376

people) and decreased over longitudinal measurement time

Participant Characteristics
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(page number not for citation purposes)

RenderX



JOURNAL OF MEDICAL INTERNET RESEARCH

points due to loss to follow-up and progression of the disease.
However, it was often unclear (or not described) how many
participants were included at each measurement point. Overall,
there were more male participants (523/762, 68.6%) in the MND
population compared to female (239/762, 31.4%). The studies
reported age as either mean (7/12, 58%) or median (2/12, 17%).
The overall mean age of participants in the studies reporting
the mean was 59.7 years, while the median was 58.8 years. In
total, 3 (30%) studies [21,26,28] included healthy controls, but
the sample size was much smaller (25-58 individuals) and was
not age or sex matched to the clinical population with median
age of 51 years and had more female (61/113, 54%) participants
compared to male (52/113, 46%) participants. The reported
means and medians of the baseline ALSFRS-R scores ranged

https://www.jmir.org/2025/1/e68479
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from 31.4 to 41.6 points. MND subtype or ALS phenotype at
onset were reported in 7 (58%) studies. The most common
subtype of MND was ALS, which represented 50% (5/10
participants) [30], 93% (39/42 participants) [24], 93% (87/94
participants) [26] and 97% (94/97 participants) [29] of the
study’s baseline population, while the most common phenotype
at onset was upper limb, which represented 60% (15/25) of the
baseline population [20]. Of the 7 (70%) studies that reported
symptom duration at baseline, 2 (29%) predominantly included
those who had symptoms for <18 months, although it should
be noted these 2 (29%) reports used the same dataset [20,22].
In the other 5 (5/7, 71%) studies, participants had predominantly
experienced symptoms for >20 months [24-26,28,29].

J Med Internet Res 2025 | vol. 27 | e68479 | p. 7
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Table 2. Summary of participant characteristics.

Study Sample size  Controls, Sex, n Age (y), mean  Disease phenotype, n Symptom dura- ALSFRS-R?
(baseline),n  n (SD) tion at baseline total score at
(mo), median and baseline,
range mean (SD)
Male Female
vanEijketal \NpP-4p € 31 11 60 (12) MND subtypes: ALSY: 39: 25 (7-218) 36 (8)
[24] progressive muscular atro-
phy: 3; and primary lateral
sclerosis: 0
Garcia- ALS: 25 — 21 4 53.1(9.93) Phenotype at onset: upper ~ Reported in 22 41.6 (4.98)
Gancedo et limb: 15; lower limb: 6; up- participants as
al [20] per limb and lower limb: 2; <18 months
and bulbar=2
Kelly et al ALS: 25 — 21 4 53.1(9.93) Phenotype at onset: upper <3 months: n=3; 41.6 (4.98)
[22] limb: 15; lower limb: 6; up- 3-6 months: n=8;
per limb and lower limb: 2;  6-12 months:
and bulbar: 2 n=9; 1 year-18
months: n=2; and
missing data: n=3
Rutkove et ALS: 75 25 (30 Baseline  Baseline 60 (30—80)f and — — 34 (9_43)f
al [21] (111 consent- consented character- characteris- controls: 51
chand7s B et ey
cgal gal  MND:65 \NDP: 42
tributing da-  contribut- 14 con-
ta) ing data) . and con-
trols: 9 trols: 20
Rutkove et ~ ALS: 72 — 50 22 60.1 (9.9) Not disclosed Not disclosed 36.1 (no SD
al [23] (113 en- reported)
rolled and 72
provided da-
ta at least
once)
Karas et al ALS=45 — 29 16 60.1 (10.7) Symptom onset site: nonbul- 50 (93-281) and  36.0 (6.2)
[25] bar: 31; bulbar: 8; and un-  unknown or not
known or not reported: 6 reported: n=6
Holdometal MND wrist: 58 MND MND MND wrist: MND subtype: wrist: ALS: MND wrist: Wrist: 38
[26] 97 and hip®: wrist: 75;  wrist: 22,  60.69 IQR 87; progressive muscular at- 21.31 (IQR (IQR 9) and
42 MND MND hip: 12.55); MND  rophy: 1; primary lateral 13.27) and MND hip®: 38
hip®: 31; 11; and hip®: 61.28 sclerosis: 6; and hip®: ALS: hip®: 24.92 (IQR  (IQR 12)
and con-  controls (IQR 15.74); 39, progressive muscular at- 21.39)
trols wrist: 29 and controls rophy: 3, and primary lateral
wrist: 29 wrist: 55.33 sclerosis: 0
(IQR 16.11)
Johnsonetal ALS:46en- — Total: 25; Total: 15; Total: 61.8 — — Total: 31.4
[27] rolled, 40 wrist co-  wrist co- (12.0); wrist co- (8.1); wrist
met the anal- hort: 12;  hort: 8;and hort: 62.9 cohort: 31.4
ysis sample and ankle ankle co- (13.4); and an- (8.6); and
criteria cohort: hort: 7 kle cohort: 60.6 ankle cohort:
13 (10.7) 31.4(7.9)
Guptaetal  ALS: 376 26 ALS:247 ALS: 129  ALS: 57 (21- First symptoms include: up- 22.8 (0-246.3) 4171 4-48)f
[28] and con-  and con- 79)° and 33 (20-  Per limb: 159; lower limb:
trols: 14 trols: 12 67)f 164; bulbar symptoms: 75;
) and respiratory symptoms:
9
https://www.jmir.org/2025/1/e68479 J Med Internet Res 2025 | vol. 27 | e68479 | p. 8
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Study Sample size  Controls, Sex, n Age (y), mean  Disease phenotype, n Symptom dura- A1 SFRS-R?
(baseline), n  n (SD) tion at baseline total score at
(mo), median and baseline,
range mean (SD)
Male Female
van Unniket ALS:97(2 — Both co- Both co- Both cohorts: Both cohorts: ALS: 94; pro- Both cohorts: Both co-
al [29] cohorts); horts: 68; horts: 29;  60.5 (11.1); first gressive muscular atrophy: ~ 22.1 (2.2-217.9;  horts: 37.9
first cohort®: firstco-  first co- cohort®:59.9 3; first cohort®: ALS: 39; First cohort®: (6.8); first
42) and sec- hort®: 31  hort®: 11 (11.6); and sec- progressive muscular atro-  24.9 (6.9-217.9)  cohort®: 36.3
ond cohort: and sec- and second ond cohort: 61  phy: 3; and second cohort  and second co- (8.1); and
55 ond co- cohort: 18  (10.7) ALS: 55 hort: 18.5 (2.2- second co-
hort: 37 93.9) hort: 39.1
(5.3)
Beswicket MDD 10 — 88 2 62 (12) ALS: 5; primary lateral Survival length: 40 (6)
al [30] sclerosis: 2; and not dis- long survivor (>8
closed: 3 years): n=2
Straczkiewicz A1 5: 20" — 12h 8i 61.4(10.6"  Not disclosed® Not disclosed® ~ No baseline
etal [31] reported-esti-
mated base-
line total
score: 34.4
(30.4-38.3)"

