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R E S E A R C H A R T I C L E1

Mid-latitude versus tropical scales of predictability and their2

implications for forecasting3

Abstract
Weather predictability varies between tropical and middle latitudes: rotational effects enable forecasts on
moderate spatial scales up to ten days in middle latitudes, while longer-term predictions are less reliable;
in contrast, tropical weather is challenging to predict at short lead times, but seasonal forecasts are more
accurate due to the influence of larger-scale oscillations, such as slowly varying oceanic surface conditions.
This behaviour has been demonstrated in previous studies, but has yet to be focussed on in detail, despite its
importance to the development of forecasting systems in Tropical regions. This study systematically evalu-
ates precipitation in weather prediction models across both regions using the fractions skill score, evaluating
performance at progressively longer lead and averaging times, and compares the results with an evaluation
based on upper air error kinetic energy.
The results confirm that the prediction systems perform better on smaller scales and shorter lead times at
middle latitudes and on larger scales and longer lead times at tropical latitudes. A “crossover” in perfor-
mance is seen at forecast lead times of 5–7 days, a result which appears to be consistent across a range of
model resolutions, and occurs both when specifically comparing European and African domains and when
comparing whole latitude bands. This differential pattern of model skill even occurs for machine learning-
based forecast models, suggesting that it is a fundamental property of the atmosphere rather than an effect
of the construction of currently used operational forecasting systems. These findings highlight the need for
different forecasting methodologies in tropical regions to address the lack of short-term predictability and
leverage long-term statistical predictability.

K E Y W O R D S
Predictability, Tropical weather forecasting, Machine learning, Africa
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1 INTRODUCTION5

Numerical weather prediction (NWP) is the cornerstone of weather forecasting worldwide. In the mid-latitudes it6

is central to an enterprise worth billions of pounds per year (Lazo et al. 2009). Major efforts have been made to7

translate these benefits to the developing countries of the tropics, but progress has been slow (e.g., Cullmann et al.8

2020, Lamptey et al. 2024). Weather prediction is economically important throughout the world, and in tropical9

regions, daily weather events can be severe enough to be a significant hazard to lives and economic activity at the10

personal level.11

It has been known since the early days of dynamical meteorology that the physics of tropical meteorology is12

fundamentally different from that of the mid-latitudes (e.g., Riehl 1954). This is not too hard to explain to a non-13

specialist: close to the equator the effects of the Earth’s rotation are not as strong as they are near the poles, but14

the power of the sun’s heating is much greater. While extra-tropical weather systems tend to be dominated by large-15

scale rotating weather systems (cyclones and anticyclones) on scales of thousands of kilometres, tropical weather16

is dominated by convective storms (many of which are thunderstorms), with horizontal scales of tens of kilometres.17

The effects of rotation mean that the mid-latitude cyclones and anticyclones have some kind of stability over time18

periods of a few days, and our computer models can predict them with useful accuracy for a week or two. In contrast,19
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the convective weather events dominating the tropics develop rapidly, over timescales of a few hours, and are mostly20

quite unpredictable, at least in their details.21

The heuristic explanation of differing forecast skill between the tropics and mid-latitudes is backed up by more22

rigorous theory. Lorenz (1969) used scaling arguments based on simple fluid dynamics to argue that the predictability23

timescale of a flow depends on its length scale—he argued that for a large-scale cyclone on the scale of hundreds24

to thousands of km, this timescale is on the order of days, while for a convective storm it is a matter of hours.25

Lorenz (1969) then argued that the timescale for propagation of small scale errors onto the larger scale circulation26

depends on the shape of the background energy spectrum. In particular, it is useful to compare spectra with the27

form E(k) ∼ k–α, where E is kinetic energy and k is the spectral wavenumber. Here α = 5/3, a –5/3 gradient,28

characterises three-dimensional isotropic turbulence and α = 3 is characteristic of geostrophic turbulence (Charney29

1971). Lorenz (1969) indicated that for the –3 gradient, the timescale of propagation of errors to large scales diverges30

with increasing spatial scale, and that we can consequently increase the time over which our forecast can be skilful if31

we improve the accuracy of the initial conditions of the forecast. In contrast, for a flow with a –5/3 energy spectrum,32

that timescale of error growth converges with length scale, implying that there is a finite time over which errors33

propagate onto the large scales and therefore over this timescale no improvement in initial conditions will improve34

the accuracy of the forecast. Effectively, flows with –5/3 spectra have finite absolute limits to predictability, whereas35

flows with the –3 spectrum, while still chaotic, can be predicted better if we improve the initial, observationally36

based analysis (Palmer et al. 2014).37

Observations and analysis of models have been consistent in showing that mid-latitude energy spectra have38

behaviour on the –5/3 gradient for mesoscale dynamics (up to about 400 km) and a –3 gradient for larger scales39

(e.g., Nastrom and Gage 1985), consistent with the mesoscales being dominated by convective dynamics and the40

larger scales controlled by rotational, geostrophic dynamics. This would imply that mesoscale, convective dynamics41

are unpredictable beyond a finite timescale, probably a matter of hours, but longer lengthscales can be predicted42

for a matter of days (in practice, a couple of weeks, Selz et al. 2022).43

Recently it has become computationally feasible to investigate this behaviour in more detail using “identical twin”44

experiments involving global simulations that differ only by a small initial condition perturbation. Error growth45

is modelled by calculating the evolution of the difference between two simulations for a representative field (for46

example, kinetic energy or potential vorticity), which can be compared with a saturation error calculated from the47

climatological variance of the same field. The simulations are carried out either at kilometre-scale grid spacings,48

to allow convective processes to be simulated explicitly (Judt 2018, Zhang et al. 2019), or include a stochastic49

convection scheme to simulate sub-grid scale convective error growth (Baumgart et al. 2019, Selz 2019, Selz et al.50

