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Abstract

A key challenge in the machining manufacturing industry is real-time tool wear prediction, as conventional methods rely on

conservative tool changes, causing premature replacement or excessive wear that risks failure, part damage, or poor surface

quality. Monitoring and predicting the wear condition of a cutting tool is key to guarantee the cutting quality and saving

costs. This study presents an AI-driven digital twin framework for real-time tool life prediction to address these limitations

by integrating multiple modules. These modules include an on-machine direct inspection system, a seamless connectivity

integration module for real-time data management, and a deep learning module for tool wear prediction. Long Short-Term

Memory networks were trained, optimised and tested on a milling dataset to then deploy onto a real-time implementation

of the digital twin framework. A comprehensive design of experiments (DOE) was used to validate the real-time tool life

prediction framework of a dynamic milling toolpath strategy of a Ti-6Al-4 V alloy. The models were able to predict tool

maximum flank wear based on sensor data from the machining tests DOE with RMSE of 33.17 µm, whilst the real-time

implementation yielded a minimum of RMSE of 119.36 µm. These results motivate further research for enabling real-time

closed-loop control for a future digital twin system implementation.

Keywords Tool wear · Deep learning · Digital twin · Real-time · Computer vision

Introduction

The industrial landscape has witnessed a transformative

impact from the introduction and advances in artificial intel-

ligence (AI) in recent years. The ever-growing volume of

sensor data from CNC machines has enabled the devel-

opment of data-driven models, accelerating the transition

towards “smart manufacturing” (Moore et al., 2020). This

trend is mirrored in machining research, where a significant

focus lies on creating AI models utilising machine learn-

ing (ML) and deep learning (DL) for diverse applications.

These applications include tool wear prediction, tool break-

age detection, energy consumption optimisation, and surface

roughness prediction (Yang et al., 2023). Existing research

underlines the potential of data-driven models to achieve

high accuracy, flexibility, and robustness when equipped with

appropriate data capture methods (Liu et al., 2023a).
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Within the CNC machining process, the cutting tool plays

a pivotal role. Tool wear and tool life are critical factors for

evaluating a material’s machinability. They provide measur-

able information about a material’s resistance to machining.

Different materials can be compared based on their tool wear

or tool life under identical machining conditions. Tool life is

defined as the time or amount of material removed before

tool wear reaches a specific limit. However, tool life can be

influenced by many factors beyond just the material itself,

such as cutting speed, cutting strategy, tool type, tool engage-

ment and wider system conditions (e.g. machine tool, fixture,

and lubrication). This makes it challenging to directly com-

pare machinability across different studies (Liao et al., 2024).

Furthermore, tool health directly influences the quality and

efficiency of the machined products (Ambhore et al., 2015).

Tool wear progressively accumulates over time, ultimately

culminating in tool failure. This failure can significantly hin-

der production efficiency by compromising the accuracy of

the machined product or even causing scrapped parts. Con-

versely, precise tool wear monitoring can enable increased

cutting speeds and reduced production downtime (Kurada
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& Bradley, 1997). In critical applications, tool life and pro-

cesses are often predetermined. To mitigate the effects of

tool breakage, tools in industrial processes are intended to be

replaced before failure occurs. However, a lack of confidence

in the current condition of the tool can lead to conservative

decision-making. Conventional replacement strategies can

rely on fixed intervals based on operators’ subjective experi-

ence. This approach can result in premature tool replacement,

increasing costs and downtime, or delayed replacement,

which negatively affects workpiece quality and raises pro-

duction costs (Zhou & Xue, 2018). Therefore, for optimal

production efficiency and product quality, accurate tool wear

prediction is paramount. Traditional tool wear monitoring

methods are categorised as either direct or indirect (Ambhore

et al., 2015). Direct methods, which involve physical mea-

surement of the tool through techniques like microscopy, can

be intrusive and impractical for continuous, real-time mon-

itoring in a production environment. Indirect methods, rely

on analysing sensor signals such as cutting forces, vibra-

tions, and temperature during the machining process (Dimla

& Lister, 2000). Even though, these methods are impacted

by the complex, non-linear relationships between sensor data

and the actual tool wear state (Wang et al., 2022), they can

provide a comprehensive insight into the physical system.