4ALSFRS-R: Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised.

PMND: motor neuron disease.
“Not available.

dALS: amyotrophic lateral sclerosis.

“Data taken from Rutkove et al [21] baseline data for the entire group of individuals enrolled.

Data reported as median and range.
£As van Eijk et al [24].
hAs Tohnson et al [27] wrist cohort.

Follow-Up

Follow-up refers to the overall duration of monitoring completed
in a study. Measurement frequency refers to how often
participants were invited to wear or use a device (eg, every 3
months), and the measurement duration refers to the period over
which measures were recorded on each device deployment
(examples are provided in Table 3). The participant follow-up
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ranged between 12 weeks and 24 months and the measurement
frequency was mostly every 1 to 4 months (Table 3). The type
of measurement was either periodic (7/12, 58%) or continuous
for the duration of the follow-up (3/12, 25%). When the type
of measurement was periodic, the duration of each measurement
ranged from 1 to 8 consecutive days, with the most common
choice being 7 days (3/12, 25%).
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Table 3. Summary of data collection and data analysis approaches.

Musson et al

Type and setup of device Follow-up Other outcome measures Data analysis
Study Body loca-  Device (type and Sampling Duration of  Duration and frequency Outcome measures Epochs used
tion name) frequency follow-up of measurements in analysis (s)
(Hz)
van Eijk et Right hip Triaxial accelerome- 30 18 mo 7 consecutive d every ALSFRS-R, Hospital Anxi- 10
al [24] (anter'ior axil- ter Actiqraph 2-3 mo ety and Depression Scale,
lary line) GT9XLink weight, wear time log
Garcia- Chest Triaxial accelerome- 50 48 wk 3 consecutive d every ALSFRS-R, forced vital ca- 60
Gancedo et ter Mega faros 180 mo pacity, heart rate variability,
al [20] speech
Kelly etal  Chest Triaxial accelerome- 50 48 wk 3 consecutive d every ~ ALSFRS-R, forced vital ca- 60 (based on
[22] ter; Mega Faros 180 mo pacity, heart rate variability, information
speech from Garcia-
Gancedo et al’
[20D)
Rutkove et  Not stated Mi Band R Not re- 9 mo Daily for 90 d, then bi- ALSFRS-R, speech, electri- Not relevant
al [21] Device de- ported weekly for 180 d cal impedance myography
signed for tool, respiratory data, mus-
wrist cle strength, patient-reported
experience measures
Rutkove et Not stated Mi Band R Not re- 9 mo Daily for 90 d, then bi- ALSFRS-R, speech, electri- Not relevant
al [23] Device de- ported weekly for 180 d cal impedance myography
signed for tool, respiratory data, mus-
wrist cle strength, patient-reported
experience measures
Karas etal Notrelevant Personal phone (tri- 10 (ac- Uptoly Continuous cyclical ac- A1 SFRS-RSEP 60
[25] axial accelerometer  celerome- celerometer 10 s on or
and GPS) ter) off GPS 1 min on or 10
min off
Holdom et  Wrist (non-  Triaxial accelerome- 30 18 mo Wrist—=8 consecutived ALSFRS-R 10
al [26] dominant), ter ActiGraph every 3-4 months and
right hip GTI9XLink hip—7 consecutive d
every 2-3 mo
Johnson et Wrist or an-  Wrist: triaxial ac- Wrist: 32 6 mo As much as possible for ALSFRS-R, ALSFRS-RSE, 60
al [27] kle celerometer Acti- and an- the duration of the Rasch-Built Overall ALSS
Graph Insight kle: 128 study Disability Scale
‘Watch, Ankle: biaxi-
al accelerometer
Modus StepWatch 4
Guptaetal. All4limbs  Triaxial accelerome- 30 Minimum of 7 d every mo ALSFRS-R 1
[28] (wrists and  ter ActiGraph GT3X 0.75 y stated
ankles)
van Unnik  Right hip Triaxial accelerome- 30 18-24 mo 3-7 d every 2-3 mo Survival status, ALSFRS-R 10
et al [29] (anteroaxil-  ter ActiGraph (self-administered or physi-
lary line) GT9XLink cian administered)
Beswick et Right wrist  Triaxial accelerome- Notdis- 12 wk 24 h every 2 wk ALSFRS-R, 6-minute walk- Not disclosed
al [30] and Right ter ActiGraph GT9X closed ing test, questionnaires to
ankle provide feedback on their
experience of wearing de-
vices, standardized series of
movements
Straczkiewicz ~ Wrist of Triaxial accelerome- 32 6 mo Continuously, except ~ ALSFRS-RSE 60 (for total
etal [31] choice ter ActiGraph, In- for recharging (required activity
sight Watch every few weeks) counts)

4ALSFRS-R: Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised.