2022). They generally confirm fast error growth on smaller scales, associated with convection and –5/3 gradient in51

the energy spectrum, and slower error growth on larger scales, associated with rotational effects and a –3 gradient52

in the energy spectrum.53

The identical-twin studies have generally focussed on mid-latitude regions or on the global domain as a whole.54

However, Judt (2020) used output from such simulations to analyse error growth for tropical, mid-latitude and polar55

regions separately, and showed that the spectra for the tropics exhibit the –5/3 slope through the mesoscale and into56

longer length scales, quite understandably since tropical regions do not have the same influence of rotation which57

provide the geostrophic, –3 gradient regime seen for longer length scales in mid-latitudes. It was found that errors58

saturated more quickly on smaller scales in the tropics than in mid-latitudes, but more slowly in the tropics on larger59

scales. Judt (2020) attributed this to error growth being dominated by convective processes (which are relatively60

more important in the tropics) on smaller scales and baroclinic processes (which are relatively more important in61

mid-latitudes) on larger scales; see also Charney et al. (1981). It was also found that there was a further increase in62

the error growth after 10 days in the tropics, indicative of the influence of equatorial waves.63

While convective regimes in the tropics typically have short predictability timescales, the tropical atmosphere64

benefits from the slower-changing conditions of the underlying surface (Charney et al. 1981, Shukla 1998, Bach et al.65

2019). This relationship has been understood and utilised for decades in statistical prediction models, which in some66

cases can accurately forecast large-scale rainfall patterns based on antecedent ocean surface conditions. For example,67

this approach has been effective in East Africa, where the October-December rainy season is strongly influenced by El68

Niño–Southern Oscillation (ENSO) conditions several months in advance (Kolstad and MacLeod 2022). Moron and69

Robertson (2020) showed that forecast skill on weekly time scales in the tropics is stronger over oceans, and where70
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the influence of intraseasonal and interannual modes of variability is strong. The fluid dynamical ideas of Lorenz71

(1969), Palmer et al. (2014) and related studies relate to the dynamics of one fluid—the atmosphere—rather than72

a coupled system (for instance coupling the atmosphere with the ocean or the land surface). Through the coupling,73

there is evidence of impressive skill on subseasonal-to-seasonal (S2S) timescales (e.g., Hoskins 2013, de Andrade74

et al. 2021), if we treat the rainfall statistically, averaged in time and space. We may be able to predict generally wet75

and dry periods over large areas, but topography and other geographical features may give rise to large differences76

between regions within these large areas (Kolstad et al. 2024).77

Two additional factors contribute to the relative skill of mid-latitude and tropical forecasts, namely the relative78

sparsity of routine weather observations in the tropics, and our lack of scientific understanding of some of the79

key physical processes which control tropical weather. Both of these factors were illustrated by an analysis of the80

European Centre for Medium-Range Weather Forecasts (ECMWF) forecasting system for the period of the AMMA81

(Redelsperger et al. 2006) field campaign in West Africa (Lebel et al. 2010). By re-running the forecasts with82

and without the full, enhanced AMMA observations, Agustí-Panareda et al. (2010) were able to show that the83

observations corrected the model analyses, particularly in the boundary layer, but that “the impacts of the extra84

AMMA data on the forecast disappear after 24 h” into the forecast. Analysis of the model errors indicated problems85

with the model’s representation of land-atmosphere interactions and aerosol-radiation interactions in particular.86

Linsenmeier and Shrader (2023) showed that forecast skill increases with per capita GDP, with lower national GDP87

often related to the relative lack of investment in observations in poorer countries, in turn degrading the skill of88

temperature forecasts. This is almost certainly a contributing factor, but evidence that observational density alone89

cannot explain forecast skill comes from the analysis of Haiden et al. (2012), who showed significantly lower forecast90

skill in Northern Hemisphere extratropical summer than winter, consistent with the greater significance of convective91

dynamics in the summer, over regions where GDP and observational density are reasonably constant over time.92

On the basis of this body of theoretical work, observations and modelling studies, it appears that errors initially93

grow more quickly in the tropics than in mid-latitudes. This derives in part from the weak effects of planetary94

rotation in the tropics and the dominant effects of convection, meaning that the energy spectrum approximates the95

–5/3 behaviour. For any latitude, there is shorter predictability on smaller scales, which Lorenz (1969) estimated to96

be a matter of hours for convective storms on scales of 10 km. In convective environments, which characterise the97

climate of many tropical regions, those shorter scales represent the critical scales of high-impact weather in the form98

of thunderstorms, heavy rain and squall winds. Conversely, on longer time scales, errors in the tropics grow more99

slowly, making it more feasible to provide generalised predictions weeks in advance. However, the extent to which100

this slower error growth is influenced by weaker rotational effects, equatorial waves, and stronger coupling to the101

ocean remains unclear.102

We believe that these general concepts about the comparative skill of tropical and mid-latitude NWP forecasts103

are well known qualitatively within the meteorological community. However, in our view, they are less recognised in104

allied fields and among agencies responsible for funding capacity building in the developing world. The aim of this105