A digital twin is a virtual representation of a physical sys-

tem that continuously learns, and updates based on sensor

data streamed from its physical counterpart. In machining,

a digital twin acts as a virtual counterpart, mirroring the

physical machining process in real-time. This digital rep-

resentation is driven by a continuous stream of data flowing

directly from the CNC machining tool. It encompasses real-

time sensor data capturing various aspects of the machining

operation, such as cutting forces, vibration levels, and spindle

motor power (Ward et al., 2021). Additionally, a digital twin

can integrate data-driven digital models such as DL. These

models are constantly fed in real-time using the informa-

tion received from the CNC machine and any other relevant

sensory equipment. This continuous flow of data allows the

digital twin to not only reflect the current state of the machin-

ing process, but also predict future behaviour and potential

outcomes. This real-time synchronisation between the phys-

ical and digital worlds can be a powerful tool for optimising

machining processes, predicting issues like tool wear, and

making informed decisions for improved production effi-

ciency and product quality.

While Artificial Neural Networks (ANNs) have proven

effective in various applications due to their ability to learn

and model non-linear relationships (Sun et al., 2022), how-

ever, their limitations in handling long-term dependencies in

time series data pose a challenge for tool condition mon-

itoring (TCM) in machining. Long Short-Term Memory

(LSTM) networks, a specific type of Recurrent Neural Net-

work (RNN), address this limitation. LSTMs are designed

to specifically learn these long-term dependencies within

sequential data, making them particularly well-suited for

tasks like tool wear prediction in machining. By overcom-

ing the vanishing gradient problem that hinders traditional

RNNs, LSTMs can effectively capture the complex rela-

tionships between sensor data collected over time and the

corresponding tool wear state (Hochreiter & Schmidhuber,

1997). This capability allows LSTMs to predict tool wear

with high accuracy, leading to improved production effi-

ciency and reduced costs associated with tool failures. Marani

et al. (2021), Sayyad et al. (2022), and Kumar et al. (2022)

investigated the use of an LSTM and BiLSTM models to

predict tool flank wear, whilst Chen et al. (2019), Duan

et al. (2023) and Li et al. (2022) combined convolutional

neural networks (CNN) and bidirectional LSTMs (BiL-

STM) to classify or predict tool wear in machining. Whilst

their approaches showed a promising framework to enable

real-time predictions, these studies relied on controlled envi-

ronments with limited parameter variation, reducing their

applicability to dynamic industrial settings. Zhang et al.

(2022) proposed a method to predict tool wear and cut-

ting forces in micro milling. They combined a data-driven

approach through LSTMs to predict tool wear and influence

a physics-based model to improve cutting force prediction

accuracy. The method considers factors like tool run-out

and tool wear for a more realistic model. Guo et al. (2022)

implemented a pyramid LSTM auto-encoder for tool wear

monitoring in high-speed machining (HSM). This model

leverages the periodic nature of cutting signals to achieve

accurate prediction, even under complex and changing condi-

tions. The design allowed the model to learn from unlabelled

data and reduced computational cost compared to traditional

methods. Despite achieving high accuracy in offline scenar-

ios, these studies lack real-time implementation and often

depend on extensive post-processing, limiting their practical

deployment.

Regarding the research of real-time tool life prediction,

Liu et al. (2023b, 2024) propose a framework for TCM dur-

ing machining. This framework looks to incorporate physical

knowledge of the machining process to improve the accuracy

of TCM using a model frequency analysis coupled with a

nonlinear autoregressive with exogenous input (NARX) net-

work. Their experimental results showed that this model can

be applied to a range of machining scenarios in real-time.

However, the system had computational speed limitations

in real-time implementation, requiring further research for

industrial applications. While the existing research demon-

strates the promise of DL models for tool wear prediction,

several limitations hinder their widespread industrial adop-

tion. A significant portion of the validation process relies on

controlled machining tests with straight cutting operations.

