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ABSTRACT
Weather predictability varies between tropical and middle latitudes: rotational effects enable forecasts on moderate spatial scales 
up to 10 days in middle latitudes, while longer term predictions are less reliable; in contrast, tropical weather is challenging to 
predict at short lead times, but seasonal forecasts are more accurate due to the influence of larger-scale oscillations, such as 
slowly varying oceanic surface conditions. This behaviour has been demonstrated in previous studies, but has yet to be focused 
on in detail, despite its importance to the development of forecasting systems in Tropical regions. This study systematically eval-
uates precipitation in weather prediction models across both regions using the fractions skill score, evaluating performance at 
progressively longer lead times and averaging scales, and compares the results with an evaluation based on upper air error kinetic 
energy. The results confirm that the prediction systems perform better on smaller scales and shorter lead times at middle lati-
tudes and on larger scales and longer lead times at tropical latitudes. A “crossover” in performance is seen at forecast lead times of 
5–7 days, a result that appears to be consistent across a range of model resolutions, and occurs both when specifically comparing 
European and African domains and when comparing whole latitude bands. This differential pattern of model skill even occurs 
for machine learning-based forecast models, suggesting that it is a fundamental property of the atmosphere rather than an effect 
of the construction of currently used operational forecasting systems. These findings highlight the need for different forecasting 
methodologies in tropical regions to address the lack of short-term predictability and leverage long-term statistical predictability.

1   |   Introduction

Numerical weather prediction (NWP) is the cornerstone of 
weather forecasting worldwide. In the mid-latitudes, it is cen-
tral to an enterprise worth billions of pounds per year (Lazo 
et  al.  2009). Major efforts have been made to translate these 

benefits to the developing countries of the tropics, but progress 
has been slow (e.g., Cullmann et al. 2020; Lamptey et al. 2024). 
Weather prediction is economically important throughout the 
world, and in tropical regions, daily weather events can be se-
vere enough to be a significant hazard to lives and economic ac-
tivity at the personal level.
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It has been known since the early days of dynamical meteorology 
that the physics of tropical meteorology is fundamentally differ-
ent from that of the mid-latitudes (e.g., Riehl 1954). This is not 
too hard to explain to a non-specialist: close to the equator the ef-
fects of the Earth's rotation are not as strong as they are near the 
poles, but the power of the Sun's heating is much greater. While 
extra-tropical weather systems tend to be dominated by large-
scale rotating weather systems (cyclones and anticyclones) on 
scales of thousands of kilometres, tropical weather is dominated 
by convective storms (many of which are thunderstorms), with 
horizontal scales of tens of kilometres. The effects of rotation 
mean that the mid-latitude cyclones and anticyclones have some 
kind of stability over time periods of a few days, and our com-
puter models can predict them with useful accuracy for a week 
or two. In contrast, the convective weather events dominating 
the tropics develop rapidly, over timescales of a few hours, and 
are mostly quite unpredictable, at least in their details.

The heuristic explanation of differing forecast skill between the 
tropics and mid-latitudes is backed up by more rigorous theory. 
Lorenz  (1969) used scaling arguments based on simple fluid 
dynamics to argue that the predictability timescale of a flow 
depends on its length scale—he argued that for a large-scale cy-
clone on the scale of hundreds to thousands of km, this times-
cale is on the order of days, while for a convective storm it is a 
matter of hours. Lorenz  (1969) then argued that the timescale 
for propagation of small-scale errors onto the larger scale cir-
culation depends on the shape of the background energy spec-
trum. In particular, it is useful to compare spectra with the form 
E(k) ∼ k−�, where E is kinetic energy and k is the spectral wav-
enumber. Here � = 5∕3, a − 5∕3 gradient, characterizes three-
dimensional isotropic turbulence and � = 3 is characteristic of 
geostrophic turbulence (Charney 1971). Lorenz (1969) indicated 
that for the − 3 gradient, the timescale of propagation of errors 
to large scales diverges with increasing spatial scale and that 
we can consequently increase the time over which our forecast 
can be skilful if we improve the accuracy of the initial condi-
tions of the forecast. In contrast, for a flow with a − 5∕3 energy 
spectrum, that timescale of error growth converges with length 
scale, implying that there is a finite time over which errors prop-
agate onto the large scales and therefore over this timescale no 
improvement in initial conditions will improve the accuracy of 
the forecast. Effectively, flows with − 5∕3 spectra have finite ab-
solute limits to predictability, whereas flows with the − 3 spec-
trum, while still chaotic, can be predicted better if we improve 
the initial, observationally based analysis (Palmer et al. 2014).

Observations and analysis of models have been consistent 
in showing that mid-latitude energy spectra have behaviour 
on the − 5∕3 gradient for mesoscale dynamics (up to about 
400 km) and a − 3 gradient for larger scales (e.g., Nastrom and 
Gage 1985), consistent with the mesoscales being dominated 
by convective dynamics and the larger scales controlled by ro-
tational, geostrophic dynamics. This would imply that meso-
scale convective dynamics are unpredictable beyond a finite 
timescale, probably a matter of hours, but longer length scales 
can be predicted for a matter of days (in practice, a couple of 
weeks, Selz et al. 2022).

Recently, it has become computationally feasible to investigate 
this behaviour in more detail using “identical twin” experiments 

involving global simulations that differ only by a small initial 
condition perturbation. Error growth is modelled by calculat-
ing the evolution of the difference between two simulations for 
a representative field (e.g., kinetic energy or potential vortic-
ity), which can be compared with a saturation error calculated 
from the climatological variance of the same field. The simula-
tions are carried out either at kilometre-scale grid spacings, to 
allow convective processes to be simulated explicitly (Judt 2018; 
Zhang et  al.  2019), or include a stochastic convection scheme 
to simulate sub-grid scale convective error growth (Baumgart 
et al. 2019; Selz 2019; Selz et al. 2022). They generally confirm 
fast error growth on smaller scales, associated with convection 
and a − 5∕3 gradient in the energy spectrum, and slower error 
growth on larger scales, associated with rotational effects and a 
− 3 gradient in the energy spectrum.