paper is to make a synthesis of forecast model predictive skill across time and space scales, quantifying differences106

in NWP forecast skill between a European and an African domain as a function both of spatial and temporal scales,107

and explore its implications for African/tropical weather forecasting services. Given that the principles of forecast108

predictability arising from the work of Lorenz and later researchers pertain to the physics of the underlying fluid109

dynamics, not the method of predicting that fluid, we also compare very different forecasting systems, including110

models based on machine learning (ML).111

Theoretical work on predictability has generally focussed on other variables such as atmospheric kinetic energy112

and upper level geopotential, which are chosen for their suitability for physically representing the fluid flow, rather113

than for their direct impacts on society. Another aim of this study is to connect this theoretical work to issues of114

practical forecast skill. This study therefore primarily focuses on precipitation, as it is the most societally relevant115

variable, particularly for agriculture, hydrological management, and disaster risk reduction, especially in Africa (e.g.,116

Rockström and Falkenmark 2003, Beven 2012, Norris et al. 2021). We also conduct a similar evaluation for upper-117

level error kinetic energy, in order to provide a closer link to the theoretical work and to investigate to what extent118

the results vary when using different methods and variables.119
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2 METHOD120

2.1 Data121

Forecasts are evaluated for five forecasting systems: GloSea6, the current operational version of the UK Met Office122

seasonal forecasting system, which is based on GC3 (Williams et al. 2018) and described by MacLachlan et al. (2015);123

the Unified Model, used for operational weather forecasts at the UK Met Office in 2020 and forming the atmosphere124

and land component of GC3 (Walters et al. 2019); the Integrated Forecasting System (IFS), the operational weather125

forecasting system at ECMWF; and two ML-based systems, FuXi (Chen et al. 2023) and GraphCast (Lam et al.126

2023). The model setups are summarised in Table 1. The aim is to cover multiple years for one model (GloSea6) and127

to then compare with other models covering a single year. Precipitation forecasts from each system are compared128

with IMERG precipitation observations (Huffman et al. 2019), which are available globally (with restrictions at129

higher latitudes) from June 2000. GloSea forecasts of 500-hPa kinetic energy are also compared with ERA5 reanalysis130

data (Hersbach et al. 2023).131

GloSea forecasts, in common with most seasonal prediction systems, are calibrated using hindcasts for a fixed132

period in the past. For each year the operational forecast is run, a set of hindcasts is produced for the period133

1993–2016. Here we verify the hindcast set generated operationally from March 2021 to February 2022, restricting134

to the years 2001–2016 to coincide with the available observational data. The primary aim of this study is to135

compare performance in the tropics with that in the mid-latitudes, rather than to evaluate the differences between136

models. Therefore, we use the larger available hindcast dataset instead of the forecast dataset, which only covers137

approximately one year for each model version, despite the fact that forecasts are the data actually used to predict138

precipitation. The hindcasts are run on an N216 grid (0.556° spacing in latitude and 0.833° spacing in longitude),139

initialised on the 1st, 9th, 17th and 25th of each month with seven ensemble members for each day. The simulations140

run for 216 days (seven months) and daily output is produced; in this study we evaluate the first 30 days. The141

hindcast consists of an ensemble of 7 members.142

Operational weather forecasts produced by the UK Met Office are verified here for the year 2020. These were143

run on an N1280 grid (0.141° spacing in latitude and 0.0938° spacing in longitude), initialised every six hours. The144

simulations run for 48 hours (06 UTC and 18 UTC initialisations) or 168 hours (00 UTC and 12 UTC initialisations);145

in this study we assess the longer forecasts starting at 00 UTC and 12 UTC.146

Data from the other three systems were produced by ECMWF, as operational forecasts for IFS and as hindcasts147

for the ML systems. All three are verified here for the year 2022 and are provided on a 0.25° grid on lead times of148

up to 240 hours. In this study we assess the forecasts/hindcasts produced starting at 00 UTC and 12 UTC.149

Model Evaluation period Forecast length evaluated Grid spacing Forecast frequency
GloSea6 2011–2016 30 days 0.556° × 0.833° approximately 8 days

GC3 2020 7 days 0.141° × 0.0938° 12 hours
IFS 2022 10 days 0.25° × 0.25° 12 hours

FuXi 2022 10 days 0.25° × 0.25° 12 hours
GraphCast 2022 10 days 0.25° × 0.25° 12 hours

T A B L E 1 Summary of model setups evaluated in this study.

2.2 Precipitation Verification150

The forecasts are verified using the Fractions Skill Score (FSS, Roberts and Lean 2008, Roberts 2008), which is widely151

used for assessing precipitation forecasts (Mittermaier 2021, Keane et al. 2016, Zhao and Zhang 2018, Schwartz152

