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Abstract. Many hospitals in the world are under pressure to improve their effi-
ciency and effectiveness so that they can achieve better health outcomes with
limited resources. One common measure of performance is the rate of unplanned
hospital readmissions (UHRs) within 30-days. Emergency readmissions for the
same disease can be assumed to indicate inappropriate discharge or poor plan-
ning, are costly, increase patients’ mortality risks and put additional pressure on
bed capacity. DataMining (DM) techniques have been used to predict UHRs based
on clinical and demographic features, but these ignore the process perspective. Pre-
dictive Process Monitoring (PPM) is a process mining technique using completed
traces to make predictions for in progress cases with machine learning (ML)
algorithms. The Outcome-Oriented PPM (OOPPM) is a sub-technique of PPM
focusing on predicting categorical outcomes of process. Adaptation of OOPPM in
healthcare settings has been limited to date. Here, we illustrate how to implement
OOPPM in a healthcare context through an application of an OOPPM pipeline
to hospital admissions using the open access MIMIC-IV dataset. Clinical, demo-
graphical and process featureswere used to build an extended event log, whichwas
then employed for UHRs prediction. Results show prediction using OOPPM tech-
niques outperformed traditional DM techniques. OOPPM tests using tree-based
ML algorithms achieved better results compared to OOPPM tests using other ML
algorithms. Our results suggest OOPPM can make a significant contribution to
better understanding of hospital performance.

Keywords: Predictive Process Monitoring · Unplanned Hospital Readmission ·
30-days Hospital Readmissions · Discharge Decisions · Process Mining ·
Healthcare · Electronic Health Record · EHR ·MIMIC-IV

1 Introduction

Hospitals can be seen as highly complex health systems tasked with the delivery of
high-quality healthcare services to their users using standardised processes, procedures,
technologies, and medicines. Many hospitals in the world are under pressure to improve
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their efficiency and effectiveness so that they can achieve better health outcomes with
limited resources. One common measure of the performance of hospitals is their rate
of unplanned hospital readmissions (UHRs) within a defined period, with 30 days being
commonly adopted [1]. UHRs happen when a patient returns to hospital through emer-
gency services for the same medical condition causing disruption to normal operations
and distress to patients. UHRs indicate inappropriate discharge or poor planning. UHRs
leads to more premature discharge decisions due to pressure on hospital, creating more
UHRs [2]. A vicious cycle that merits further research.

UHRs within 30 days represent 20% of total UHRs was accounting for $17.4 billion
of additional hospital payments in USA in 2021 and add pressures onto hospital systems
by increasing demand on hospital services with poor mortality outcomes [1, 2]. While
the causes of UHRs are multifactorial, we hypothesise that decisions during the hospital
admissions may contribute to UHRs. UHRs have been shown to be potentially avoidable
if proper healthcare service would have been provided [1]. If such UHRs could be
predicted and highlighted to the medical team, these could influence decision making
to prevent future UHRs. Previous attempts to predict UHRs have included the use of
statistical analysis [3], machine learning (ML) [4], deep learning (DL) [5] and Natural
Language Processing (NLP) [6]. Our literature search found that none of the existing
work included process data (e.g., event sequences) for the prediction.

Process Mining (PM) main techniques such process discovery and conformance
checking has been adopted in healthcare domain to analyse compliance with guidelines.
Healthcare process represented through a group of events, include its activities, time,
and objects. Following a process view of a patient’s clinical pathway through hospital
we can define a typical pathway from admission to discharge as a case. For example,
Fig. 1 below illustrates a simplified clinical pathway with possible UHR as an outcome,
indicating multiple opportunities for better prediction before the discharge event.

Fig. 1. Hospital admission process shows UHRs probability as an outcome.