These tests often involve repeated trials with similar parame-

ters or a limited combination of settings. This approach may
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not adequately reflect the real-world complexities encoun-

tered in diverse machining scenarios. Additionally, the imple-

mentation of DL models is primarily focused on offline

settings, showcasing their potential for online predictions

such as the work form Chen et al. (2019), but still limited

to a tool wear classification approach. However, there is a

scarcity of examples demonstrating full integration and real-

time functionality within industrial machining processes; and

very few implementing data-driven deep learning techniques

capable of generalising the complex machining behaviour.

The current paper proposes a novel digital twin framework

using DL models for real-time tool wear prediction in milling

operations. By using DL models within this framework, the

system can continuously analyse sensor signals in real-time

and predict tool wear indirectly with high accuracy. The

DL’s ability to model complex relationships between input

data and desired outputs makes it particularly well-suited

for this task (Liu et al., 2023a). Furthermore, the proposed

digital twin framework would allow the model to contin-

uously learn and adapt to changing machining conditions,

such as variations in workpiece material, cutting parame-

ters, or tool geometry by also integrating a direct in-situ

vision inspection system to initially collect tool wear data

and later serve as a source of verification, and in future

work, continuous learning. A continuous learning capabil-

ity would ensure the model’s predictions remain accurate

over extended periods, even under fluctuating production

conditions. This approach offers significant advantages over

existing solutions that are commercialised and are avail-

able to industry such as ARTIS Marposs (2022), Nordmann

Tool Monitoring (Nordmann, 2017), Montronix (2022), and

Caron Engineering TMAC (Caron, 2022); which primarily

rely on comparing sensor readings to fixed thresholds or

analysing trends to identify critical events like tool breakage

or collisions. Hence, these commercial systems offer limited

insights into the actual state of the tool condition. By enabling

real-time predictions, the current framework approach could

allow both, the use of cutting tools to their full extent, as well

as proactive interventions. During operations where cutting

tools are replaced continuously assuming the end of life has

been reached only by experience or predefined machining

time (Zhou & Xue, 2018), this system could help extend

the use of the tools. Conversely, when the predicted tool

wear reaches a pre-defined threshold, the system can trigger

an alert for tool replacement, minimising unplanned down-

time and production losses. Overall, this real-time tool wear

prediction digital twin framework using deep learning has

the potential to significantly improve production efficiency,

reduce costs associated with scrapped parts and tool failures,

and ultimately enhance product quality in CNC machining

operations. To comprehensively evaluate the efficacy of the

proposed digital twin framework, a DOE was employed. This

DOE included a broad design space, specifically targeting

the expansion of the deep learning (DL) models’ operational

limits. The machining tests incorporated complex milling

tools featuring variable pitch and helix angles. Additionally,

the tests utilised Ti-6Al-4 V, a material commonly used in

aerospace and medical applications. Furthermore, a complex

dynamic milling toolpath, as encountered in blisk machining

(a critical aerospace operation), was implemented. The data

acquired during these trials served a dual purpose: training

and validating the DL models. Subsequently, these mod-

els were deployed and tested in a fully integrated real-time

implementation on a new machining trial that was not trained

or tested, demonstrating good accuracy.

The novelty of this research lies in its real-time execution

of AI-based tool wear prediction, addressing gaps in prior

literature that rely on post-processed data rather than live

inference. A large DOE with parameter variation enhances

model robustness, while validation on unseen real-time data

confirms its generalisation ability. These contributions to the

advancement of digital twin technology for machining look

to demonstrate a scalable and practical solution for real-world

manufacturing environments.

Proposed framework andmethods

Architecture

The framework of the intelligent real-time tool life predic-

tion digital twin is illustrated in Fig. 1, which includes the

development and integration of three main modules: direct

in-situ inspection, real-time connectivity, and deep learning.