2019, Cafaro et al. 2021). It is chosen here because it is specifically designed to account for the spatial scale at153

which the forecast is assessed, making it particularly well-suited for comparing forecast performance across different154
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scales. It is also a threshold based measure, which makes it appropriate for assessing variables with heavily skewed155

distributions such as precipitation.156

The FSS is defined as:157

f(s, θ, t) = 1 –
〈
∑

i(Fi(s, θ, t) – Oi(s, θ, t))2
〉

〈
∑

i(Fi(s, θ, t)2 + Oi(s, θ, t)2)
〉 =

2
〈
∑

i(Fi(s, θ, t)Oi(s, θ, t))
〉

〈
∑

i(Fi(s, θ, t)2 + Oi(s, θ, t)2)
〉 , (1)

where t is the forecast lead time, the sums are over all grid points in the domain and the angle brackets are averages158

over all available forecast start times. The quantities Fi and Oi are the fraction of grid points in a region of size159

s × s points, centred on point i, where the verification quantity is above a threshold Θi. For the GloSea ensemble Fi160

is the fraction of grid points in the region and over the 7 ensemble members (i.e., out of 7s2 “points”) with values161

above the threshold; this follows Schwartz et al. (2010) and is the method recommended by Necker et al. (2024) for162

applying the FSS to ensemble forecasts (their “pFSS” method). The threshold Θi is based on the climatology at the163

grid point i, calculated separately for the observation data set and for the model data set at each lead time, and is164

equal to the value corresponding to the percentile θ. Both fields are padded with zeros outside the domain to allow165

for grid points within s/2 points of the edge of the domain. This calculation of the FSS was executed using a method166

based on pysteps (Pulkkinen et al. 2019).167

Forecasts are verified based on daily accumulations of precipitation, at lead times up to 30 days for GloSea, 7 days168

for the Met Office weather forecasts and 10 days for the simulations run at ECMWF. This was based simply on the169

availability of data, with an upper limit set to 30 days as initial investigations found that the scores for GloSea were170

relatively constant with lead time by this stage.171

The verification is carried out over two regions, both with longitude ranges from 30◦W to 60◦E, and with latitude172

ranges from 15◦S to 15◦N, representing tropical latitudes, and 30◦N to 60◦N, representing mid-latitudes. The tropical173

region corresponds to most of tropical Africa, where the performance of short-range weather forecasts has been found174

to be particularly poor (Vogel et al. 2020). The northern region corresponds to most of Europe and the very north175

of Africa, and enables a comparison at the same longitudes between two regions clearly demarcated by the Sahara176

Desert between them. To enable a direct comparison between the forecasts and observations, the observations are177

regridded onto the forecast grid using area weighting. An alternative method of interpolating both fields onto a 1°178

grid was applied to the Met Office seasonal hindcasts and found not to substantially affect the results.179

For some of the models a global evaluation is also carried out. The method here is the same except that the180

zero-padding outside the domain is only required near the poles, in the latitude direction. For GloSea the global181

evaluation is applied only to a single ensemble member. Results for GloSea are also compared with a method applying182

a seasonally varying threshold. In particular, this is defined, for each day of year d, based on all forecast or observed183

values, at the relevant grid point, with a day of year in the range d – 45 to d + 45 (where d ± 365 is the same day of184

year as d).185

The number of grid points s constituting the averaging region is converted to a spatial scale in km by considering186

the area of each region and the grid spacing of each model. The average area represented by each grid point is given187

by the area of the region A divided by the number of grid points n. These are defined as188

A = r2E(sinλmax – sinλmin)(φmax – φmin) (2)

and189

n =
λmax – λmin

δλ

φmax – φmin
δφ

, (3)

where rE is the radius of the earth (taken as 6371 km), λmin and λmax are the minimum latitude (here –π/12 radians190

(-15◦) for the tropical region and π/6 (30◦) for the mid-latitude region) and maximum latitude (here π/12 (15◦) for191

the tropical region and π/3 (60◦) for the mid-latitude region), respectively, φmin and φmax are the minimum longitude192

(here –π/6 or -30◦) and maximum longitude (here π/3 or 60◦), respectively, and δλ and δφ are the model grid spacings193

in, respectively, the latitude and longitude directions. The length scale l is then given by194

l = s
√

A
n
. (4)
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In practice the physical length scale varies with latitude within each region, but this method provides a means of195

comparing overall results from the two regions directly.196

2.3 Error kinetic energy197

In order to provide a closer link with idealised studies on predictability, we also investigate errors in kinetic energy.198

This evaluation is carried out over entire latitude bands (i.e., the full range of longitudes, and latitudes varying199

between -π/12 and π/12 (tropics) and between π/6 and π/3 (mid-latitudes)). The error kinetic energy is defined,200

analogously to Judt (2018 2020), as201

E =
1

2
{(uf – ua)

2 + (vf – va)2} (5)

where u and v are the horizontal velocity components at a height of 500 hPa and the subscripts refer to the forecast202

(f, here from the GloSea hindcasts for a single member) and analysis (a, here from ERA5, regridded onto the GloSea203

grid). E is a function of forecast lead time, and is normalised by a saturation value, representing the error that would204

result from simply selecting a random forecast from the whole distribution. This saturation value is defined here by205

averaging E over the longest lead times, corresponding to 199 to 216 days for the GloSea hindcasts.206

Spectra for the error kinetic energy are created using Fourier transforms in longitude:207

F(t,λ,κ) =
2π/δφ
∑

n=1

e–iκnδφE(t,λ,φ = nδφ). (6)

The longitude wavenumbers are given by κj = 2π/j. These can be converted to length scales lj = 2π(rE cosλ)/j. Then208

the spectral value P for a length scale bin varying from lmin to lmax is given by:209