Predictive (business) process monitoring (PPM) technique offers prediction ability
to ongoing cases at different points throughout the process [7]. Predictions could be the
outcome of a case; next activity/activities; execution time or expected load on a resource.
Prediction in PM for healthcare (PM4H) has been considered a challenge by the PM4H
community under Challenge 2: discover beyond discovery [8]. One PPM technique
that focuses on predicting categorical case outcomes is called Outcome-Oriented PPM
(OOPPM).Here,we are interested in the prediction ofUHRs as an outcome but recognise
that the approach should be generalisable to other outcomes and activities. OOPPM has
been used in healthcare to support clinical decisions such as predicting of discharge
location for patients [9]. OOPPM has also been used to predict unplanned Intensive
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Care Unit (ICU) readmissions where it surpasses the baseline of Data Mining (DM)
techniques [10]. From our review of the literature, we believe our work is the first work
that utilises OOPPM technique to predict UHRs.

The rest of this paper is structured as follows: Sect. 2 gives background on the
concepts and relatedwork onOOPPM, Sect. 3 illustrates theOOPPM framework, Sect. 4
describes our implementation of using OOPPM for UHRs prediction and present the
results, and Sect. 5 discuss and conclude our findings and future work.

2 Background

2.1 MIMIC-IV

Our data is drawn fromMedical Information Mart for Intensive Care IV (MIMIC-IV), a
widely used, open-access Electronic Healthcare Record (EHR) database [11]. We have
selected MIMIC-IV to apply OOPPM in response to a challenge identified by PM4H
community Challenge 4: Deal with Reality specifying the importance of using real life
data [8]. MIMIC-IV includes anonymised, detailed data for patients who were admitted
to an ICU or Emergency Department (ED) at Beth Israel Deaconess Medical Centre
in Boston, USA. It contains information on more than 380,000 patients receiving care
between 2008 to 2019. The MIMIC-IV database is rich with event data, making it an
appropriate choice for process mining [8].

2.2 UHRs Prediction

UHR prediction is a complex task as it requires multiple data features to make the
prediction. Prediction of UHRs can be implemented for a specific cohort (e.g., heart
failure patients) or more broadly for all patients. In [3], statistical analysis using logistic
regressionwas applied to identify variables associated with UHRs on older adult patients
in Sweden. Multiple ML algorithms were used by [4] to predict UHRs in MIMIC-III
(an earlier, smaller version of the MIMIC-IV dataset) using demographics, aggregated
vital signs and diagnoses. DL algorithms such as Artificial Neural Networks (ANNs)
and Convolutional Neural Networks (CNNs) were used to predict UHRs for pneumo-
nia patients in Taiwan [5]. Clinical notes from MIMIC-III were able to predict UHRs
successfully using NLP techniques [6]. None of the previous work considered process
control-flow and the events order as a feature to be used for prediction.

2.3 Prediction in PM for Healthcare

Several methodologies are available for process mining projects. The Process Mining
Project Management PM2 [12] is a generic method contains six stages, where the use
of ML is included in step 4 named Mining & Analysis. An extension of PM2 is the
ClearPathmethod which was developed for clinical pathway discovery and incorporates
process simulation approach [13]. The L* life-cycle method included the prediction as
part of last stage Operational Support [14]. Current PM methodologies do not provide
explicit support for the detailed implementation of predictions within process mining
context. However, it should be possible to incorporate PPM as a dedicated method to
make predictions within these existing process mining methodologies.
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2.4 Outcome-Oriented Predictive Process Monitoring

OOPPM, like other PM approaches, uses event logs where the case_id, activity and
timestamp must be present. However, this information is not enough for OOPPM to
make predictions and more data is needed to create extended event logs. We can augment
event log with event attributes (dynamic) or case attributes (static). These attributes can
be categorical (e.g. a patient’s ethnicity), numerical (e.g. patient age) or textual (e.g.,
clinical note). In healthcare, data types such as age, are a case attribute since age will not
vary as a result of the execution of activities during a hospital admission while data types
such as Blood Pressure (BP) is a value which will change during patient hospitalisation
due to multiple BP readings.