The identical-twin studies have generally focused on mid-
latitude regions or on the global domain as a whole. However, 
Judt (2020) used output from such simulations to analyse error 
growth for tropical, mid-latitude and polar regions separately, 
and showed that the spectra for the tropics exhibit the − 5∕3 
slope through the mesoscale and into longer length scales, quite 
understandably since tropical regions do not have the same in-
fluence of rotation which provide the geostrophic, − 3 gradient 
regime seen for longer length scales in mid-latitudes. It was 
found that errors saturated more quickly on smaller scales in 
the tropics than in mid-latitudes, but more slowly in the tropics 
on larger scales. Judt (2020) attributed this to error growth being 
dominated by convective processes (which are relatively more 
important in the tropics) on smaller scales and baroclinic pro-
cesses (which are relatively more important in mid-latitudes) on 
larger scales; see also Charney et al. (1981). It was also found that 
there was a further increase in the error growth after 10 days in 
the tropics, indicative of the influence of equatorial waves.

While convective regimes in the tropics typically have short 
predictability timescales, the tropical atmosphere benefits 
from the slower-changing conditions of the underlying sur-
face (Charney et al. 1981; Shukla 1998; Bach et al. 2019). This 
relationship has been understood and utilized for decades in 
statistical prediction models, which in some cases can accu-
rately forecast large-scale rainfall patterns based on anteced-
ent ocean surface conditions. For example, this approach has 
been effective in East Africa, where the October–December 
rainy season is strongly influenced by El Niño–Southern 
Oscillation (ENSO) conditions several months in advance 
(Kolstad and MacLeod  2022). Moron and Robertson  (2020) 
showed that forecast skill on weekly time scales in the trop-
ics is stronger over oceans and where the influence of intra-
seasonal and interannual modes of variability is strong. The 
fluid dynamical ideas of Lorenz  (1969), Palmer et  al.  (2014) 
and related studies relate to the dynamics of one fluid—the 
atmosphere—rather than a coupled system (e.g., coupling the 
atmosphere with the ocean or the land surface). Through the 
coupling, there is evidence of impressive skill on subseasonal-
to-seasonal (S2S) timescales (e.g., Hoskins 2013, de Andrade 
et  al. 2021), if we treat the rainfall statistically, averaged in 
time and space. We may be able to predict generally wet and 
dry periods over large areas, but topography and other geo-
graphical features may give rise to large differences between 
regions within these large areas (Kolstad et al. 2024).

 14698080, 2025, 4, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/m
et.70055 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [20/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3 of 14

Two additional factors contribute to the relative skill of mid-
latitude and tropical forecasts, namely the relative sparsity of 
routine weather observations in the tropics, and our lack of scien-
tific understanding of some of the key physical processes which 
control tropical weather. Both of these factors were illustrated by 
an analysis of the European Centre for Medium-Range Weather 
Forecasts (ECMWF) forecasting system for the period of the 
AMMA (Redelsperger et al. 2006) field campaign in West Africa 
(Lebel et al. 2010). By re-running the forecasts with and with-
out the full, enhanced AMMA observations, Agustí-Panareda 
et al. (2010) were able to show that the observations corrected the 
model analyses, particularly in the boundary layer, but that “the 
impacts of the extra AMMA data on the forecast disappear after 
24 h” into the forecast. Analysis of the model errors indicated 
problems with the model's representation of land-atmosphere 
interactions and aerosol-radiation interactions in particular. 
Linsenmeier and Shrader  (2023) showed that forecast skill in-
creases with per capita GDP, with lower national GDP often re-
lated to the relative lack of investment in observations in poorer 
countries, in turn degrading the skill of temperature forecasts. 
This is almost certainly a contributing factor, but evidence that 
observational density alone cannot explain forecast skill comes 
from the analysis of Haiden et al.  (2012), who showed signifi-
cantly lower forecast skill in Northern Hemisphere extratropical 
summer than winter, consistent with the greater significance of 
convective dynamics in the summer, over regions where GDP 
and observational density are reasonably constant over time.

On the basis of this body of theoretical work, observations and 
modelling studies, it appears that errors initially grow more 
quickly in the tropics than in mid-latitudes. This derives in part 
from the weak effects of planetary rotation in the tropics and the 
dominant effects of convection, meaning that the energy spec-
trum approximates the − 5∕3 behaviour. For any latitude, there 
is shorter predictability on smaller scales, which Lorenz (1969) 
estimated to be a matter of hours for convective storms on scales 
of 10 km. In convective environments, which characterize the 
climate of many tropical regions, those shorter scales represent 
the critical scales of high-impact weather in the form of thun-
derstorms, heavy rain and squall winds. Conversely, on longer 
time scales, errors in the tropics grow more slowly, making it 
more feasible to provide generalized predictions weeks in ad-
vance. However, the extent to which this slower error growth is 
influenced by weaker rotational effects, equatorial waves, and 
stronger coupling to the ocean remains unclear.

We believe that these general concepts about the compara-
tive skill of tropical and mid-latitude NWP forecasts are well 
known qualitatively within the meteorological community. 

However, in our view, they are less recognized in allied fields 
and among agencies responsible for funding capacity building 
in the developing world. The aim of this paper is to make a syn-
thesis of forecast model predictive skill across time and space 
scales, quantifying differences in NWP forecast skill between a 
European and an African domain as a function both of spatial 
and temporal scales, and explore its implications for African/
tropical weather forecasting services. Given that the principles 
of forecast predictability arising from the work of Lorenz and 
later researchers pertain to the physics of the underlying fluid 
dynamics, not the method of predicting that fluid, we also com-
pare very different forecasting systems, including models based 
on machine learning (ML).