P(t, lmin → lmax) = ⟨
∣

∣F(t,λk, lj)
∣

∣⟩ (7)

where the angle brackets now represent an average over all available forecast start times and all j and k such that210

lmin ≤ 2π(rE cosλk)/j < lmax211

3 RESULTS212

3.1 Fraction skill score maps213

Figure 1 (focusing first on the upper panels) shows how the FSS varies in space for a pair of shorter (in terms of lead214

time) and smaller (in space) scales and a pair of longer/larger scales, for GloSea6. Here, the FSS was calculated by not215

applying the sums over grid points in Equation 1. Scores would generally be expected to be higher on larger spatial216

scales, where the atmosphere is better resolved by the model and errors generally grow more slowly, and at shorter217

lead times, where the model has had less time to depart from its initial state and should be closer to the observed218

atmospheric state. The panels on the left show that the model performs better on the shorter/smaller scales (higher219

FSS values) at mid-latitudes than in the tropics, indicating that it is easier to predict local precipitation two days220

ahead in Europe than in tropical Africa. Conversely, the right-hand panels demonstrate that the performance is better221

on longer/larger scales in the tropics than in the middle latitudes, indicating that predicting spatially-aggregated222

regional weather a week or more ahead is easier in the tropical Africa than in Europe.223

As well as this broad variation in latitude, there is also some longitudinal variation, particularly at tropical224

latitudes. For example, on shorter/smaller scales the forecasts generally perform better over ocean than land, with225

the exception of the ocean to the west of South America and southern Africa. This is in broad agreement with226

Vogel et al. (2020) (comparing with their Figure 5, which includes verification of heavy precipitation), who mention227

that the anomalously relatively poor forecast over the “oceanic deserts”, where there is very little precipitation,228

could partly be due to issues with the observational data. We note here that very low FSS values are also seen229

over Antarctica and Greenland, where there is also very little precipitation and IMERG coverage is relatively sparse230
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F I G U R E 1 Spatial maps of FSS for the Met Office seasonal forecasting system (hindcasts) for the period 2001–
2016, for lead time and averaging area shown in the panel title, for a threshold of 90%, defined separately for hindcast
and observations, and for each grid point. In the top row the threshold is constant in time, based on values over the
whole verification period; in the bottom row the threshold varies with season, based on values in a 90-day day-of-year
window centred on the relevant time (for all years). The boxes in the upper panel show the regions investigated in
this study and the lines in the bottom panel show the latitude bands investigated in this study (red dashed: Tropics;
blue dash-dotted: mid-latitudes).

(for which reason these regions are not included in these plots). On longer/larger scales there is less longitudinal231

variation, although FSS values are particularly high over the equatorial Pacific, where high skill was associated by232

Moron and Robertson (2020) with strong interannual variability.233

A particularly striking aspect of the longitudinal variation is how high the FSS values are for India on both sets of234

scales, despite the fact that the Indian monsoon is one of the most challenging meteorological phenomena to simulate.235

One possible explanation is that precipitation has particularly strong seasonal variation over India, so by using a236

constant threshold the model can attain a large FSS simply by predicting values above the threshold quite often237

during the monsoon season and very rarely at other times, even if the actual values predicted during the monsoon238

are not particularly accurate. To test this hypothesis, FSSs using a seasonally varying threshold are plotted in the239

lower row of Figure 1. The FSS values are indeed much lower over India for both sets of scales. The overall variation240

is smoother, with lower values in the Tropics at longer/larger scales, but the general behaviour in terms of latitude241

variation is very similar. Interestingly, values are much lower over northern Asia and northern North America at242

shorter/smaller scales. This should be investigated further in future work; it may be due to the increased importance243

of initial conditions at mid-latitudes, so that forecasts are poorer over more sparsely populated regions with fewer244

observations.245

Figure 2 shows similar FSS maps for the ECMWF operational forecast and GraphCast, one of the machine-246

learning-based models. These both look similar to the maps from GloSea, but with more small scale spatial variation247

as would be expected from higher-resolution models. In particular, the sets of maps shown for the two models in248
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Figure 2 are very similar, suggesting that spatial patterns of predictability are due to fundamental properties of the249

atmosphere and its surface forcing, and are not strongly affected by the structure of the model used to simulate them.250

F I G U R E 2 Spatial maps of FSS for the ECMWF operational forecasting system (upper panels) and GraphCast
(lower panels) for the year 2022, for lead time and averaging area shown in the panel title, for a threshold of 90%,
defined separately for forecast and observations, and for each grid point. The boxes show the regions investigated
in this study (red dashed: Tropics; blue dash-dotted: mid-latitudes)

3.2 Comparison of FSSs between Europe and Tropical Africa251

This subsection investigates the behaviour illustrated in Figures 1 and 2 more systematically by looking at domain-252

averaged FSS values for different ranges of spatial scales and forecast lead times in various models. The two domains253

are over Tropical Africa and Europe, marked by the red and blue-dashed lines in Figure 2, respectively.254

To investigate the differing forecast skill systematically, FSS values were calculated for averaging regions of sizes s =255

{1, 2, 3, 5, 8, 12, 18, 27, 42} (increasing by a factor of roughly 1.5 each time) and percentile thresholds θ = {75, 90, 95}%,256

where the maximum corresponds to 100%. These results are presented in Figure 3 for GloSea6, showing each region257

separately and the differences between the two regions. Note that the size of the grid boxes varies with latitude,258

and the nominal length scale for each region is given by Equation 4. This is the value used in the left two columns.259

For the right column, representing the difference between the two regions, the FSS values for the tropical region260

have been interpolated to match the equivalent spatial scales in the mid-latitude region, so that a direct comparison261

can be made. In the difference plots, blue indicates better performance at mid-latitudes, while red indicates better262

performance in the tropics. This description also applies to Figures 4, 5 and 7.263