The collection of sequenced events produced by a case is called trace, where a trace
can contain all or part of a case events. Each possibility of sequenced events represents a
complete or part of a trace is called prefix. OOPPM uses prefixes for prediction, since the
ongoing cases (e.g., incomplete traces) are employed for prediction. Tomake predictions,
trace prefixes should be encoded into a feature vector so that it can be labelled for use
in classifiers (e.g., a decision tree) [7].

The use of OOPPM in healthcare to predict process outcomes has been described in
the literature. The closest to ourwork is the prediction of the unplanned ICU readmissions
likelihood before discharging patient from ICU using control-flow with clinical metrics
like laboratory tests [10]. Jonas et al. employed OOPPM using demographic, lab test
values and stay information to predict where a heart failure patients should be discharged
to, since the discharge location is strongly associated with UHRs [9]. OOPPM and Time-
Oriented Predictive Process Monitoring (TOPPM) was used to predict next activity and
its timestamp prediction for ED patients after surgery in Norway [15]. It is to be noted
not all the above works followed the framework of OOPPM as described Sect. 3.

3 Methodology

In our work, we used OOPPM to predict UHRs within 30-days. We have selected the
OOPPM framework suggested by [7] after they conducted a systematic literature review
on OOPPM, where two phases are implemented: offline phase used for learning (see
Fig. 2) and online phase for testing and application (see Fig. 3).

3.1 Extracting and Filtering Prefixes

In OOPPM, where prefix logs are extracted from event logs, classifiers use prefix logs
to make predictions. This is since OOPPM when applied in the online phase, it will
consume incomplete traces in order to make predictions for them as early as possible.
So, the use of prefix logwill provide uswith training data thatwillmatch the datawewant
to test. However, considering all possible prefixes will raise challenges by increasing
classifiers learning time and bias toward cases with longer traces as they will produce
more prefixes.

There are several methods to filter prefixes, one of them is by limiting the length
of the prefix to a certain number of events only [7]. Instead of fixing one prefix length,
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gaps can be identified to have prefixes with different lengths using a base number (e.g.,
1) then add gaps accordingly (e.g., for gap = 3, we will have 1, 4, 7, 10 prefix length).
Another method is to define execution time of prefix so only events in prefixes within
the execution time will be considered [10].

Fig. 2. OOPPM offline phase. [7]

Fig. 3. OOPPM online phase. [7]

3.2 Divide Prefixes into Buckets

At this stage, the prefix log needs to be divided into buckets, where each bucket will have
a dedicated classifier. During the online phase, cases will be assigned to a similar bucket
based on its prefix to make the prediction. There are several bucketing approaches used
in OOPPM. The first approach is “single bucket” or “no bucket” where all prefixes are
kept in one bucket, leading to having one classifier only [10]. The second approach is to
use “process states” or “decision points” available in process model based on event log
and train a classifier for each state [16]. The prediction for ongoing cases will be based
on the state of process they are in regardless of the followed path. The third approach is to
cluster similar encoded prefixes using ML clustering algorithms (e.g., DBScan), which
might ignore process structure, and then build classifier for each cluster [16]. The fourth
method is to bucket the prefixes based on length, and classifiers are trained accordingly
[17]. The last approach is to utilize domain knowledge by manually establishing rules
for bucketing prefixes (e.g., execution stages) through consultation with domain experts
[7].
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3.3 Encode Prefixes for Classification

The input for classifiers should be in fixed size vectors representation, so we need to
encode all bucketed prefixes’ traces. This raises complications sincemoving forward in a
case execution will addmore information, but the number of features in the prefix should
not increase. The solution is by applying sequence encoding which is a combination of
trace abstraction and feature extractionmethods [7]. At this stage, a compromise between
generalisation of method (i.e., applicability for all prefixes) and information lost is to be
considered. We will discuss sequence encoding methods application on numerical and
categorical attributes of case and events, as unstructured textual attributes are outside
the scope of our work.