Theoretical work on predictability has generally focused on 
other variables such as atmospheric kinetic energy and upper-
level geopotential, which are chosen for their suitability for 
physically representing the fluid flow, rather than for their 
direct impacts on society. Another aim of this study is to con-
nect this theoretical work to issues of practical forecast skill. 
This study therefore primarily focuses on precipitation, as it is 
the most societally relevant variable, particularly for agricul-
ture, hydrological management, and disaster risk reduction, 
especially in Africa (e.g., Rockström and Falkenmark  2003; 
Beven  2012; Norris et  al.  2021). We also conduct a similar 
evaluation for upper-level error kinetic energy in order to pro-
vide a closer link to the theoretical work and to investigate to 
what extent the results vary when using different methods and 
variables.

2   |   Method

2.1   |   Data

Forecasts are evaluated for five forecasting systems: GloSea6, 
the current operational version of the UK Met Office sea-
sonal forecasting system, which is based on GC3 (Williams 
et  al.  2018) and described by MacLachlan et  al.  (2015); the 
Unified Model, used for operational weather forecasts at the 
UK Met Office and forming the atmosphere and land compo-
nent of GC3 (Walters et al. 2019); the Integrated Forecasting 
System (IFS), the operational weather forecasting system at 
ECMWF; and two ML-based systems, FuXi (Chen et al. 2023) 
and GraphCast (Lam et al. 2023). The model setups are sum-
marized in Table 1. The aim is to cover multiple years for one 
model (GloSea6) and to then compare with other models cover-
ing a single year. Precipitation forecasts from each system are 
compared with IMERG precipitation observations (Huffman 

TABLE 1    |    Summary of model setups evaluated in this study.

Model Evaluation period Forecast length evaluated Grid spacing Forecast frequency

GloSea6 2011–2016 30 days 0.556 ◦ × 0.833 ◦ approximately 8 days

GC3 2020 7 days 0.141 ◦ × 0.0938 ◦ 12 h

IFS 2022 10 days 0.25 ◦ × 0.25 ◦ 12 h

FuXi 2022 10 days 0.25 ◦ × 0.25 ◦ 12 h

GraphCast 2022 10 days 0.25 ◦ × 0.25 ◦ 12 h
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et al. 2019), which are available globally (with restrictions at 
higher latitudes) from June 2000. GloSea forecasts of 500-hPa 
kinetic energy are also compared with ERA5 reanalysis data 
(Hersbach et al. 2023).

GloSea forecasts, in common with most seasonal prediction 
systems, are calibrated using hindcasts for a fixed period in 
the past. For each year the operational forecast is run, a set of 
hindcasts is produced for the period 1993–2016. Here we ver-
ify the hindcast set generated operationally from March 2021 
to February 2022, restricting to the years 2001–2016 to coin-
cide with the available observational data. The primary aim of 
this study is to compare performance in the tropics with that 
in the mid-latitudes, rather than to evaluate the differences 
between models. Therefore, we use the larger available hind-
cast dataset instead of the forecast dataset, which only covers 
approximately 1 year for each model version, despite the fact 
that forecasts are the data actually used to predict precipita-
tion. The hindcasts are run on an N216 grid (0.556 ◦ spacing in 
latitude and 0.833◦ spacing in longitude), initialized on the 1st, 
9th, 17th, and 25th of each month with seven ensemble mem-
bers for each day. The simulations run for 216 days (7 months) 
and daily output is produced; in this study we evaluate the first 
30 days.

Operational weather forecasts produced by the UK Met Office 
are verified here for the year 2020. These were run on an N1280 
grid (0.141 ◦ spacing in latitude and 0.0938 ◦ spacing in longi-
tude), initialized every 6 h. The simulations run for 48 h (06 UTC 
and 18 UTC initializations) or 168 h (00 UTC and 12 UTC initial-
izations); in this study, we assess the longer forecasts starting at 
00 UTC and 12 UTC.

Data from the other three systems were produced by ECMWF, 
as operational forecasts for IFS and as hindcasts for the ML sys-
tems. All three are verified here for the year 2022 and are pro-
vided on a 0.25◦ grid on lead times of up to 240 h. In this study, 
we assess the forecasts/hindcasts produced starting at 00 UTC 
and 12 UTC.

2.2   |   Precipitation Verification

The forecasts are verified using the Fractions Skill Score (FSS, 
Roberts and Lean  2008; Roberts  2008), which is widely used 
for assessing precipitation forecasts (Mittermaier  2021; Keane 
et  al.  2016; Zhao and Zhang  2018; Schwartz  2019; Cafaro 
et al. 2021). It is chosen here because it is specifically designed 
to account for the spatial scale at which the forecast is assessed, 
making it particularly well suited for comparing forecast perfor-
mance across different scales. It is also a threshold-based mea-
sure, which makes it appropriate for assessing variables with 
heavily skewed distributions such as precipitation.

The FSS is defined as:

where t  is the forecast lead time, the sums are over all grid points 
in the domain and the angle brackets are averages over all avail-
able forecast start times. The quantities Fi and Oi are the fraction 
of grid points in a region of size s × s points, centred on point i , 
where the verification quantity is above a threshold Θi. For the 
GloSea ensemble Fi is the fraction of grid points in the region 
and over the 7 ensemble members (i.e., out of 7s2 “points”) with 
values above the threshold; this follows Schwartz et al.  (2010) 
and is the method recommended by Necker et al. (2024) for ap-
plying the FSS to ensemble forecasts (their “pFSS” method). The 
threshold Θi is based on the climatology at the grid point i , cal-
culated separately for the observation data set and for the model 
data set at each lead time, and is equal to the value correspond-
ing to the percentile �. Both fields are padded with zeros outside 
the domain to allow for grid points within s∕2 points of the edge 
of the domain. This calculation of the FSS was executed using a 
method based on pysteps (Pulkkinen et al. 2019).

Forecasts are verified based on daily accumulations of precipita-
tion, at lead times up to 30 days for GloSea, 7 days for the Met Office 
weather forecasts, and 10 days for the simulations run at ECMWF. 
This was based simply on the availability of data, with an upper 
limit set to 30 days as initial investigations found that the scores for 
GloSea were relatively constant with lead time by this stage.