Both at the mid-latitudes and in the tropics, the FSS values for GloSea (Figure 3, left and centre columns) show264

scores increasing with spatial scale and decreasing with lead time, as would be expected. The scores for short lead265

times are generally better at mid-latitudes, but drop off more quickly with lead time than in the tropics. The scores266
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F I G U R E 3 Fractions Skill Scores for Met Office seasonal hindcasts (GloSea6), for the period 2001–2016, shown
as a function of spatial scale and lead time. The left column displays results for mid-latitudes, the middle column
for the tropics, and the right column shows the difference (mid-latitudes minus tropics). Each row represents a
percentile threshold, indicated in the title above the panels. For each panel, the vertical axis represents spatial scale
in kilometres, and the horizontal axis represents lead time in days.

appear to be approximately independent of lead time after 10 to 15 days. The variation of FSS with spatial and267

temporal scale is mostly similar for the three thresholds shown.268

The difference plots in the right column of Figure 3 show a clear separation in relative model performance, with269

the mid-latitudes more predictable at shorter lead times and smaller scales and the tropics at longer lead times and270

larger scales. The separation is stronger on the temporal scale, with the difference changing sign at lead times of271

about 5–7 days on all spatial scales, but this “crossover” lead time is slightly shorter for larger spatial scales compared272

to smaller scales and the improvement in the tropics is generally stronger (or the degradation weaker) on larger273

scales. The crossover lead time is slightly earlier for the lowest threshold, in agreement with the findings of Gehne274

et al. (2022), who found the crossover time with FSS to increase with threshold when comparing similar tropical275

and mid-latitude bands for a different model. At the largest spatial scales (above 2000 km), there is little difference276

between the regions, with both showing very high FSS values. This suggests that, on this scale, the proportion of a277

region experiencing precipitation above a given percentile threshold is relatively stable and easier to predict; it may278

also be a consequence of the total size of the domain investigated here.279

FSS values are plotted in the same way in Figure 4, for operational NWP forecasts from the Met Office (GC3)280

and ECMWF (IFS). The behaviour is broadly similar, with a reduction in performance with increasing lead time281

that is slower in the tropics than at mid-latitudes. There is a similar crossover in performance, with the difference282

in scores depending strongly on lead time and weakly on spatial scale.283

This demonstrates that the general result—–models perform better at shorter and smaller scales in mid-latitudes284

and at longer and larger scales in the tropics—–holds both for a single model operating at different spatial and285

temporal scales and for models with different underlying structures developed by various operational centres. The286

crossover occurs at lead times of 5–7 days in both weather models, which is also similar to that for GloSea.287

The same verification for two machine-learning-based models is shown in Figure 5, for FuXi and GraphCast288

forecasts. These show very similar dependence on lead time and spatial scale to the NWP models, with a similar289

crossover time of 5–7 days. This is a very important result, as it provides strong evidence that the difference in290

performance is due to fundamental differences in the scales of predictability of the atmosphere at different latitudes,291

rather than an aspect of the particular construction of dynamical models. New machine-learning-based weather292

forecasting models are rapidly being developed, and it will be interesting in future work to investigate whether any293
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F I G U R E 4 Fractions skill scores for Met Office operational weather forecasts (GC3, top row) from 2020 and
ECWMF operational forecasts (IFS, bottom row) from 2022 as a function of spatial scale and lead time at mid-
latitudes (left column) and tropics (centre column), and the difference between them (mid-latitudes minus tropics,
right column), for a percentile threshold of 90%.

new models can produce forecasts that are not subject to this constraint, or whether it will remain impossible to294

produce models that perform as well in tropical regions as in mid-latitude regions on short time scales, and vice-versa295

on long time scales.296

3.3 Comparison between precipitation FSS evaluation and error kinetic energy evaluation297

In this subsection the results regarding precipitation forecasts are compared with those obtained using a different298

metric, namely 500-hPa error kinetic energy, and a different method for comparing different horizontal scales, namely299

taking Fourier spectra of the error fields. Error kinetic energy is calculated following Judt (2020), and compared for300

two full latitude bands (a tropical band with latitudes from 15◦S to 15◦N and a mid-latitude band with values from301

30◦N to 60◦N). This quantity is plotted as a function of forecast lead time for the GloSea hindcasts in Figure 6.302

As with precipitation FSS, the errors are initially larger in the tropical band, but then grow more quickly in303

the mid-latitude band so that there is a crossover time when the mid-latitude error overtakes the tropical error.304

This crossover occurs at about 7 days, similar to that seen for precipitation FSS, and also similar to Judt (2020)305

(comparing panels a and b of their Figure 3). It is interesting to note that an earlier “identical twin” study by306

Straus and Paolino (2009) finds a later crossover time, at about 15 days (their Figure 2a,b). They evaluated zonal307

wind error variance, corresponding to only the first term on the right hand side of Equation 5, but perhaps a more308

important difference is that they used a model with a much coarser grid spacing than Judt (2020), so it may not309

have correctly captured the smaller-scale error growth.310



11

F I G U R E 5 Fractions skill scores for ECMWF ML-based hindcasts (FuXi, top row, and GraphCast, bottom row)
for 2022 as a function of spatial scale and lead time at middle (left column) and tropical (centre column) latitudes,
and the difference between them (mid-latitudes minus tropics, right column), for a percentile threshold of 90%.