For case attributes, we use the sequence encoding method named static, by directly
adding them to feature vector without any modifications [7]. If the case attribute is
categorical, then we use a baseline approach known as “one hot encoding” to convert the
categorical feature into multiple binary vectors based on number of distinct categorical
values. This method is to be used on conjunction with other sequence encoding methods,
since these methods are concerned with event attributes.

First event attributes sequence encoding method named Last State, where both case
and event attributes of the recent state is included in one feature vector [16]. Last event
numerical attributes will be added as it is, hot encoding will be applied on this event
categorial attributes and control-flow, while remining attributes for other events will be
zeros. The last state method enables us to use different lengths of prefix traces buckets.

The second event sequence encoding method is aggregation. In this method, we
aggregate all events from the start of the case in one feature vector regardless of events
order, so we avoid losing of information from previous states while maintaining fixed
size feature vector. Aggregation of control-flow can be achieved by counting executed
activities, or to indicate whether a certain activity has been executed or not [16]. Numeri-
cal event attributes could be aggregated using statistics functions (e.g., average, or max),
while categorical event attributes are hot encoded then their frequency will be accumu-
lated. The aggregation method presents a way to preserve all the trace data but with the
price of losing control-flow relationships and patterns. The aggregation method can also
be applied to traces with different lengths.

Index is the third event sequence encoding method proposed by [17] to overcome
the partial information loss of events order in aggregation method. This is achieved by
creating a single feature in the feature vector for each event attribute executed in the trace.
Encoding of control-flow and categorical event attributes is done through hot encoding
and numerical event attributes will be included as it is. The issue with this method is
the feature vector length depends on number of executed events, putting restriction on
its use with heterogenous buckets with different traces length. With comparison to the
previous two methods, the index method will create large dimensional feature vector
when there are long traces leading to classifiers training complications.

3.4 Train Classifiers for Each Bucket

The problem in classification in OOPPM can be related to the problem of early sequence
classification in ML literature [7]. In addition to the accuracy, precision, recall, and f-1
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metrics used to evaluateML classificationmodels, earliness and computation time are an
importation evaluationmetrics forOOPPMclassificationmodel, as it is designed towork
in an onlinemodewith ongoing cases.ML algorithms including logistic regression (LR),
Support Vector Machines (SVM), decision tree (DT), random forest (RF), and Gradient
Boosted Machines (GBM) can used in OOPPM in addition to DL algorithms like neural
networks (NN) [7, 10].

4 Predicting UHRs Using OOPPM

In this section,wewill discuss the implementation for ourwork for each stageofOOPPM.
Our experiments were run on Google Colaboratory using Python 3.4.

4.1 Creating Extended Event Log

In our work, we utilised data available in MIMIC-IV dataset to create an extended event
log for hospital admissions with labels. OOPPM does not consider the creating of event
log as a main step. However, creating event log and extending it with useful features to
be used for prediction is a crucial stage which requires more attention.

Data Filtering. We started with reading the admissions table since it contains basic
information about hospital admissions and their unique id (hadm_id).Wegrouped admis-
sion types from nine different types into elective and emergency. There are four possible
outcomes of interest – death in hospital, no further hospital admissions, emergency read-
mission within 30 days and subsequent readmissions that were planned or unplanned but
after 30 days. For this case study we focussed on outcome concerned with readmissions.
To identify patients who have been readmitted within 30-days, we sorted the table based
on patient id subject_id and hadm_id, added a new column to record next visit admission
time, subtracted next admission day from current visit discharge day, checked if the next
visit was within 30 days and of emergency type, then label the patients readmission sta-
tus accordingly. We got 350,579 admissions followed by UHR and 80,652 admissions
who were not followed by UHR. We filtered out patients who had only single admission
(= 101,198) and admissions were a patient died in hospital (= 8,772). This has left us
with total admissions of 325,119, where 244,607 admissions (75%) were not followed
by UHR and 80512 followed by UHR (25%).