Direct inspectionmethodology

The direct inspection module is an in-situ vision-based sys-

tem designed for on-machine tool wear measurements to

capture wear progression. This system leverages image pro-

cessing algorithms to quantify tool wear directly during the

machining process, as depicted by Fig. 2. The workflow

begins with the creation of a digital mask from an image

of a new, unworn, tool. This mask serves as a reference for

the original tool edge. Subsequently, the mask is aligned and

subtracted from an image of the worn tool, effectively remov-

ing background features. Following background removal, a

thresholding technique is employed to isolate the region of

interest (ROI) corresponding to the worn area. Finally, image

segmentation algorithms are utilised to delineate the wear

profile, enabling the measurement of the maximum flank

wear at various tool locations (i.e., bottom, middle, and top).

The individual wear measurements from these locations are

then averaged to generate a single value representing the aver-

age maximum flank wear across the entire tool length.
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Fig. 1 Proposed intelligent digital twin framework for real-time tool life prediction

Fig. 2 Direct in-situ inspection and processing workflow

This framework functionality enables the collection of

continuous tool wear measurements during a machining pro-

cess to acquire the data to be used for training the DL models.

Additionally, this system can continue to be relevant during

the deployment of the system with the trained models to occa-

sionally verify the predictions, help improve accuracy and

enable continuous learning with development further work.

This approach would ensure that the number of verification

measurements is reduced to a minimum, impacting less the

machining downtime to carry out this task.

Real-time connectivity methodology

The real-time connectivity module of the digital twin frame-

work enables real-time data collection of the various sensors

retrofitted to the CNC machine, along with data collected

from the machine numerical control kernel (NCK). This

module performs synchronisation of the various data streams

and implements the data processing and feature extraction

tasks. A software was created to collect the various data

streams implementing parallel callback function cycles to
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Fig. 3 Intelligent digital twin software and real-time connectivity flow diagram

collect the data and save internally. A separate callback func-

tion receives the processed real-time features to carry out

predictions. The software functionality and the data flow are

illustrated by the flow diagram shown in Fig. 3.

Data processing and feature extraction methodology

For the DL training tasks, the data captured during the

machining testing required processing to isolate the signal

from the non-cutting data to avoid any misleading signals

from initial stages where the tool is not fully engaged and

potential material dimensional variabilities, as represented

by Fig. 4. Similarly, filtering was done to avoid introducing

cutting dynamic issues to the models as localised vibrations

were observed in the mid-cuts, possibly due to low rigidity

of the machine tool at those locations.

The segmented signals for each milling cut were recorded

at different sampling rates (51,200 Hz and 333 Hz) and

were subsequently subdivided into half a second sections

(i). A commonly used feature extraction technique for AI-

based tool wear prediction is to extract statistical features

(Colantonio et al., 2021; Kumar et al., 2022; Moore et al.,
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Fig. 4 Signal segmentation and processing

2020; Sayyad et al., 2022). Therefore, time-domain and time-

frequency-domain statistical features were extracted from

each section, as depicted by the extracted features in Fig. 4.

The labelling was conducted based on extracted statistical

features to ensure uniform representation of machining con-

ditions. Table 1 shows the time-domain statistical features

used, where xi represents the current signal value and N rep-

resents the total number of samples in the evaluated section

of the signal.

For the time-frequency-domain features, mean, standard

deviation, skewness and kurtosis values where calculated

from the signal spectral kurtosis (K ( f )) using Eq. 9, where S

(t , f ) is a short-time Fourier transform described by Eq. 10,

w(t − τ) is the evaluated window, x(t) represent the signal,

τ represents the phase unwrapping on the time axes, and f

is the frequency axes.

K ( f ) �
〈|S(t , f )|4〉

〈|S(t , f )|2〉
2

− 2 (9)

Table 1 Statistical features equations

Statistical feature Equation Equation
number

Maximum Xmax � max(x) (1)

Mean Xmean � 1
N

∑N
i�1 xi (2)

Standard deviation Xstd �√∑N
i�1

(xi −Xmean )
N

2

(3)

Skewness
Xskew �

∑N
i�1 (xi −Xmean )3

(N−1)Xstd
3

(4)

Kurtosis
Xkurt �

∑N
i�1 (xi −Xmean )4

(N−1)Xstd
4

(5)