The verification is carried out over two regions, both with longi-
tude ranges from 30°W to 60°E, and with latitude ranges from 
15°S to 15°N, representing tropical latitudes, and 30°N to 60°N, 
representing mid-latitudes. The tropical region corresponds to 
most of tropical Africa, where the performance of short-range 
weather forecasts has been found to be particularly poor (Vogel 
et al. 2020). The northern region corresponds to most of Europe 
and the very north of Africa, and enables a comparison at the same 
longitudes between two regions clearly demarcated by the Sahara 
Desert between them. To enable a direct comparison between the 
forecasts and observations, the observations are re-gridded onto 
the forecast grid using area weighting. An alternative method 
of interpolating both fields onto a 1° grid was applied to the Met 
Office seasonal hindcasts and found not to substantially affect the 
results. For some of the models a global evaluation is also carried 
out. The method here is the same except that the zero-padding 
outside the domain is only required near the poles, in the latitude 
direction. For GloSea the global evaluation is applied only to a sin-
gle ensemble member. Results for GloSea are also compared with 
a method applying a seasonally varying threshold. In particular, 
this is defined, for each day of year d, based on all forecast or ob-
served values, at the relevant grid point, with a day of year in the 
range d − 45 to d + 45 (where d ± 365 is the same day of year as d).

The number of grid points s constituting the averaging region is 
converted to a spatial scale in km by considering the area of each 
region and the grid spacing of each model. The average area rep-
resented by each grid point is given by the area of the region A 
divided by the number of grid points n. These are defined as

and
(1)

f (s, �, t)=1−

�
∑

i(Fi(s, �, t)−Oi(s, �, t))
2
�

�
∑

i(Fi(s, �, t)
2+Oi(s, �, t)

2)
�

=
2
�
∑

i(Fi(s, �, t)Oi(s, �, t))
�

�
∑

i(Fi(s, �, t)
2+Oi(s, �, t)

2)
�

(2)A = r2E
(

sin �max − sin �min
)(

�max − �min

)

(3)n =
�max − �min

�
�

�max − �min

�
�
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where rE is the radius of the Earth (taken as 6371 km), �min and 
�max are the minimum latitude (here − � ∕12 radians (−15 ◦) for 
the tropical region and � ∕6 (30 ◦) for the mid-latitude region) 
and maximum latitude (here � ∕12 (15 ◦) for the tropical re-
gion and � ∕3 (60 ◦) for the mid-latitude region), respectively, 
�min and �max are the minimum longitude (here − � ∕6 or −30 ◦)  
and maximum longitude (here � ∕3 or 60 ◦), respectively, and 
�
�
 and �

�
 are the model grid spacings in, respectively, the  

latitude and longitude directions. The length scale l is then 
given by

In practice, the physical length scale varies with latitude within 
each region, but this method provides a means of comparing 
overall results from the two regions directly.

2.3   |   Error Kinetic Energy

In order to provide a closer link with idealized studies on pre-
dictability, we also investigate errors in kinetic energy. This 
evaluation is carried out over entire latitude bands (i.e., the 
full range of longitudes, and latitudes varying between −� ∕12 
and � ∕12 (tropics) and between � ∕6 and � ∕3 (mid-latitudes)). 
The error kinetic energy is defined, analogously to Judt (2018, 
2020), as

where u and v are the horizontal velocity components at a 
height of 500 hPa and the subscripts refer to the forecast (f, 
here from the GloSea hindcasts for a single member) and anal-
ysis (a, here from ERA5, re-gridded onto the GloSea grid). E 
is a function of forecast lead time, and is normalized by a sat-
uration value, representing the error that would result from 
simply selecting a random forecast from the whole distribu-
tion. This saturation value is defined here by averaging E over 
the longest lead times, corresponding to 199–216 days for the 
GloSea hindcasts.

Spectra for the error kinetic energy are created using Fourier 
transforms in longitude:

The longitude wavenumbers are given by � j = 2� ∕ j. These 
can be converted to length scales lj = 2�

(

rE cos �
)

∕ j. Then the 
spectral value P for a length scale bin varying from lmin to lmax 
is given by:

where the angle brackets now represent an average over 
all available forecast start times and all j and k such 
that lmin ≤ 2𝜋

(

rE cos 𝜆k
)

∕ j < lmax.

3   |   Results

3.1   |   Fraction Skill Score Maps

Figure  1 (focusing first on the upper panels) shows how the 
FSS varies in space for a pair of shorter (in terms of lead time) 
and smaller (in space) scales and a pair of longer/larger scales 
for GloSea6. Here, the FSS was calculated by not applying the 
sums over grid points in Equation (1). Scores would generally be 
expected to be higher on larger spatial scales, where the atmo-
sphere is better resolved by the model and errors generally grow 
more slowly, and at shorter lead times, where the model has 
had less time to depart from its initial state and should be closer 
to the observed atmospheric state. The panels on the left show 
that the model performs better on the shorter/smaller scales 
(higher FSS values) at mid-latitudes than in the tropics, indicat-
ing that it is easier to predict local precipitation 2 days ahead in 
Europe than in tropical Africa. Conversely, the right-hand pan-
els demonstrate that the performance is better on longer/larger 
scales in the tropics than in the middle latitudes, indicating that 
predicting spatially aggregated regional weather a week or more 
ahead is easier in tropical Africa than in Europe.

As well as this broad variation in latitude, there is also some longi-
tudinal variation, particularly at tropical latitudes. For example, 
on shorter/smaller scales, the forecasts generally perform better 
over ocean than land, with the exception of the ocean to the west 
of South America and southern Africa. This is in broad agree-
ment with Vogel et  al.  (2020) (comparing with their Figure  5, 
which includes verification of heavy precipitation), who mention 
that the anomalously relatively poor forecast over the “oceanic 
deserts”, where there is very little precipitation, could partly be 
due to issues with the observational data. We note here that very 
low FSS values are also seen over Antarctica and Greenland, 
where there is also very little precipitation and IMERG coverage 
is relatively sparse (for which reason these regions are not in-
cluded in these plots). On longer/larger scales, there is less longi-
tudinal variation, although FSS values are particularly high over 
the equatorial Pacific, where high skill was associated by Moron 
and Robertson (2020) with strong interannual variability.