®ALSFRS-RSE: Amyotrophic Lateral Sclerosis Functional Rating Scale self-administered.

“ALS: amyotrophic lateral sclerosis.
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Device Setup

Most studies (8/12, 67%) used commercially available triaxial
accelerometers (Table 3). Only 1 (8%) study used a biaxial
accelerometer and 1 (8%) study used the participant’s personal
smartphone (GPS and triaxial accelerometer). Most (8/12, 67%)
studies reported the sampling frequency (Hz) of the device,
which ranged from 10 to 128 Hz; however, there was little
justification for the choice. The most used frequency was 30
Hz (4/12, 33%). The device wear location varied and included
wrist, chest, hip, and ankle. Most studies mounted the device
in one place (6/12, 50%), while some studies (n=2, 16%) used
2 cohorts with different wear locations. In total, 2 (16%) studies
mounted the devices to several locations, with Gupta et al [28]
simultaneously comparing 4 devices (one on each ankle and
wrist) per participant and Beswick et al [30] comparing 2
devices (right wrist and right ankle) per participant (Table 3).

Other Outcome Measures

All studies used clinician or self-administered ALSFRS-R to
track disease progression and used it as a correlation point when
assessing the validity of the physical behavior end points. Either

https://www.jmir.org/2025/1/e68479
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a total score or subdomain scores of ALSFRS-R were used
(gross motor, fine motor, bulbar, and respiratory). In total, 6
(50%) studies included other outcome measures, such as
additional questionnaires (Hospital Anxiety and Depression
Scale, Rasch-built Overall ALS Disability Scale, and study
specific questionnaires; 4/12, 33%), respiratory data (2/12,
17%), cardiac data (1/12, 8%), speech data (2/12, 17%), muscle
strength (1/12, 8%), mobility tests (1/12, 8%), and survival
status (1/12, 8%; Table 3). Additional outcome measures were
predominantly used as stand-alone measures, although their
relationship with the physical behavior end points was assessed
in 2 (17%) studies. van Unnik et al [29] found that participants
with a lower vertical movement index (Table 4) also experienced
a significantly lower probability of survival compared to
participants who had a higher vertical movement index during
follow-up. Beswick et al [30] assessed the relationship between
a mobility test and physical behavior end points from the
devices. They found a significant correlation between the
distance walked during the 6-minute walking test and the
6-minute walking test total vector magnitude counts from
ankle-mounted devices.
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Table 4. Physical behavior end points used in the studies included in the systematic review®.

Percentage active—vector magnitude counts >100 counts per minute

Metabolic equivalent of task score—average daily metabolic equivalent of task
Daily vector magnitude — (vector magnitude average x SD of vector magnitude)
Daily Al—uvariation in vertical axis (y; ie, movement against gravity)

Activity score algorithms to evaluate how much activity is performed
Activity classification algorithms to evaluate what activities are performed

Study End points
van Eijketal o

[24] .

Garcia- .
Gancedoet

al [20]

Kelly et al .
[22]

Rutkove et o
al [21]

Rutkove et o
al [23]

Karas et al o
[25]

Holdometal
[26] .

Johnsonetal o
[27] .

Guptaetal
[28] .

Daytime, nighttime, and 24-h values for duration of wear time; total activity score

Daytime and nighttime values for time and percentage time spent active; time and percentage time spent sedentary (not lying);
time and percentage time spent lying; time and percentage time sedentary; maximum activity score; mean maximum activity
score; number and average duration of active periods (>1 min) also categorized into 5 categories of activity duration:>1 to <2
min, >2 to <5 min, >5 to £15 min, >15 to €30 min, <30 min active,

Nighttime rest end points: percentage time lying down (at night), number of nighttime movement episodes, number of nighttime
movement episodes per h, percentage time nighttime rest efficiency, rest fragmentation index (movement time divided by the
number of movement episodes), average duration of movement episodes

Steps

Steps

Smartphone accelerometer data end points:log (activity index), log (activity index from top one min), walking cadence (steps per
s), walking cadence (steps pers) from top one min, log (step count), log (step count from top one min)
Smartphone GPS data endpoints: log (distance traveled in kilometers), home time (h)

Proportion of time active
Vector magnitude
Variation in axis 1
Variation in axis 2
Variation in axis 3

Wrist—ActiGraph

Vendor-derived measures:light activity (min), moderate activity (min), vigorous activity (min), moderate-vigorous physical ac-
tivity (min), sedentary (min), nonsedentary (min), locomotion (min), nonlocomotion (min), steps, calories, metabolic equivalent
of task, total activity counts, sleep (min),

Investigator-derived measures (using actigraphy minute-level activity count):total activity count (24-h activity count sum), log
total activity count (logarithmic transformation of total activity counts+1), total log activity count (24-h sum of logarithmic
transformation of activity count+1), min spent active (min with activity count >1853), min spent inactive, active to sedentary
transition probability, sedentary to active transition probability

Ankle—modus

Vendor-derived measures: second-level step count data, minute-level step sums, daily level step counts, percentage time in low
activity (1-15 steps/minute), percentage time medium activity (16-40 steps/minute), percentage time high activity (41+ steps/minute)
activity, mean, median, 95th percentile, peak performance index, and max consecutive (60, 20, 5, and 1 minute) cadences

The number in the bracket refers to the number of end points per each measure

Activity index: activity index mean (1), activity index median (1), activity index mode (1), activity index entropy (1), percentage
daytime with low activity index (1), percentage daytime with moderate activity index (1), percentage daytime with high activity
index (1), percentage acceleration in single direction (3),

Spectral: total power (1)

Activity bout: bout acceleration (2), bout jerk (2)

Submovement: submovement distance (8), submovement velocity (8), submovement acceleration (8), submovement jerk (8),
submovement duration (8), submovement principal component 1 score (6), submovement principal component 2 score (6), sub-
movement principal component 3-5 score (18)

van Unnik et Vertical Movement Index—based on movements against gravity

al [29]

Beswicket
al [30] .