Peak to peak (P2P) X p2p �

max(xi ) − min(xi )

(6)

Root mean square
(RMS)

Xrms �

√
1
N

∑N
i�1 xi

2 (7)

Crest factor Xcrest �
Xmax

Xrms
(8)
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S(t , f ) �

∫ +∞

−∞

x(t)w(t − τ)e1π f t dt (10)

Deep learningmethodology

The DL module receives the real-time data features and car-

ries out live predictions of tool wear, which could enable the

machine operator to carry out decisions on the machining

operations. This task is executed in parallel to the main data

collection tasks to avoid issues with this or any other poten-

tial usages of the signals (e.g. data analytics, other simulation

modules, etc.). When this parallel function finishes comput-

ing, the DL model outputs are pulled out and displayed onto

the Graphical User Interface (GUI).

Long short-termmemory (LSTM) networks

The LSTM networks are a type of recurrent neural networks

suitable for time-series data with the architecture described

in Fig. 5. These networks use LSTM blocks for each time step

(t), where each block has initial hidden (ht−1) and cell (ct−1)

states that get updated at each timestep and become inputs

(ht andct ) for the next block, along with the timeseries (x),

to generate a final output network state prediction (yT ). The

main advantage of the LSTM networks is that the cell state

provides the long-term memory of the network, whereas the

hidden state has the ‘short-term’ memory from the previous

output. Each LSTM block has the system of gates shown in

Fig. 6 to carry out the network update by an input, forget,

update, and output gate (Hochreiter & Schmidhuber, 1997).

Input Gate This gate deals with the control of the informa-

tion flow that updates the cell state (long-term memory). This

Fig. 5 LSTM layer architecture

Fig. 6 LSTM block architecture
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gate contains an ANN (i) with a sigmoid activation function

(σS), allowing it to discriminate the relevance of any new data

for re-training the network, as described by Eq. 11. Where

W denotes the weights, R the recurrent weights, and b the

biases for this gate; the subscript refers to the specific gate,

which in this case is the input gate.

it � σS(Wi xt + Ri ht−1 + bi ) (11)

Forget Gate The forget gate (F) contains an ANN (i)

with a sigmoid activation function trained with the new sam-

ple (xt ) and the previous hidden state (ht−1) as inputs, and

the output is a vector with values between 0 and 1 to discrim-

inate the input relevance using Eq. 12. This output vector is

multiplied elementwise by the previous cell state ct−1 and

passed to the update gate, allowing the network to ‘forget’

or make cell components less influential for the subsequent

steps, as described by Eq. 13.

ft � σS

(
W f xt + R f ht−1 + b f

)
(12)

F � ft ⊙ ct−1 (13)

Update Gate The update gate (U ) determines what infor-

mation gets stored in the cell state (long-term memory) of the

network. The cell candidate (g) is updated by an ANN with

a tanh activation function (σh) trained to combine previous

hidden states with new data, providing an updated magnitude

to the cell state but without any ‘relevance’ discrimination,

as described by Eq. 14. This cell candidate is multiplied ele-

mentwise by the input gate output vector using Eq. 15, to

then be added to the vector coming from the forget gate to

create a new cell state (ct ), and thus update the ‘long-term

memory’ of the network, as described by Eq. 16.

gt � σh

(
Wgxt + Rght−1 + bg

)
(14)

U � it ⊙ gt (15)

ct � F + U (16)

Output Gate The output gate (O) passes the new cell state

directly to the next block and updates the hidden state (h).

An output vector (o) is generated by an ANN using a sigmoid

activation function. The hidden state, which also outputs the

latest time step prediction (yt ), gets updated by an elemen-

twise multiplication between the output vector and the new

cell state that was passed through a tanh activation function

to normalise the data between − 1 and 1 using Eq. 17.

yt � ht � ot ⊙ σh(ct ) (17)

During the training of the LSTM network, one of the

main parameters to be defined are the number of hidden

units, which relates to the amount of information the net-

work remembers between time steps or the hidden state. This

is an important parameter to avoid overfitting. Furthermore,

the LSTM network can be linked to ‘fully connected layers’

with a set of weights to further improve predictions for high-

dimensional problems. The number of hidden units for these

layers also require selecting to avoid overfitting.