A particularly striking aspect of the longitudinal variation is how 
high the FSS values are for India on both sets of scales, despite 
the fact that the Indian monsoon is one of the most challenging 
meteorological phenomena to simulate. One possible explanation 
is that precipitation has particularly strong seasonal variation 
over India, so by using a constant threshold, the model can attain 
a large FSS simply by predicting values above the threshold quite 
often during the monsoon season and very rarely at other times, 
even if the actual values predicted during the monsoon are not 
particularly accurate. To test this hypothesis, FSSs using a sea-
sonally varying threshold are plotted in the lower row of Figure 1. 
The FSS values are indeed much lower over India for both sets 
of scales. The overall variation is smoother, with lower values in 
the Tropics at longer/larger scales, but the general behaviour in 
terms of latitude variation is very similar. Interestingly, values 
are much lower over northern Asia and northern North America 
at shorter/smaller scales. This should be investigated further in 
future work; it may be due to the increased importance of initial 
conditions at mid-latitudes, so that forecasts are poorer over more 
sparsely populated regions with fewer observations.

(4)l = s

√

A

n

(5)E =
1

2

{

(

uf−ua
)2

+
(

vf−va
)2
}

(6)F(t, �, �) =

2� ∕ �
�

∑

n= 1

e−i�n��E
(

t, �,� = n�
�

)

(7)P
(

t, lmin → lmax
)

=
⟨

|

|

|

F
(

t, �k , lj
)

|

|

|

⟩

 14698080, 2025, 4, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/m
et.70055 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [20/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 14 Meteorological Applications, 2025

Figure 2 shows similar FSS maps for the ECMWF operational 
forecast and GraphCast, one of the machine-learning-based 
models. These both look similar to the maps from GloSea, but 
with more small-scale spatial variation as would be expected 

from higher-resolution models. In particular, the sets of maps 
shown for the two models in Figure 2 are very similar, suggest-
ing that spatial patterns of predictability are due to fundamental 
properties of the atmosphere and its surface forcing, and are not 

FIGURE 1    |    Spatial maps of FSS for the Met Office seasonal forecasting system (hindcasts) for the period 2001–2016, for lead time and averaging 
area shown in the panel title, for a threshold of 90%, defined separately for hindcast and observations, and for each grid point. In the top row the 
threshold is constant in time, based on values over the whole verification period; in the bottom row the threshold varies with season, based on values 
in a 90-day day-of-year window centred on the relevant time (for all years). The boxes in the upper panel show the regions investigated in this study 
and the lines in the bottom panel show the latitude bands investigated in this study (red dashed: Tropics; blue dash-dotted: Mid-latitudes).

FIGURE 2    |    Spatial maps of FSS for the ECMWF operational forecasting system (upper panels) and GraphCast (lower panels) for the year 2022, 
for lead time and averaging area shown in the panel title, for a threshold of 90%, defined separately for forecast and observations, and for each grid 
point. The boxes show the regions investigated in this study (red dashed: Tropics; blue dash-dotted: Mid-latitudes).
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7 of 14

strongly affected by the structure of the model used to simu-
late them.

3.2   |   Comparison of FSSs Between Europe 
and Tropical Africa

This subsection investigates the behaviour illustrated in 
Figures  1 and 2 more systematically by looking at domain-
averaged FSS values for different ranges of spatial scales and 
forecast lead times in various models. The two domains are over 
Tropical Africa and Europe, marked by the red and blue lines in 
Figure 2, respectively.

To investigate the differing forecast skill systematically, 
FSS values were calculated for averaging regions of sizes 
s = {1,2,3,5,8,12,18,27,42} (increasing by a factor of roughly 1.5 
each time) and percentile thresholds � = {75,90,95}%, where the 
maximum corresponds to 100%. These results are presented in 
Figure 3 for GloSea6, showing each region separately and the 
differences between the two regions. Note that the size of the 
grid boxes varies with latitude, and the nominal length scale for 
each region is given by Equation (4). This is the value used in 
the left two columns. For the right column, representing the dif-
ference between the two regions, the FSS values for the tropical 
region have been interpolated to match the equivalent spatial 
scales in the mid-latitude region, so that a direct comparison 
can be made. In the difference plots, blue indicates better perfor-
mance at mid-latitudes, while red indicates better performance 
in the tropics. This description also applies to Figures 4, 5 and 7.

Both at mid-latitudes and in the tropics, the FSS values for GloSea 
(Figure 3, left and middle columns) show scores increasing with 
spatial scale and decreasing with lead time, as would be ex-
pected. The scores for short lead times are generally better at mid-
latitudes, but drop off more quickly with lead time than in the 
tropics. The scores appear to be approximately independent of 
lead time after 10–15 days. The variation of FSS with spatial and 
temporal scale is mostly similar for the three thresholds shown.

The difference plots in the right column of Figure 3 show a clear 
separation in relative model performance, with the mid-latitudes 
more predictable at shorter lead times and smaller scales and 
the tropics at longer lead times and larger scales. The separation 
is stronger on the temporal scale, with the difference changing 
sign at lead times of about 5–7 days on all spatial scales, but this 
“crossover” lead time is slightly shorter for larger spatial scales 
compared to smaller scales, and the improvement in the tropics 
is generally stronger (or the degradation weaker) on larger scales. 
The crossover lead time is slightly earlier for the lowest threshold, 
in agreement with the findings of Gehne et al. (2022), who found 
the crossover time with FSS to increase with threshold when 
comparing similar tropical and mid-latitude bands for a differ-
ent model. At the largest spatial scales (above 2000 km), there 
is little difference between the regions, with both showing very 
high FSS values. This suggests that, on this scale, the proportion 
of a region experiencing precipitation above a given percentile 
threshold is relatively stable and easier to predict; it may also be 
a consequence of the total size of the domain investigated here.