Total vector magnitude counts
Vector magnitude counts from ankle-mounted devices during motor assessments
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Study End points

Straczkiewicz o
etal [31] .

Total daily count of flexions by at least 45°, 90°, and 135°
Total daily count of extensions by at least 45°, 90°, and 135°

o  Total daily count of supinations by at least 45°, 90°, and 135°

«  Total daily count of pronations by at least 45°, 90°, and 135°

o Total daily count of flexions and extensions by at least 45°, 90°, and 135°

«  Total daily count of supinations and pronations by at least 45°, 90°, and 135°

o Average daily duration of 10 fastest flexions by at least 45°, 90°, and 135°

o Average daily duration of 10 fastest extensions by at least 45°, 90°, and 135°

o Average daily duration of 10 fastest supinations by at least 45°, 90°, and 135°

o Average daily duration of 10 fastest pronations by at least 45°, 90°, and 135°

o Average daily duration of 10 fastest flexions and extensions by at least 45°, 90°, and 135°
e Average daily duration of 10 fastest supinations and pronations by at least 45°, 90°, and 135°
o  Total activity counts—a daily (24-h) sum of min—level activity counts

#For more details around how these physical behavior end points were derived please refer to the original publications included in the systematic review

[20-31].

Data Analysis

Missing accelerometer data can occur for several reasons, and
how this is managed seemed closely related to the device use
and wear protocols (eg, charging and overnight wear) and the
sampling frequency. Because devices can be removed by the
participant, nonwear time must be detected and distinguished
from sedentary behavior, and a minimal wear threshold for
sample inclusion in analysis must be decided. For instance,
Straczkiewicz et al [31] excluded days with <21 hours of
cumulative wear time, and van Eijk et al [24], van Unnik et al
[29], and Johnson et al [27] excluded samples with <8 hours
recording per day from analysis, while Gupta et al [28] excluded
samples with <3 hours recording per day. In relation to
sampling, Karas et al [25] adopted a smartphone-based
acquisition method whereby data collection for accelerometer
and GPS cycled between data acquisition periods and periods
where no data were acquired (more information can be found
in Table 3) to avoid excessive battery drain. Therefore, the
sample had missing data a priori, and imputation was performed
before analysis.

The raw acceleration signals were commonly processed into
epochs (time periods) before analysis. Most studies used 10
seconds (3/12, 25%) or 60 seconds (3/12, 25%) epochs for
analysis, while other studies adopted 1-second epochs (1/12,
8%; Table 3). Data were preprocessed and analyzed either via
algorithms developed by the research team [20,31] or previously
developed and reported algorithms, such as activity index [32]
or submovement analysis [33,34]. In addition, some studies
[24,26,27,29,30] used proprietary algorithms for data
preprocessing provided by device vendors.

Even though researcher-developed algorithms or proprietary
software were used for data preprocessing, most physical
behavior end points were researcher-derived in line with the
specific objectives of the study. Table 4 shows all the physical
behavior end point used. The majority focused on daytime
behaviors, with only Kelly et al [22] and Johnson et al [27],
including any nighttime or sleep-based end points. Due to
different sampling frequencies and data preprocessing steps,
the end points differed between all studies except 2 (17%)
[24,26]. Here, variation of vertical axis, daily vector magnitude,
and proportion of time spent active were the defined end points,
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and were assessed using the same device, sampling frequency,
and data preprocessing, although at 2 different wear locations
(hip and wrist) [24,26]. Many end points focused on quantifying
traditional physical behavior variables, such as the duration,
intensity, and frequency of physical activity. In total, 5 (42%)
studies explored nontraditional physical behavior end points.
Of those, 3 (60%) focused on the end point based on variation
in vertical axis developed by van Eijk et al [24], which is based
on movement against gravity. Straczkiewicz et al [31] focused
on total daily count and average daily duration of upper limb
movements, such as flexion, extension, pronation, and
supination, among others. Finally, Gupta et al [28] used
submovement analysis based on their previously developed
algorithms that identified small segments, termed as
submovements, within the movement patterns of the wrist,
recorded during reaching tasks that had been associated with
movement impairments in participants with ataxia [33,34]. In
addition, Gupta et al [28] explored the use of artificial
intelligence, such as machine learning approaches, for data
analysis rather than traditional statistical analysis (eg,
linear-mixed effects models), which were used by all studies.

Reported Research Findings
Validating Remote Monitoring of Physical Behavior

The reported research findings consistently demonstrated that
physical activity levels decreased longitudinally with MND
progression. Moreover, physical behavior end points were
associated with total ALSFRS-R score with correlation
coefficients (r) ranging from 0.31 to 0.78. This was also true
for correlation with the gross motor and fine motor domains of
ALSFRS-R. In addition, van Unnik et al [29] demonstrated high
correlation coefficients of changes in the fine motor domain
(Pearson r=0.86, 95% CI 0.80-0.90) and gross motor subdomain
(Pearson r=0.79, 95% CI 0.70-0.85). However, while certain
end points (daily vector magnitude and variation in vertical
axis; Table 4) resulted in reduced between-patient variability
(measured as coefficient of variation), [24] some (eg, average
daytime active [min] and percentage daytime active [%]) showed
greater variability compared to ALSFRS-R [22].