Figure 7 shows verification of the GloSea hindcasts over full latitude bands, as a function of spatial scale, using311

two different methods. The top two rows show FSS values, for a constant (in time) threshold and for a seasonally312

varying threshold. These are very similar to each other, and to Figure 3, with differences only in the precise crossover313

lead time at which the values in the tropics overtake those at mid-latitudes. This indicates that, while using a314

seasonally varying threshold can affect the spatial patterns of FSS, it does not strongly affect the general behaviour315

across length and time scales.316

Also shown in Figure 7 are error kinetic energy values, separated into spatial scales using Fourier spectra. The317

behaviour is overall very similar; some of the smaller differences could be due to the fact that the fourier transform318

method only accounts for scale in the meridional direction, whereas the FSS aggregation method accounts for scale319

in both horizontal directions, and that the fourier transform method accounts only for information at the relevant320

scale, whereas the FSS aggregation method at a given scale accumulates information on all scales up to and including321

that scale. In terms of the differences, there is a similar crossover at about 7 days for all spatial scales, although the322

behaviour is somewhat noisier for the error kinetic energy than for the FSS.323

A clear difference between the two methods is that, with increasing lead time, scores tend to unity (i.e., poor) on324

all scales for the error kinetic energy method, while they tend to values increasing from near zero (i.e., poor) to unity325

(i.e., good), with increasing spatial scale, for the FSS method. Generally, forecasts regress to being uncorrelated with326

increasing lead time (i.e., essentially random), and the discrepancy between the two methods at longer lead times327

can be understood by the scores they produce for random forecasts. For the error kinetic energy method the score328

is simply unity at all scales, as it is here defined as the ratio of the error to that of the long-leadtime forecast. For329

the FSS, it can be shown that a random forecast will produce a score increasing from 100%– θ for no averaging (i.e.,330

calculated at the grid scale) towards 100% for increasing spatial averaging; for example, an averaging region of 625331
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F I G U R E 6 500-hPa error kinetic energy for Met Office seasonal forecasts averaged over the period 2001–2016,
relative to the value at the end of the forecast. The tropical band represents latitudes from 15◦S to 15◦N and the
mid-latitude band represents values from 30◦N to 60◦N.

points and a threshold θ = 90% yields an FSS very close to unity (Skok and Roberts 2016, see in particular their332

Figure 1a and Equation 13)333
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F I G U R E 7 Comparison between mid-latitude (30◦N to 60◦N) and tropical (15◦S to 15◦N) bands for Met Office
seasonal forecasts, measured in terms of FSS (top two rows) and error kinetic energy (bottom row) for the period
2001–2016.
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4 CONCLUSIONS AND DISCUSSION334

In this article we have quantified patterns of forecast skill according to temporal lead time and spatial aggregation335

scale, comparing middle latitudes with tropical latitudes. In simple terms, the middle latitudes have better pre-336

dictability on small scales over a few days while the tropical latitudes start to have better predictability, if spatially337

averaged, beyond about a week. This qualitative pattern of differences was probably already understood by most338

meteorologists, and does appear in the literature (e.g., Zhu et al. 2014, Buizza and Leutbecher 2015, Gehne et al.339

2022). In this study we have demonstrated a timescale beyond which the tropical domain starts to be more statisti-340

cally predictable than the mid-latitude domain as around 5–7 days, in broad agreement with these previous studies,341

and shown that the patterns of differences are remarkably similar across different forecast model systems.342

We believe, with a basis in theory, that these patterns of differing predictive skill between latitudes are a funda-343

mental property of our world, related to the rotation of the Earth and the inherent chaos of the atmosphere as a344

convecting fluid. That understanding has been backed up by the observation that relative forecast skill between the345

tropics and mid-latitudes has a very similar pattern across the range of models we tested, including traditional NWP346

models and new ML-based codes. We have also shown that very similar results are obtained using two very different347

evaluation methods (fraction skill score for precipitation and spectral analysis of upper atmosphere error kinetic en-348

ergy). It therefore seems likely that the overall behaviour is rather independent of which methods and variables are349

used, but it will be interesting to investigate in more detail how the precise crossover time depends on these factors,350

and also investigate the spatial scale dependence shown in Figure 7 in more detail. We note that Gehne et al. (2022)351

obtain similar, but not identical, crossover times for different verification metrics of precipitation, surface and upper352

air wind, surface humidity, surface temperature and upper air geopotential height.353

Although the qualitative behaviour is probably already well-known to meteorologists, there are still many open354

questions around the possible predictive skill which could be achieved in future for different parts of the world. Are355

there absolute, finite-time limits of predictability (the “real” butterfly effect of Palmer et al. (2014)), or can we con-356

tinue to push the limits of prediction through improved observations and modelling? Our theoretical understanding357

of the limits of predictability (e.g., from Lorenz 1969, and following work) are based on simple models of the chaotic358

atmosphere in isolation, while our general understanding of the longer-term predictability of tropical weather in-359

vokes the slower variations of the underlying land and ocean surfaces. Bach et al. (2019) have started to quantify360

the improvements in predictability conferred by the ocean on the tropical atmosphere.361

We should also not forget that the global atmosphere is connected: our tropical and mid-latitude domains interact362

on timescales from days upwards. The arguments of Lorenz (1969) show that planetary-scale circulations have363

longer error-growth timescales than smaller systems and Hoskins (2013) gives a number of examples where global364

connections confer predictability on timescales of a week or two. More specifically for the African domain, a number365

of authors have shown how North and Central African rainfall variability can be driven by mid-latitude wave trains366