FSS values are plotted in the same way in Figure 4, for opera-
tional NWP forecasts from the Met Office (GC3) and ECMWF 
(IFS). The behaviour is broadly similar, with a reduction in per-
formance with increasing lead time that is slower in the tropics 
than at mid-latitudes. There is a similar crossover in perfor-
mance, with the difference in scores depending strongly on lead 
time and weakly on spatial scale.

This demonstrates that the general result—models perform 
better at shorter and smaller scales in mid-latitudes and at 
longer and larger scales in the tropics—holds both for a sin-
gle model operating at different spatial and temporal scales 
and for models with different underlying structures developed 
by various operational centres. The crossover occurs at lead 
times of 5–7 days in both weather models, which is also simi-
lar to that for GloSea.

The same verification for two machine-learning-based models 
is shown in Figure 5, for FuXi and GraphCast forecasts. These 

FIGURE 3    |    Fractions Skill Scores for Met Office seasonal hindcasts (GloSea6), for the period 2001–2016, shown as a function of spatial scale and 
lead time. The left column displays results for mid-latitudes, the middle column for the tropics, and the right column shows the difference (mid-
latitudes minus tropics). Each row represents a percentile threshold, indicated in the title above the panels. For each panel, the vertical axis represents 
spatial scale in kilometres, and the horizontal axis represents lead time in days.
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8 of 14 Meteorological Applications, 2025

show very similar dependence on lead time and spatial scale 
to the NWP models, with a similar crossover time of 5–7 days. 
This is a very important result, as it provides strong evidence 
that the difference in performance is due to fundamental 
differences in the scales of predictability of the atmosphere 
at different latitudes, rather than an aspect of the particular 

construction of dynamical models. New machine-learning-
based weather forecasting models are rapidly being devel-
oped, and it will be interesting in future work to investigate 
whether any new models can produce forecasts that are not 
subject to this constraint, or whether it will remain impossible 
to produce models that perform as well in tropical regions as 

FIGURE 4    |    Fractions skill scores for Met Office operational weather forecasts (GC3, top row) from 2020 and ECWMF operational forecasts (IFS, 
bottom row) from 2022 as a function of spatial scale and lead time at mid-latitudes (left column) and tropics (middle column), and the difference be-
tween them (mid-latitudes minus tropics, right column), for a percentile threshold of 90%.

FIGURE 5    |    Fractions skill scores for ECMWF ML-based hindcasts (FuXi, top row, and GraphCast, bottom row) for 2022 as a function of spatial 
scale and lead time at middle (left column) and tropical (middle column) latitudes, and the difference between them (mid-latitudes minus tropics, 
right column), for a percentile threshold of 90%.
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9 of 14

in mid-latitude regions on short time scales, and vice-versa on 
long time scales.

3.3   |   Comparison Between Precipitation FSS 
Evaluation and Error Kinetic Energy Evaluation

In this subsection, the results regarding precipitation forecasts 
are compared with those obtained using a different metric, 
namely 500-hPa error kinetic energy, and a different method for 
comparing different horizontal scales, namely taking Fourier 
spectra of the error fields. Error kinetic energy is calculated 

following Judt (2020) and compared for two full latitude bands 
(a tropical band with latitudes from 15°S to 15°N and a mid-
latitude band with values from 30°N to 60°N). This quantity is 
plotted as a function of forecast lead time for the GloSea hind-
casts in Figure 6.

As with precipitation FSS, the errors are initially larger in the 
tropical band, but then grow more quickly in the mid-latitude 
band so that there is a crossover time when the mid-latitude 
error overtakes the tropical error. This crossover occurs at about 
7 days, similar to that seen for precipitation FSS, and also sim-
ilar to Judt (2020) (comparing panels a and b of their Figure 3). 
It is interesting to note that an earlier “identical twin” study by 
Straus and Paolino (2009) finds a later crossover time, at about 
15 days (their Figure  2a,b). They evaluated zonal wind error 
variance, corresponding to only the first term on the right-hand 
side of Equation (5), but perhaps a more important difference is 
that they used a model with a much coarser grid spacing than 
Judt (2020), so it may not have correctly captured the smaller-
scale error growth.

Figure 7 shows verification of the GloSea hindcasts over full lat-
itude bands, as a function of spatial scale, using two different 
methods. The top two rows show FSS values for a constant (in 
time) threshold and for a seasonally varying threshold. These 
are very similar to each other and to Figure 3, with differences 
only in the precise crossover lead time at which the values in 
the tropics overtake those at mid-latitudes. This indicates that, 
while using a seasonally varying threshold can affect the spatial 
patterns of FSS, it does not strongly affect the general behaviour 
across length and time scales.

Also shown in Figure  7 are error kinetic energy values, sepa-
rated into spatial scales using Fourier spectra. The behaviour 

FIGURE 6    |    500-hPa error kinetic energy for Met Office seasonal 
hindcasts averaged over the period 2001–2016, relative to the value at 
the end of the forecast. The tropical band represents latitudes from 15°S 
to 15°N and the mid-latitude band represents values from 30°N to 60°N.

FIGURE 7    |    Comparison between mid-latitude (30°N–60°N) and tropical (15°S–15°N) bands for Met Office seasonal hindcasts, measured in 
terms of FSS (top two rows) and error kinetic energy (bottom row) for the period 2001–2016.
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is overall very similar; some of the smaller differences could 
be due to the fact that the Fourier transform method only ac-
counts for scale in the meridional direction, whereas the FSS 
aggregation method accounts for scale in both horizontal direc-
tions, and that the Fourier transform method accounts only for 
information at the relevant scale, whereas the FSS aggregation 
method at a given scale accumulates information on all scales 
up to and including that scale. In terms of the differences, there 
is a similar crossover at about 7 days for all spatial scales, al-
though the behaviour is somewhat noisier for the error kinetic 
energy than for the FSS.