Device placement influenced reported outcomes. Specifically,
wrist-derived outcome measures consistently correlated with
functional loss in “fine motor” domain in ALSFRS-R, while
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measures from hip or ankle-mounted devices were strongly
associated with a change in gross motor function [24,26,28]
and most recently shown to also correlate with the fine motor
domain [29]. In addition, Gupta et al [28] demonstrated that
when monitoring all 4 limbs, there was good agreement between
right and left limbs for physical behavior submovement outcome
measures, with agreement between the left and right ankle
stronger (r=0.81-0.97) than between the left and right wrists
(r=0.65-0.82). Moreover, taking the score of a limb with the
maximum progression rate produces a motor outcome measure
consistent with, but more sensitive than, ALSFRS-R [28]. None
of the studies investigated the effects of disease phenotype on
physical behavior end points nor the most optimal wear location
for each phenotype.

Effect of Accelerometer-Derived Qutcome Measures on
Sample Size Requirements

In total, 5 (42%) studies investigated the effects of using
physical behavior end points, including increased measurement
frequency, on sample size requirements of hypothetical clinical
trials. In total, 4 (33%) studies found that a reduction in sample
size would be related to the increased sensitivity of their
proposed outcome measures [23,24,28,29]. This was determined
either through increasing measurement frequency (daily
monitoring) [23], taking the score of a limb with maximum
progression rate in a study monitoring all 4 limbs [28], or
reduced between-patient variability (and thus increase
sensitivity) of end point based on the variation of daily activities
[24]. For example, van Eijk et al [24] demonstrated that when
recording 7 days of data every 2 to 3 months, end point, such
as daily vector magnitude and variation in vertical axis,
outperform ALSFRS-R at 9 months and lead to 30% reduction
in required sample size at 12 months. Similarly, van Unnik et
al [29] demonstrated that for a study with 7-day recordings at
monthly intervals with a 6-month follow-up, 50 participants
would be required (80% power) to detect differential progression
rates of vertical movement index. In addition, van Unnik et al
[29] found that if the follow-up duration is increased to 12
months, the sample size can be reduced by 50%. In contrast,
Kelly et al [22] found that their physical behavior end point
(average daytime active [min] and percentage daytime active
[%]) resulted in increased sample size requirement for a
hypothetical clinical trial compared to ALSFRS-R total score
(500-700 participants for physical activity end points vs 290
participants for ALSFRS-R). This was explained by greater end
point variability toward the end of the study compared to
ALSFRS-R, possibly due to the relatively small sample size in
the reviewed study (n=18) [22].

Feasibility of Using Accelerometer Devices in MND

In total, 9 (75%) studies assessed at least 1 or more aspects of
feasibility in implementing accelerometer-derived measures of
physical behavior in people living with MND. Feasibility was
typically assessed via Likert-type, dichotomous or numerical
rating scale questionnaires. The assessment of feasibility
reported focused on perceptions of participants and did not
include input from other individuals, such as clinicians,
caregivers, or family members. The overall impression was
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positive, participants found procedures acceptable [20,30], and
reported it improved their sense of control of the disease [23].

Device cost was reported by Gupta et al [28] as US $234-US
$433 over the course of the study and by van Unnik et al [29]
at US $315 (as of 2021). Garcia-Gancedo et al [20] reported
adverse events that occurred during the study, all of which
related to skin sensitivity to the adhesive used to secure the
device to the participant. In terms of technical challenges,
Garcia-Gancedo et al [20] reported 1 electrical failure of a device
while it was being charged. Rutkove et al [21] reported
challenges regarding manufacturers stopping production of
devices used during their study. In the study by Beswick et al
[30], no participants reported side effects, nor did they have any
concerns about remembering to charge the device or the device
interfering with daily activities. They also found that 90% of
participants would be happy to wear the devices for longer than
12 weeks, and 70% felt positive about the suggestion that using
the device may result in needing to attend fewer clinic
appointments.

In total, 2 (17%) studies invited participants to visit the study
site, where devices were introduced to participants at setup
[20,22]. In contrast, 6 (50%) studies were mostly conducted
remotely, with varying levels of details reported regarding
whether devices and their instructions were posted to
participants and the level of support provided over telephone
or videoconference calls [21,23-25,27,31]. The study by van
Unnik et al [29] had in-person visits, but for some participants
the device was mailed out. Beswick et al [30] carried out
in-person visits and used videoconferencing to do the study
assessments. Rutkove et al [21] was the only study to report
issues related to participants being unable to successfully work
the device.

Participant Adherence to and Burden of Device Wear

Adherence was assessed in 8 (67%) studies, based on the number
of valid wear days (days when the minimum wear threshold of
the device was achieved) against the total number of recording
days. Overall, adherence was good, ranging from 91.8% to 93%
for hip-worn devices [24,29], 92% for chest-worn devices [20],
86% to 95.7% for wrist-worn devices [26,30], and 87.3% for
ankle-worn devices [30]. Overall, the number of valid days was
higher for wrist-worn devices compared to ankle-worn devices
in studies that assessed multiple devices in 1 participant cohort
[28,30]. Adherence for chest-mounted monitors reduced
longitudinally, from 92% at baseline to 56% at the last
measurement, which was explained by physical inability to meet
protocol requirements for attaching the device, increased
reliance on caregivers to facilitate device use, or decreased
willingness to comply with study procedures [20].