Extracting Data Features. After identifying the study cohort, we started working on
preparing features to be used for prediction. These features were divided into demo-
graphic, clinical and process related features. For demographic, we selected age, gender,
insurance, ethnicity, and marital status. Patients age values are distributed from 18 to 91,
where patients older than 91 are anonymised as 91 by MIMIC-IV [11]. To enhance the
prediction results, we grouped patients into eight groups represent a ten-year age band
starting from 18, 28 etc. with last group being patients who are 88 and over. MIMIC-IV
has two genders available (male and female), and three types of insurance known as:
Medicaid (public), Medicare (public) and Other (private, military, cash payment, …).
MIMIC-IV holds 31 different ethnicity types for patients, which we grouped into eight
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main groups based on ethnicity name. For marital status, there are five values: single,
married, widowed, divorced and unknown.

MIMIC-IV is rich with clinical data, so the selection of clinical features was built on
previous studies and clinical knowledge where such features were important for UHR
prediction. The patient history was considered by calculating total number of previous
UHRs and add this information for each hospital admission. Patients who were admitted
through emergency department were flagged. The available patient body mass index
(BMI) values were extracted and categorise into four categories: underweight, normal
weight, overweight, and obese. Lab tests are important indication for patient health,
so we have calculated the number of abnormal lab tests of patient per admission. It
is important to identify whether a patient is having chronic diseases, so we have used
chronic diseases codes developed by AHRQ to calculate how many chronic diseases the
patient have. Number of Medications given to patients during their hospitalisation was
included as it is an important representation of treatment provided.

Patients’ diagnosis in MIMIC-IV are coded using two versions of the International
Classification of Diseases (ICD) which are (ICD-9) and (ICD-10). MIMIC-IV covers
patient data from 2008 to 2019 and initially used ICD-9 but switched to ICD-10 when
it was implemented in the hospital systems. To overcome this challenge, we used the 18
categories of diseases defined in ICD-9 (e.g., respiratory) and for each patient calculated
the number of diseases per category diagnosed within each admission. The same task
was done with patients having their diagnoses registered in ICD-10, considering the
changes in diagnoses codes and re-arrangement of categories. This approach allowed
us to work with 18 diagnosis categories without adding the complexity of encoding the
ICD codes for patient into thousands of dimensions and helped to improve the prediction
accuracy and reduce the computation significantly.

Data features to be used for OOPPM should include control-flow information as
this is the driving concept of OOPPM. However, other process related features can be
considered as well to maximise classifiers learning and ensure better use of process-
oriented data. We have looked at several process aspects of hospital admissions in terms
of time, process context and number of events. For time, we calculated the length of
stay (LOS) (i.e., process completion time), grouped the LOS into 4 quartiles to reduce
the outliers’ effect, and calculated time spent in ICUs during the admission. We also
investigated process context from geographical view, where admission and discharge
locations were considered. There are many events registered for patients in MIMIC-IV
and we selected data on how many times a patient was admitted to ICU and number of
surgeries per admission. We end up with 18 data features to be used in classifiers.

Extracting Events. Before building the extended event log to be used by OOPPM, we
must also identify suitable events for our purpose. MIMIC-IV has multiple different
events, making it challenging to choose appropriate events without complicating the
following stages. The events selection forOOPPMshould be different fromother process
mining tasks like process discovery, since including less-informative events will add
more dimensions which will complicate the classification task. On the other hand, we
should include as much information as possible about different events to ensure that
processes are considered in prediction. For this case studywe considered events available
in the transfers table which showswhen andwhere patients were admitted, transferred to
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within hospital and discharge. The transfer events enable us to look at the process through
the eyes of a patient’s experience, reflecting one of the key challenges for PM4H [8].
Other events were considered in the prediction as high-level data features (e.g., surgeries
total) but not in the same detail as complete events.