A clear difference between the two methods is that, with in-
creasing lead time, scores tend to unity (i.e., poor) on all scales 
for the error kinetic energy method, while they tend to values 
increasing from near zero (i.e., poor) to unity (i.e., good), with 
increasing spatial scale, for the FSS method. Generally, forecasts 
regress to being uncorrelated with increasing lead time (i.e., es-
sentially random), and the discrepancy between the two meth-
ods at longer lead times can be understood by considering the 
scores they produce for random forecasts. For the error kinetic 
energy method, the score is simply unity at all scales, as it is 
here defined as the ratio of the error to that of the long-lead time 
forecast. For the FSS, it can be shown that a random forecast 
will produce a score increasing from 100% − � for no averag-
ing (i.e., calculated at the grid scale) toward 100% for increas-
ing spatial averaging; for example, an averaging region of 625 
points and a threshold � = 90% yields an FSS very close to unity 
(Skok and Roberts  2016, see in particular their Figure  1a and 
[equation 13]).

4   |   Conclusions and Discussion

In this article we have quantified patterns of forecast skill ac-
cording to temporal lead time and spatial aggregation scale, 
comparing middle latitudes with tropical latitudes. In simple 
terms, the middle latitudes have better predictability on small 
scales over a few days while the tropical latitudes start to have 
better predictability, if spatially averaged, beyond about a week. 
This qualitative pattern of differences was probably already un-
derstood by most meteorologists, and does appear in the litera-
ture (e.g., Zhu et al. 2014; Buizza and Leutbecher 2015; Gehne 
et al. 2022). In this study, we have demonstrated a timescale be-
yond which the tropical domain starts to be more statistically 
predictable than the mid-latitude domain at around 5–7 days, in 
broad agreement with these previous studies, and shown that 
the patterns of differences are remarkably similar across differ-
ent forecast model systems.

We believe, with a basis in theory, that these patterns of differ-
ing predictive skill between latitudes are a fundamental prop-
erty of our world, related to the rotation of the Earth and the 
inherent chaos of the atmosphere as a convecting fluid. That 
understanding has been backed up by the observation that rel-
ative forecast skill between the tropics and mid-latitudes has a 
very similar pattern across the range of models we tested, in-
cluding traditional NWP models and new ML-based codes. We 
have also shown that very similar results are obtained using 
two very different evaluation methods (fraction skill score 
for precipitation and spectral analysis of upper atmosphere 

error kinetic energy). It therefore seems likely that the overall 
behaviour is rather independent of which methods and vari-
ables are used, but it will be interesting to investigate in more 
detail how the precise crossover time depends on these fac-
tors, and also investigate the spatial scale dependence shown 
in Figure 7 in more detail. We note that Gehne et al.  (2022) 
obtain similar, but not identical, crossover times for different 
verification metrics of precipitation, surface and upper air 
wind, surface humidity, surface temperature, and upper air 
geopotential height.

Although the qualitative behaviour is probably already well-
known to meteorologists, there are still many open questions 
around the possible predictive skill which could be achieved in 
the future for different parts of the world. Are there absolute, 
finite-time limits of predictability (the “real” butterfly effect of 
Palmer et al.  (2014)), or can we continue to push the limits of 
prediction through improved observations and modelling? Our 
theoretical understanding of the limits of predictability (e.g., 
from Lorenz 1969, and following work) is based on simple mod-
els of the chaotic atmosphere in isolation, while our general un-
derstanding of the longer-term predictability of tropical weather 
invokes the slower variations of the underlying land and ocean 
surfaces. Bach et al. (2019) have started to quantify the improve-
ments in predictability conferred by the ocean on the tropical 
atmosphere.

We should also not forget that the global atmosphere is con-
nected: our tropical and mid-latitude domains interact on 
timescales from days upwards. The arguments of Lorenz (1969) 
show that planetary-scale circulations have longer error-
growth timescales than smaller systems, and Hoskins (2013) 
gives a number of examples where global connections confer 
predictability on timescales of a week or two. More specifically 
for the African domain, a number of authors have shown how 
North and Central African rainfall variability can be driven by 
mid-latitude wave trains (e.g., Knippertz 2004; Bekele-Biratu 
et  al.  2018; Vizy and Cook  2014; Ward et  al.  2023). In other 
words, it is thought that the good predictability of weather 
systems over the North Atlantic and Europe can, in the right 
circumstances, drive weather in Africa with a similar predict-
ability timescale.

The paper also shows geographic patterns of forecast skill 
on different spatial and temporal scales (Figures  1 and 2). 
While these patterns quite dramatically show the contrasts 
between continents, they also offer provocative suggestions 
as to smaller-scale controls on predictability. Topography and 
land-sea differences seem in some places to improve predic-
tive skill. Exploring these differences, alongside the seasonal-
ity of skill (with an expectation of reduced European skill in 
more convective summer conditions) would be an interesting 
next step.

Answering such questions has become increasingly important 
with the recent revolution in ML-based forecasting systems. A 
key question is whether the predictability limits seen in current 
NWP models are fundamental constraints that ML-based sys-
tems cannot surpass, or whether substantial improvements in 
lead time and spatio-temporal localization of accurate forecasts 
are still achievable.
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However, it is important to recognize that current global ML-
based forecasts are trained on NWP model analyses, meaning 
their accuracy—when evaluated against observations—is un-
likely to exceed that of the NWP analyses that trained them. 
Recent work by Vonich and Hakim (2024) suggests that initial 
condition uncertainties are a more significant constraint on pre-
dictability than model uncertainties and that applying ML tech-
niques to optimize initial conditions from observational data 
can yield substantial improvements over traditional data assim-
ilation. This suggests that ML methods could enhance both ini-
tial condition estimation and forecast generation.

Selz and Craig  (2023) showed that an ML-based model fails 
to capture the initial rapid error growth of very small pertur-
bations, unlike a physically based system, but for errors com-
parable to current initial condition uncertainties, ML models 
exhibit similar error growth to physics-based systems. This 
aligns with the behaviour observed in this study and suggests 
that as improved observation and assimilation technologies 
reduce initial condition uncertainties, the nature of error 
growth in ML-based models may diverge further from that in 
NWP models.