Bayesian optimisation

Bayesian optimisation is widely used for ML and DL hyper-

parameter selection, as these networks can become difficult

and expensive to optimise with other optimisation algorithms

that rely on accessing the objective function’s derivatives

(Frazier, 2018). Bayesian optimisation uses surrogate opti-

misation that consists of generating a surrogate function to

approximate the objective function, which in this case is the

DL network. Based on the surrogate function, promising min-

ima points can be identified, and these regions are furtherly

explored, and the surrogate function can be updated accord-

ingly. This is done iteratively to learn more about the areas

of interest and update the function until a suitable or global

minima is found. The surrogate functions are commonly

represented by Gaussian Process, which is a probability dis-

tribution over possible fitting functions (Snoek et al., 2015;

Wu et al., 2019) described by Eq. 18 given a mean function

(µ) and a covariance function (k → R).

f (x) ∼ G P
(
µ(x), k

(
x , x ′

))
(18)

The surrogate function can be updated with new informa-

tion through the Bayesian process, and the Gaussian Process

distribution can be used to find the global minima by being

a cheaper objective function to optimise. This optimisation

was used to iteratively train multiple networks whilst varying

and optimising the desired model parameters, hyperparam-

eters and architectures to achieve the results presented in

“Results and analysis” section.

Data augmentation

Data augmentation is a widely used technique in DL to arti-

ficially expand the size and diversity of a training dataset by

applying controlled transformations to existing data points.

This process helps to improve the generalisation ability of

DL models, making them more robust to inherited variability

of unseen real-time data (Chawla et al., 2002; Fernández-

Delgado et al., 2014; Shorten & Khoshgoftaar, 2019).

This technique is commonly applied to image data, which

can include rotations, flips, cropping, colour jittering, and

noise addition. These transformations simulate real-world
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Fig. 7 Results on Test I for: a Variable noise on signals by 2.5%; b offset of 2.5% on tool wear

Fig. 8 Results of time warping of 5% on Test I for: a sensor signals; b tool wear profiles

variations that a model might encounter. Time series or

sequence data can also be augmented to enhance robustness

by simulating realistic signal variations, thereby improving

generalisation while preventing over-sampling and redun-

dancy. However, excessive augmentation can lead to unre-

alistic variability; therefore, empirically determined noise

thresholds were implemented to balance robustness and accu-

racy. Other studies have demonstrated the efficacy of data

augmentation methods, in enhancing AI models’ robustness

and accuracy in machining and industrial applications (Jiang

et al., 2023; Martins et al., 2023).

Two techniques implemented to augment the data

acquired during the machining testing are the following:

Noise addition Artificially add noise to individual datapoints

or the full signal to represent variability from sources such as

sensor errors, environmental factors, etc. (Gao et al., 2023).

Time warping Stretch or compress the signal in the time axis

to represent temporal variations (Petitjean et al., 2011).

For the noise addition technique, the original sensor sig-

nals and the tool wear profiles were first offset in full by a

noise factor of ± 2.5% to keep the data inside a 95% con-

fidence level, which equates to 2σ of a normally distributed

process noise. Following this, the original sensor signals were
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affected by a noise factor of±2.5% on each data point (across

time), as shown in Fig. 7a. However, it should be noted that

this was not applied to the tool wear profiles, which were

only affected with the full signal offset factor of ± 2.5%,

as shown in Fig. 7b, given that this would have been less

representative of real variability in tool wear data, which is a

discrete direct measurement rather than a signal prone to vari-

ability. Finally, for the time warping technique, new signals

were produced by extending and compressing the original

data by a random percentage of ± 5% of the original length,

also to keep inside the 95% confidence level, as shown in

Fig. 8. This higher percentage was used to try to account for

the stochastic variability on tool life, which may happen in

practice between different experimental trials using identi-

cal tools and identical machining conditions. Each technique

generated six new signals by applying three positive and three

negative factor values to ensure data diversity and balance.