The transfer events inMIMIC-IV are categorised into 77 different events (38 different
events for admitted to a clinical unit, 38 different events for transferred to a clinical
unit and 1 discharge event). We removed events with activities named “admitted into
Unknown” or “transferred toUnknown”.We grouped all admission events into one event
“Admission” except for admission to ICUor surgery, all admission and transferred to ICU
under one event “ICU”, all admission and transferred to a surgery unit to be “Surgery”,
all the remaining “transferred to” became “Ward” and we renamed the discharge event.
We end up with an extended event log contains 942,368 events categorised into 2423
trace variants. For result comparison purpose, we kept another copy of the event log with
original events without grouping to be tested.

4.2 Implementation of OOPPM

Extracting and Filtering Prefixes. Healthcare processes are known for their hetero-
geneity [8], and with the high number of cases we used for training in our case study, it
was essential to make the prefix logs smaller. We have considered only transfer events
and aggregated them to help reduce prefix log size, removed cases with data quality
issues (e.g., started with discharge event) and fixed decision point (i.e., prediction place)
to be before the discharge time. However, with the 2423 trace variants we had, it was
a challenge to apply any method to filter prefixes, so we chose to use all traces without
filtering, taking into consideration the effect on the classifiers. Complete prefixes were
used during the offline phase to train the classifiers, while in online phase we removed
the discharged event from prefixes log.

Divide Prefixes into Buckets. In our work, we experimented using single cluster app-
roach.We have also implemented clustering algorithm (K-Mean)with 3 clusters to create
prefixes buckets, after testing best performing clustering algorithms and clusters number.
Since our prediction place cannot be fixed in a specific state during process (e.g., patient
get discharged from ICU without transfer to ward), the process state clustering method
is not applicable. With the high number of heterogeneous prefixes we had, application
of prefix length was excluded. Although with domain expert involvement in our work,
we did not see the need to bucket prefixes based on domain knowledge in this case study.

Encode Prefixes for Classification. We used static encoding for all case attributes,
while for event attributes we chose the aggregation approach (i.e., counting of grouped
and ungrouped dataset of activities) as previous work suggests it can give better results
when compared to other prefix encoding approaches [7].

Train Classifiers for Each Bucket. We have chosen to build a baseline classifier using
LR algorithm. The tree-based classifiers are mostly used in OOPPM literature [7], so we
tested DT, RF, and GBM. To complement our work and compare classifiers results, NN
was included in our experiments.We have not applied hyperparameter tuning in ourwork
as our goal is to test the usefulness of OOPPM with healthcare data. In addition to the
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common evaluation metrics used for classifiers, we included the area under the receiving
operating characteristic curve (AUROC) as it will not be affected by our imbalanced data
where 75%of the labels are 0 and25%are1.Wedidnot include earliness in our evaluation
since we have a fixed decision point where the prediction is required. Computing time
was calculated for training and testing of the classifiers.

Execution of Offline and Online Phases. To enable us to simulate the implementation
of offline and online phases, we split data into two chunks: first chunk contains 67%
of data used for training classifiers (offline phase), and second chunk contains 33% of
data used for testing and evaluating the classifiers (online phase). Since MIMIC-IV is
anonymised on a temporal level, the splitting could not be executed on chronological
order which would be ideal in this step. We have used testing data for the online phase
where it was bucketed, encoded then classified.

4.3 Results

Wehave summarized our results inTable. 1 bymentioning the classifier name and applied
approached followed: use of OOPPM, use of clustering and when the aggregated events
were used. It was followed by classifiers evaluation metrics then training and predicting
time in seconds. It can be noticed applying OOPPM enhanced accuracy in all cases
comparing to DM approach. Clustering step did not show effect on the results, while the
use of aggregated events has slightly affected results positively or negatively comparing
to original events without aggregation. RFmodels has achieved the highest accuracy and
precision, NN models scored best AUROC and F1 values, and DT gained best Recall.
DT models were the fastest to learn and predict followed by GBM and RF, then NN and
LR. The work done by [4] to predict 30-days UHRs using several MLmodels using DM
approach in MIMIC-III where the RF model was the best achieving AUROC 0.66 and
accuracy of 0.65 which is lower than our results in term of accuracy for all classifiers
and in AUROC except for our baseline LR classifier.