Since ML-based models are computationally cheaper to run 
than full NWP systems, their continued development and re-
finement could lead to their gradual adoption. Once trained, the 
reduced cost of running these models, and their versatility for 
locally-focused post processing, also offers the chance that com-
petitive models will be run within African centres within the 
coming years (Vaughan et al. 2024).

While the qualitative forecast differences between Europe and 
Africa are well known to meteorologists, they are certainly 
not well understood beyond the meteorological community, 
and we would argue that better communication of the science 
with policy-makers is needed. It is widely accepted that African 
weather prediction services are not as effective as they need to 
be to meet the needs of forecast users (e.g., Cullmann et al. 2020; 
World Bank 2021; Tzachor et al. 2023) and it has also been ar-
gued that progress may be achievable within a few years (Parker 
et al. 2022). Rectifying the situation is the focus of some major 
international development programs (e.g., Early Warnings for 
All, Egerton et  al.  2022), in which there is an acknowledged 
need for “co-production” of services with their users (e.g., Carter 
et al. 2019). The results of this paper are strong evidence of the re-
quirement, in these global efforts, for different approaches to the 
weather prediction enterprise in Africa from those approaches 
that are established for mid-latitudes. Initiatives to exploit rain-
fall forecasts in Africa are likely to be disappointed if new ser-
vices are based on unrealistic expectations of daily forecast skill 
at the local scale. African and tropical prediction systems need 
to deal with the relative unpredictability of convective rainfall 
on the small scale and to exploit the relatively high statistical 
predictability of tropical weather on the larger scales.

What does this disparity in methods between mid-latitudes and 
tropical Africa mean in practice? The mid-latitude approaches 
still tend to focus on “deterministic” prediction of the weather, 
despite the wealth of ensemble data now available, and this is 
somewhat justified by models having acceptably good skill at 
1 day's lead time, on the smaller spatial scales of interest to most 

users (as seen in Figures 3 and 4). In contrast, African forecast-
ing needs to recognize that beyond a few hours, all convective 
forecasts are necessarily probabilistic, giving users an increased 
or decreased chance of rain. Probabilistic forecasts are more dif-
ficult to interpret and use, and it is unfortunate that for popu-
lations most vulnerable to the effects of climate change (in the 
tropics) the successful “deterministic” approach is not so viable. 
However, the forecasts do still provide very useful information 
and the challenge for the tropics is in refining the understanding 
of this available skill, using ensembles, statistics, and ML to pro-
duce more accurate (probabilistic) predictions, and in working 
with users so that they can exploit probabilistic skill effectively in 
their decision-making. This is also the case for S2S timescales; it 
is ironic that S2S models are being used more in the mid-latitudes, 
where they do not work so well, while we are failing to exploit 
the greater opportunities in tropical Africa for skilful forecasts at 
these longer ranges of a few weeks and a season. Some progress 
in using probabilistic and data-driven post-processing to improve 
S2S forecast skill has, for example, been made by de Andrade 
et al. (de Andrade et al. 2021) and Bach et al. (2024).

Ultimately, we should recognize that global prediction models—
whether traditional NWP or ML-based—are necessary but in-
sufficient for tropical forecasting. With skill emerging at broader 
spatial and temporal scales, effective prediction requires statis-
tical post-processing to refine and downscale raw model output. 
Given the low confidence in convective forecasts beyond a day, 
nowcasting is of the highest priority in Africa, providing critical 
warnings of storms as they move and evolve. Yet, few African 
countries currently have operational nowcasting capability, de-
spite its potential for improving short-range forecasting (Roberts 
et al.  2022). Tackling these gaps will require co-production of 
services in a way that reaches into the forecast office, the com-
putational products, the technical infrastructure, communica-
tions, and the standard operating procedures of forecasters.
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www.ecmwf.int License Statement: ECMWF open data is published 
under a Creative Commons Attribution 4.0 International (CC BY 4.0). 
https://creativecommons.org/licenses/by/4.0/. Disclaimer: ECMWF 
does not accept any liability whatsoever for any error or omission in 
the data, their availability, or for any loss or damage arising from their 
use. The FuXi and DeepMind GraphCast forecast models are licensed 
under the Apache License 2.0, see https://github.com/tpys/ai-models-
fuxi/blob/main/LICENSE and https://github.com/google-deepmind/
graphcast/blob/main/LICENSE, respectively.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

Due to intellectual property right restrictions, we cannot provide ei-
ther the source code or the documentation papers for the Met Office 
Unified Model (MetUM). For information on accessing MetUM data, 
see https://​www.​metof​fice.​gov.​uk/​resea​rch/​appro​ach/​model​ling-​syste​
ms/​unifi​ed-​model​. JULES is available under licence free of charge. For 
further information on how to gain permission to use JULES for re-
search purposes, see https://​jules.​jchmr.​org/​. The model code for NEMO 
v3.4 is available from the NEMO Consortium and can be downloaded 
from their repository (https://​forge.​ipsl.​jussi​eu.​fr/​nemo/​chrome/​site/​
doc/​NEMO/​guide/​​html/​insta​ll.​html; https://​doi.​org/​10.​5281/​zenodo.​
1464816). The model code for CICE is freely available from the CICE 
Consortium, a group of stakeholders and primary developers of the Los 
Alamos sea ice model, and can be downloaded from the CICE repos-
itory (https://​github.​com/​CICE-​Conso​rtium/​​CICE/​wiki). ERA5 data 
were obtained using Copernicus Climate Change Service information 
[2025]. Neither the European Commission nor ECMWF is responsible 
for any use that may be made of the Copernicus information or data it 
contains. For information about accessing ECMWF operational fore-
cast data, see https://​www.​ecmwf.​int/​en/​forec​asts/​datas​et/​opera​tiona​
l-​archive. For information about running the FuXi forecast model, see 
https://​github.​com/​tpys/​ai-​model​s-​fuxi. For information about running 
the GraphCast model, see https://​github.​com/​googl​e-​deepm​ind/​graph​
cast.
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