Van Eijk et al [24] assessed the wear burden using a Likert
rating scale where 0 indicated no burden and 10 indicated high
burden. The mean score was 1.3, indicating a low rate of burden
for the hip-worn device. Similarly, Garcia-Gancedo et al [20]
reported that participants found the chest-mounted device
comfortable to wear; however, 24% (6/25) of participants
reported symptoms of local skin irritation (itching and skin
reaction potentially due to allergy to the adhesive). Beswick et
al [30] explored patients’ expectations of wearing devices. They
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found that 90% of participants thought wearing the devices
would be useful for tracking changes in their symptoms.

Discussion

Principal Findings

This systematic review investigated current methods, findings,
feasibility, acceptability, and implications of remotely
monitoring free-living physical behavior in people living with
MND. Studies consistently showed that decreased physical
activity levels occurred over time, as would be expected with
MND progression, and are currently captured by
questionnaire-based assessments and clinical observation.
However, heterogeneous data collection and analysis procedures
were used with little consistency in protocols between studies.
Some proposed physical activity end points were found to
correlate well with the total ALSFRS-R score and alongside
increased monitoring frequency, were shown to provide smaller
sample size requirements for hypothetical clinical trials that
could be completed within shorter time periods. However, it
should be noted that study participants tended to be biased
toward slower progressors and those with limb-onset phenotypes
(Table 2). In addition, device wear location (eg, upper vs lower
limb vs hip) can influence the results, with outcomes derived
from wrist-worn devices correlating better with functional loss
in the “fine motor” domain of the ALSFRS-R, while hip or
lower limb mounted devices were more strongly associated with
change in gross motor domain [26,28]. Nevertheless, van Unnik
et al [29] were able to evidence a good correlation between
hip-worn devices and both gross and fine motor functions. This
could have implications for recommendations on optimal
strategies for monitoring change across groups presenting with
different onset sites. Importantly, studies reported positive
feedback on the use of accelerometer devices and good
adherence by study participants, although this did decrease
longitudinally [20].

How Are Accelerometer Devices Currently Used to
Study MND?

Overview

Currently, considerable heterogeneity exists across studies
monitoring physical behavior in MND. This is not surprising
given the nascent use of these methods in MND research (~5
years), and something that is also seen in other research areas
where such methods are much more common [35-38]. Given
the rareness of MND (and MND subtypes) and the challenges
this presents for accruing large longitudinal datasets, there is
value in establishing a consensus approach in MND, and the
development of standardized methods of data collection and
analysis that would enable harmonization across datasets. This
would facilitate data sharing, comparability of findings, and
support better phenotyping of MND subtypes. From the results
presented here, it seems particularly important to consider
developing a consensus across aspects of data acquisition,
analysis, and reporting. Therefore, the following subsections
summarize key elements of these factors found in the reviewed
studies that require further consideration.
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Data Acquisition

Across the reviewed studies, there were notable differences in
total participant follow-up time, frequency, and duration of each
measurement period (Table 3). It is important that the total
follow-up time should allow observation of clinically relevant
changes. The total participant follow-up of 6 to 24 months in
the studies captured such changes and sits well within the
average MND survival of 2 to 3 years after symptom onset [2].
Studies tended to record data either monthly or every 2 to 3
months, and the latter would coincide with routine clinical
assessment or appointment frequency currently recommended
by National Institute for Health and Care Excellence [3]. Once
meaningful changes in physical behavior is known, remote
monitoring could facilitate personalized visit schemes that could
reduce the travel burden and cost. However, it is important to
note that studies tended to be biased toward more slowly
progressing and predominantly limb-onset disease phenotypes
(Table 2), and optimal data recording frequency could differ
between slower and faster progressors. This concern is not
unique to studies on movement, as a bias toward the inclusion
of slower progressing patients is well-documented in traditional
epidemiological studies. This will, in part, be addressed by the
release of data from clinical trials (where inclusion is generally
biased toward more rapidly progressing patients) that include
measures of movement as part of study outcomes.

To capture accurate information on the participant’s current
functional ability, the duration of each measurement period
should capture day-to-day variations in behavior [39]. Larger
day-to-day variations necessitate longer monitoring periods to
be robustly captured; however, day-to-day variations were not
reported in any of the reviewed studies. This makes it difficult
to identify the optimal duration of recording. Most included
studies were recorded over 7 consecutive days (Table 3). This
duration is considered adequate to capture most physical
behavior variables [39,40] and accounts for variations in social
and work activities that occur over a week yet does not exceed
the battery life for most commercially available accelerometers
[41-43]. However, if future MND specific research establishes
that there is little day-to-day variability for MND specific end
points, the duration of each measurement could be reduced,
which could provide several benefits, including reduced wear
burden for participants.

While accelerometers were the most used devices, the method
of their attachment and the wear location varied (Table 3). The
studies suggest that the wear location has the potential to
influence the outcomes [26]. However, the most appropriate
location is yet to be determined and will likely depend on the
aspect of physical function of main interest (ie, fine vs gross
motor skill). Moreover, optimal wear location and the end point
most sensitively reflecting physical function may differ across
MND presentation and phenotype. Participants living with
different MND subtypes were reported to be included in 4 (33%)
studies, and ALS site of symptom onset was reported in 3 (25%)
studies (Table 2). It is not clear whether people living with
different MND subtypes participated in the other studies, and
these details were not reported, or whether all participants had
the same subtype. Either way, this means the influence of
disease-specific factors on the suitability of different physical
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behavior end point measures has not yet been assessed in detail
and represents a gap in current knowledge.