The data labels remained unchanged, as these augmentation

methods only introduced minor transformations preserving

wear progression trends.

Experimental method

Experimental setup

The experimental testing was carried out in a 5 axis DMG

DMU 40 eVo linear CNC milling machine tool as presented

in Fig. 9a. The workpiece was mounted onto an adapter

plate, which was in turn mounted onto a plate dynamome-

ter as depicted by Fig. 9b. Figure 9c illustrates the data

acquisition setup, including the equipment used and its con-

nectivity. The sensing devices were used to monitor the

process, which included an external spindle power monitor-

ing kit PPC-3, three tri-axial accelerometers PCB 356A02

(two on the spindle, one on the dynamometer), and a Kistler

dynamometer 9255C connected to a Kistler charge amplifier

5070. These sensors were then connected to a National Instru-

ments (NI) cDAQ-9178 chassis using modules NI-9239 for

the dynamometer, NI-9234 for the accelerometers, and NI-

9201 for the power kit. The NI chassis that was plugged

into the data acquisition PC via USB. Machine controller

data was also collected via Transmission Control Proto-

col/Internet Protocol (TCP/IP) using an ethernet connection;

this stream of data was enabled through a Heidehain LSV2

connector. The configuration of the inspection system con-

sisted of an area scan camera (Basler acA2040-25gm), and

lighting equipment (SVL SXW30-W), as well as a power

over the ethernet (PoE) ethernet connection from the camera

to a laptop. The sensor data was collected at a sampling rate

of 51,200 Hz, and the machine controller data was collected

at the NCK rate of 333 Hz.

For the machining tests, 14 cylindrical billets of a dimen-

sion of Ø200 mm × 100 mm of Ti-6Al-4 V material, hot

rolled to AMS 4928 were machined. The tooling selected

for the machining trials was an OSG UVX-Ti-5FL endmill,

which had variable pitch and helix angles detailed in Table 2.

Blaser Vasco 7000 flood coolant was used during the machin-

ing trials, with a concentration of ~ 8%.

Machining testing

A dynamic milling toolpath strategy can help maintain a

constant cutting engagement and tool load throughout the

machining process. This approach typically involves adjust-

ing the tool’s trajectory and feed rate dynamically, based on

the geometry of the workpiece, to maximise material removal

while minimising tool wear and reducing cutting forces. This

approach was used during machining testing to vary the cut-

ting speed (Vc) and radial depth of cut (ae) whilst keeping

a constant maximum chip thickness (hex), which for these

tests was kept at 60 µm. The cutting strategy consisted of 24

cuts of equal volume (98.98 cm3) per billet, where six cuts

were carried out on each billet of the four levels of the work-

piece material, as depicted in Fig. 10. A maximum flank wear

(VBmax) is commonly used to define the limits where a tool

is regarded as worn. According to ISO 3685, 1993 standards

(ISO, 1993), a limit of 0.3 mm can be used for uniform wear;

therefore, a limit of 0.3 mm was used as the threshold of tool

failure during the machining trials.

A full-factorial design of experiments as outlined by

Table 3, was implemented where the centre point of the tests

was repeated twice. This design was also complemented with

extra tests to increase the amount of data for the deep learning

modelling.

Results and analysis

Using the in-situ inspection methodology, the tool wear was

measured after each cut. Figure 11 shows an example of a

flute of the tool used in Test A for the start, middle and end

of life wear in the top, middle and bottom section of the tool.

To ensure repeatability in tool wear measurements, the CNC

machine’s spindle encoder was used to precisely and consis-

tently position the tool for imaging. Additionally, each tool

was cleaned using compressed air before image capture to

remove coolant residues and swarf, preventing measurement

inaccuracies.