(e.g., Knippertz 2004, Bekele-Biratu et al. 2018, Vizy and Cook 2014, Ward et al. 2023). In other words, it is thought367

that the good predictability of weather systems over the North Atlantic and Europe can, in the right circumstances,368

drive weather in Africa with a similar predictability timescale.369

The paper also shows geographic patterns of forecast skill on different spatial and temporal scales (Figs. 1,370

2). While these patterns quite dramatically show the contrasts between continents, they also offer provocative371

suggestions as to smaller-scale controls on predictability. Topography and land-sea differences seem in some places372

to improve predictive skill. Exploring these differences, alongside the seasonality of skill (with an expectation of373

reduced European skill in more convective summer conditions) would be an interesting next step.374

Answering such questions has become increasingly important with the recent revolution in ML-based forecasting375

systems. A key question is whether the predictability limits seen in current NWP models are fundamental constraints376

that ML-based systems cannot surpass, or whether substantial improvements in lead time and spatio-temporal377

localisation of accurate forecasts are still achievable.378

However, it is important to recognise that current global ML-based forecasts are trained on NWP model analyses,379

meaning their accuracy—when evaluated against observations—is unlikely to exceed that of the NWP analyses380

that trained them. Recent work by Vonich and Hakim (2024) suggests that initial condition uncertainties are a381

more significant constraint on predictability than model uncertainties and that applying ML techniques to optimise382
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initial conditions from observational data can yield substantial improvements over traditional data assimilation. This383

suggests that ML methods could enhance both initial condition estimation and forecast generation.384

Selz and Craig (2023) showed that an ML-based model fails to capture the initial rapid error growth of very small385

perturbations, unlike a physically based system, but for errors comparable to current initial condition uncertainties,386

ML models exhibit similar error growth to physics-based systems. This aligns with the behaviour observed in this387

study and suggests that as improved observation and assimilation technologies reduce initial condition uncertainties,388

the nature of error growth in ML-based models may diverge further from that in NWP models.389

Since ML-based models are computationally cheaper to run than full NWP systems, their continued development390

and refinement could lead to their gradual adoption. Once trained, the reduced cost of running these models, and391

their versatility for locally-focussed post processing, also offers the chance that competitive models will be run within392

African centres within the coming years (Vaughan et al. 2024).393

While the qualitative forecast differences between Europe and Africa are well known to meteorologists, they are394

certainly not well understood beyond the meteorological community, and we would argue that better communication395

of the science with policy-makers is needed. It is widely accepted that African weather prediction services are not as396

effective as they need to be, to meet the needs of forecast users (e.g., Cullmann et al. 2020, World Bank 2021, Tzachor397

et al. 2023) and it has also been argued that progress may be achievable within a few years (Parker et al. 2022).398

Rectifying the situation is the focus of some major international development programmes (e.g., Early Warnings for399

All, Egerton et al. 2022), in which there is an acknowledged need for “co-production” of services with their users400

(e.g., Carter et al. 2019). The results of this paper are strong evidence of the requirement, in these global efforts,401

for different approaches to the weather prediction enterprise in Africa from those approaches which are established402

for mid-latitudes. Initiatives to exploit rainfall forecasts in Africa are likely to be disappointed, if new services are403

based on unrealistic expectations of daily forecast skill at the local scale. African and tropical prediction systems404

need to deal with the relative unpredictability of convective rainfall on the small scale, and to exploit the relatively405

high statistical predictability of tropical weather on the larger scales.406

What does this disparity in methods between mid-latitudes and tropical Africa mean in practice? The mid-latitude407

approaches still tend to focus on “deterministic” prediction of the weather, despite the wealth of ensemble data408

now available, and this is somewhat justified by models having acceptably good skill at one day’s lead time, on the409

smaller spatial scales of interest to most users (as seen in Figs 3 and 4). In contrast, African forecasting needs to410

recognise that beyond a few hours, all convective forecasts are necessarily probabilistic, giving users an increased or411

decreased chance of rain. Probabilistic forecasts are more difficult to interpret and use, and it is unfortunate that for412

populations most vulnerable to the effects of climate change (in the tropics) the successful “deterministic” approach413

is not so viable. However, the forecasts do still provide very useful information and the challenge for the tropics is414

in refining the understanding of this available skill, using ensembles, statistics and ML to produce more accurate415

(probabilistic) predictions, and in working with users so that they can exploit probabilistic skill effectively in their416

decision-making. This is also the case for S2S timescales; it is ironic that S2S models are being used more in the417

mid-latitudes, where they do not work so well, while we are failing to exploit the greater opportunities in tropical418

Africa for skilful forecasts at these longer ranges of a few weeks and a season. Some progress in using probabilistic419

and data-driven post-processing to improve S2S forecast skill has for example been made by de Andrade et al. (2021)420

and Bach et al. (2024).421

Ultimately, we should recognise that global prediction models—whether traditional NWP or ML-based—are422

necessary but insufficient for tropical forecasting. With skill emerging at broader spatial and temporal scales, effective423

prediction requires statistical post-processing to refine and downscale raw model output. Given the low confidence424

in convective forecasts beyond a day, nowcasting is of the highest priority in Africa, providing critical warnings425

of storms as they move and evolve. Yet few African countries currently have operational nowcasting capability,426

despite its potential for improving short-range forecasting (Roberts et al. 2022). Tackling these gaps will require427

co-production of services in a way which reaches into the forecast office, the computational products, the technical428

infrastructure, communications and the standard operating procedures of forecasters.429
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