An additional parameter of importance in data acquisition is
the device sampling frequency. This varied greatly between the
studies (10-128 Hz, Table 3), with limited justification for the
frequency used. The major frequency components of human
movement are low, occurring up to 20 Hz [44-46]. In gait, most
of the energy is contained below 15 Hz; therefore, to conserve
99% of the signal power, the sampling frequency must be a
minimum of 30 Hz [44,47], and this was the most used sampling
frequency within the reviewed studies (Table 3). However, Khan
et al [48] eloquently demonstrated that datasets of different
activities (eg, Parkinson disease and walking and physical
monitoring) each have different optimal sampling frequency
ranges (26-63 Hz). Therefore, the optimal sampling frequency
for sensitively detecting changes in physical function in MND,
while avoiding battery drain and large storage requirements
may warrant further assessment. The MND community will
therefore benefit from establishing standardized means of
collecting accelerometer data, in a similar manner to that
developed by the Mobilise-D consortium [49].

Data Analysis: Preprocessing

Reviewing the data analysis approaches used across studies
revealed large differences in data preprocessing undertaken to
derive physical behavior metrics, which have implications for
end point comparison across studies. For example, ActiGraph
devices were the most used in reviewed studies (7/10, 70%),
and 5 (71%) studies used the manufacturer’s proprietary
software (ActiLife) to derive activity counts from the raw data
to construct physical behavior end point. However, activity

Musson et al

counts can be calculated in different ways (not universal) with
a complex relationship between raw data and counts that differs
between device models [48]. This will influence the
generalizability of results and could also pose challenges when
comparing studies that have used different versions of the same
software. Therefore, it seems important for researchers to
consider the implications of data preprocessing via proprietary
algorithms, a point that must be balanced against the availability
of technical expertise in the research team. There is likely value
in the MND research community working toward the provision
of transparent and accessible processing tools (eg, through an
Open Science framework, as used to share activity index
analysis code) to facilitate replication of findings and
standardization across study sites.

A further important feature of data analysis that warrants
consideration is the reduction of data into epochs. This approach
of smoothing data was routinely used across studies, with 10-
or 60-seconds epochs commonly used. Despite this being routine
practice, there is a lack of consensus on the most appropriate
epoch length for specific, measurable outcomes. Because epoch
length determines data resolution (Figure 2), the choice should
likely be guided by the behavior of interest. End points relating
to subtle movement variations, moving from sitting to standing
or reaching and grasping, may warrant shorter epoch lengths
(eg, 1 second). In contrast, end points relating to physical
behaviors, such as walking, may warrant longer epoch lengths
(eg, 210 seconds). Therefore, future research should consider
and justify the choices of data smoothing to balance the
difference in information against the feasibility and demands
of processing large quantities of uncompressed data.

Figure 2. Graphical representation of 30-minute segment data from a healthy individual in free-living conditions wearing a right anterior thigh-mounted
triaxial GENEACctiv accelerometer with a sampling frequency at 100 Hz. The figure demonstrates standardized activity counts of y-axis at 1-, 10-, and
60-second epochs. Variation in y-axis was calculated as per van Eijk et al [24].
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Data Analysis: Physical Behavior End Points

Most (7/12, 58%) of the studies only reported traditional
physical behavior end points, which typically summarize the
overall frequency, intensity, and duration of physical activity.
In addition, changes to end points specific to sedentary behavior
patterns could also be explored [37]. However, these measures
represent a broad overview of physical behavior but do not
provide information on movement characteristics. In addition,
it seems inevitable that these measures will decline with MND
progression, and some (eg, average daytime active [min] and
percentage daytime active [%]) even lead to greater data
variability compared to the ALSFRS-R [22]. Thus, when used
in isolation, some outputs may not be optimally suited as clinical
end points. In contrast, end points that go beyond measuring
the volume of physical behavior and focus more on movement
characteristics, quality, or complexity (ie, how people move
rather than how much they move) may have greater potential
value. Examples of such measures include the daily vector
magnitude [24] and submovement analysis [28], with vector
magnitude having been shown to reduce between-patient
variability compared to traditional measures, such as the
percentage of time spent active and thereby increasing sensitivity
to disease progression [24,26].

Reporting of Physical Behavior Studies in MND

The growing interest in studying free-living physical behavior
end points in MND means there is value to ensuring transparent
and clear reporting. This would facilitate the identification of
problems in conducting studies as well as the clarity and quality
of reporting and hence accelerate consensus around optimal
study designs. For example, a clear representation of participants
at each stage of the study, potentially in the form of a flowchart,
would allow a clear reflection of longitudinal attrition rates and
their causes. In addition, there should be justification for design
choice, including a clear description of the type of follow-up,
accelerometer location, method of attachment, and sampling
frequency. Consideration should also be made of the
requirements for reporting data preprocessing, as this is
something that differed significantly between studies.
Consequently, work to develop standard reporting guidelines
would be particularly timely and valuable to the MND
community. Examples of such efforts in other fields that could
provide a useful foundation for the MND community include
the recommendations for assessing and reporting human joint
kinematics using inertial measurement units recently reported
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in the biomechanics community but has yet to demonstrate its
impact [50].

Perspectives on the Feasibility of Monitoring Physical
Behavior in MND

Overview

When recorded, reviewed studies consistently found that
participants had positive attitudes toward remote monitoring of
physical behavior, excellent use, and reported a low rate of
burden. Despite limited evidence specific to accelerometry,
other studies of telehealth tools in MND also found that people
living with MND are accepting toward using remote monitoring
approaches [12,51]. However, it is clear that participants face
challenges using digital devices over the course of study. For
example, the physical challenge of removing and reattaching a
device may, coupled with the progression of MND, influence
adherence [20]. Gupta et al [28] and Beswick et al [30] have
also shown that the amount of use differs between wear
locations. However, there was very limited information on
factors that reduced use (including consideration of family
member or caregiver burden) provided in the articles included.
This restricts the evidence base on which future study protocols
can be optimized to maintain participant involvement as the
disease progresses and avoid missing data. Further research is
needed, and we are currently working to expand our knowledge
of the influencing factors.