5 Discussion and Conclusion

Our implementation of OOPPM was challenging due to the nature of healthcare pro-
cesses and our aim to predict UHRs on hospital level for all patients instead of choosing
a cohort of patients with specific disease. We had many prefixes in testing data with
only one event, which has limited the learning from control-flow chances, suggesting
more work on prefix filtering is needed. A limitation in our work was to ensure the
patient is readmitted for the same disease, since MIMIC-IV is not providing this infor-
mation clearly [11]. Even if the clinical decision was to discharge the patients with high
probability of UHR instead of keeping them in hospital, predicting UHRs could help
clinicians in reviewing delivered treatment, highlight potential corrections, and indicate
more care is need for a patient after their discharge. It was noticed the patient history
(i.e., number of previous admissions) and diseases diagnosed within the admission was
the most informative features for the classifiers.
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Table 1. Summary of classifiers results.

Classifier OOPPM Clustering Events
Aggregated

Accuracy AUROC Precision Recall F1 Learning
Time

Prediction
Time

Logistic
Regression

No − − 0.76 0.55 0.69 0.54 0.53 103.68 0.13

Yes No No 0.77 0.55 0.69 0.55 0.54 128.22 0.08

Yes Yes No 0.77 0.55 0.69 0.55 0.54 101.24 0.05

Yes No Yes 0.77 0.56 0.70 0.56 0.55 228.4 0.14

Yes Yes Yes 0.77 0.56 0.70 0.56 0.55 296.02 0.08

Decision
Trees

No − − 0.75 0.67 0.67 0.67 0.67 3.59 0.04

Yes No No 0.77 0.69 0.70 0.70 0.70 5.91 0.05

Yes Yes No 0.77 0.69 0.70 0.70 0.70 13.76 0.23

Yes No Yes 0.77 0.68 0.68 0.68 0.68 5.5 0.04

Yes Yes Yes 0.77 0.68 0.68 0.68 0.68 8.03 0.11

Random
Forest

No − − 0.79 0.66 0.73 0.66 0.67 52.42 4.65

Yes No No 0.82 0.70 0.75 0.68 0.69 55.91 5.06

Yes Yes No 0.82 0.70 0.75 0.68 0.69 96.21 4.24

Yes No Yes 0.80 0.68 0.74 0.65 0.67 74.88 6.2

Yes Yes Yes 0.80 0.68 0.74 0.65 0.67 71.93 5.94

Gradient
Boosting
Machines

No − − 0.79 0.66 0.72 0.65 0.67 44.13 1.77

Yes No No 0.80 0.67 0.72 0.66 0.68 44.35 2.55

Yes Yes No 0.80 0.67 0.72 0.66 0.68 42.97 2.67

Yes No Yes 0.79 0.66 0.72 0.63 0.65 41.5 3.03

Yes Yes Yes 0.79 0.66 0.72 0.63 0.65 39.18 2.6

Neural
Networks

No − − 0.79 0.87 0.72 0.70 0.71 84.07 4.26

Yes No No 0.80 0.87 0.73 0.68 0.69 89.9 4.51

Yes Yes No 0.80 0.87 0.73 0.68 0.69 85.53 5.39

Yes No Yes 0.80 0.87 0.73 0.69 0.70 80.04 3.88

Yes Yes Yes 0.80 0.87 0.73 0.67 0.69 84.48 4.58

Features engineering for prediction in PM4H settings requiresmore research and rec-
ommendations from PM4H community, as they are distinguished from other domains.
In our work, we used intra-case attributes for prediction, but looking into inter-case
attributes where shared information about concurrent ongoing cases can be useful [7].
The integration of OOPPM in healthcare information systems (HISs) satisfy a need
identified by PM4H community Challenge 9: completement HISs with the process per-
spective [11]. OOPPM has performed better than traditional DM in healthcare settings,
and thus its integration into PM2 and other PM methodologies is recommended. We
urge PM4H to implement OOPPM in their research work as there is large area for
enhancements.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.
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