Future Considerations of Physical Behavior Monitoring
in MND

To support the development of a consensus approach for the
quantification of physical function from digital devices in MND
and enhance the opportunity for data harmonization, we present
currently unanswered questions and recommendations for future
research in this area (Table 5). None of the reviewed studies
evaluated the use of devices for clinical care, and research has
not explored the implications of remotely monitoring physical
behavior on clinical care. Further research is warranted, and it
is likely that further considerations will need to be made to
mature and translate the technology for clinical practice. The
focus of this review was to explore monitoring of free-living
physical behaviors, where individuals are completing tasks of
their choice. It should be noted that digital devices can also be
used in clinics or home-based assessments of defined functional
tests, such as sit-to-stand tests [14,52]. These approaches are
especially useful when standardizing data acquisition, analysis,
and reporting protocols.
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Table 5. Current unanswered questions in motor neuron disease (MND) actigraphy research and future recommendations, ranked in terms of perceived

importance.

Question

What is known so far?

Recommendation

User-related: are these devices and
procedures feasible for use by peo-
ple living with MND?

User-related: are the devices and
procedures feasible for family
members, caregivers, and health
care professionals?

Clinical practice-related: is physical
behavior related to other symptoms
of MND?

Clinical practice-related: are physi-
cal behavior end points more sensi-
tive measures of disease-related
change in physical function than the
ALSFRS-R?

Methods-related: what is the opti-
mum follow-up design to capture
changes in physical behavior?

Methods-related: what is the most
optimal wear location to capture and
predict changes in physical behavior
with MND progression?

Methods-related: is there an opti-
mum device location and outcome
measure for each MND phenotype?

Clinical practice-related: does mon-
itoring physical behavior offer a
cost-effective means of assessing
change in physical function?

Clinical practice-related: do physical
behavior end points provide informa-
tion that is clinically relevant or re-
lated to clinical milestones?

Adherence is good, and participants largely thought
the devices were acceptable and reported a low
burden of use.

Research has not comprehensively explored the
experiences of individuals using the devices and
procedures.

Physical behavior is only a small part of MND, and
no research has investigated relationships with
other relevant disease domains.

The evidence is inconclusive. Some studies have
found that accelerometry data have greater variabil-

ity than the ALSFRS-R?, while others found less
variability than the ALSFRS-R.

There is no consensus on the duration of follow-up,
frequency of measurement, or duration of measure-
ment. A measurement period of 7 days can account
for potential day-to-day variation in physical behav-
ior.

The wrist location correlated better with the ALS-
FRS-R fine motor domain and lower limb place-
ment (hip or ankle) correlated better with the gross
motor domain. Physical behavior end points may
need to vary based on device wear location.

Research has not investigated whether there are
differences in outcome measures between MND
phenotypes.

Research has not explored the cost implications or
economics associated with using physical behavior
end points.

Research has not explored the impact of physical
behavior end points on clinical decision-making,
nor relationships to milestones (eg, loss of ambula-
tion or care dependency).

Research to explore people’s lived experience of using the
devices. Qualitative research methods will enable in-depth
exploration of feasibility and allow identification of barriers
and facilitators to using digital technologies.

Research to explore experiences and perceptions of these
individuals. Qualitative research methods will be helpful
in identifying barriers and facilitators.

Research to explore whether physical behavior is related
to other objective measure areas (eg, respiratory function
and muscle strength).

Research to quantify variability in physical behavior end
points relative to that in ALSFRS-R. Consideration of ef-
fects of different MND phenotypes on measurement vari-
ability will be required here, as well as estimation of clini-
cally meaningful effect size.

Research to identify the optimum durations of follow-up,
frequency of measurement, and length of measurement.
Using qualitative methods to explore people’s experiences
of this will also contribute to our knowledge of what is
feasible for patients and health care professionals.

Research to identify optimal wear locations, including
consideration of impacts on use of other devices or collec-
tion of additional data (eg, pulse oximetry). Studies should
consider ease of use and participant burden and impacts of
their evolution with disease progression.

Research to explore inertial measurement unit performance,
optimum wear location, and physical behavior end points
across MND phenotypes.

Research evaluating the cost-effectiveness of using physical
behavior end points in both clinical trials and in care is re-
quired.

Research to explore how using devices will impact clinical
decision-making. Future studies should aim to establish
minimum clinically important differences and minimal
detectable change values for commonly used physical be-
havior end points. Qualitative research methods will be
helpful for exploring this in depth.

“ALSFRS-R: Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised.

Conclusions

Remote monitoring of free-living physical behavior in people
living with MND is in its infancy but has exciting potential to
quantify physical function in MND. Most research to date has
aimed to describe changes in physical behavior associated with
MND progression or identify physical behavior end points that
are more sensitive than the ALSFRS-R and may be used in
clinical trials to decrease sample sizes. Exploration of feasibility
in all end users is necessary as this will help to translate the
technology into clinical practice and will also help guide the
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design of future studies through cocreation with patient and
caregiver involvement.

It is essential to develop a consensus statement within the MND
community, working toward agreed and standardized methods
for data collection, analysis, and reporting. The unanswered
questions and recommendations for future research (Table 5)
offer a foundation from which such efforts can begin. While
aspects relating to study design will take longer to resolve,
agreement on standards for reporting should be achievable in
the shorter term. This is important in facilitating future data
harmonization across cohorts, study replication, and
standardizing collection and analysis procedures.
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