The measured tool wear is presented in Fig. 12, where each

line corresponds to a test of the DOE. A review was done after

the tests to carry out an inspection of the data and the expected

trends. Inspection of the tool wear profiles from the tests

revealed a clear correlation between tool life and the selected

machining parameters, including cutting speed, radial depth
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Fig. 9 Experimental setup: a DMG DMU eVo 40 linear; b workpiece fixturing setup; c data acquisition setup

Table 2 Tooling specifications
Tool code Diameter (mm) Corner radius (mm) Helix angles (°) Pitch angles (°)

UVX-TI-5FL
16XR3X48

16 3 41/42/43 83/68/64/83/62
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Fig. 10 Machining strategy diagram showing workpiece cuts and levels

of cut, and feed rate. Additionally, when comparing the tool

wear profiles with the mean of the XY resultant forces (Fxy)

calculated Eq. 19, there was a good correlation as observed

in Fig. 13.

Fxy �

√
Fx2 + Fy2 (19)

The repeated tests at the centre point of the DOE, test E

and test I, had very close tool life profiles (Fig. 14a) and

mean Fxy (Fig. 14b), indicating very low variability during

testing. This is also evidenced by the Pearson’s correlations

in Fig. 15a for the tool wear profiles, and Fig. 15b for the

mean xy, where both show very high positive correlation

coefficients, which is a measure of a linear relationship or

dependence between pairs of corresponding datapoints in the

timeseries, with p-values below 0.05.

The DOE test data was split into nine training (tests A, C,

D, E, F, G, H, I and J) and one validation (test B) datasets. The

data augmentation techniques were then applied, and these

were able to increase the nine original testing datasets illus-

trated in Fig. 16, into the 2205 datasets as shown in Fig. 17.

This was also the case for the validation dataset, which was

augmented from 1 to 245 datasets.

The Bayesian optimisation was applied to the training

datasets systematically adjusting hyperparameters such as

LSTM hidden units, fully connected layer nodes, batch

size, and dropout rates, minimising the mean absolute error

(MAE) for the validation dataset using Eq. 20, where ŷ corre-

spond to the i th iteration trained network predictions and yi

corresponds to the actual tool wear values. Figure 18 shows

the optimisation results for 150 optimisation iterations due

computational efficiency and diminishing improvements in

validation loss, as additional improvements beyond this value

were found minimal.

M AE �
1

N

N∑

i�1

|̂yi − yi | (20)

Following the optimisation process, the four best perform-

ing networks were selected. Their training and validation

performance was evaluated using the root mean squared error

(RMSE) metric (Eq. 21). Table 4 summarises the networks

architecture and their results.

RM SE �

√√√√ 1

N

N∑

i�1

|̂yi − yi |
2 (21)

Figure 19 presents examples of the prediction results for

the augmented validation dataset using the four networks.

Table 3 Experimental test for
tool wear machining trials Cutting

speed Vc
(m/min)

Feed per
tooth fz
(mm/tooth)

Spindle
speed n
(rpm)

Feed rate Vf
(mm/min)

Radial DoC
ae (mm)

Axial DoC
ap (mm)

Test A 130 0.084 2586 1086 1.6 20

Test B 140 0.075 2785 1044 1.6 20

Test C 150 0.069 2984 1034 4 20

Test D 130 0.075 2586 970 1.6 20

Test E 140 0.075 2785 1044 3.2 20

Test F 150 0.084 2984 1254 2.4 20

Test G 140 0.069 2785 965 4 20

Test H 130 0.069 2586 896 4 20

Test I 140 0.075 2785 1044 3.2 20

Test J 150 0.100 2984 1492 1.6 20
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Fig. 11 Tool wear images of top, middle and bottom of flute 1 in Test A for new, mid process and end of life conditions

Fig. 12 Tool wear profiles captured during the DOE machining tests
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Fig. 13 Mean XY resultant forces (Fxy) of the machining tests

Fig. 14 Results from tests E and I: a tool wear profile; b mean XY resultant forces (Fxy)

Fig. 15 Correlation coefficients between tests E and I for: a tool wear; b mean XY resultant forces (Fxy)
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Fig. 16 Original training datasets

Fig. 17 Augmented training datasets
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Fig. 18 LSTM validation MAE Bayesian optimisation results

These results showed accurate tool wear predictions with

RMSE values as low as 33.17 µm for the dataset acquired

during the DOE machining testing. The networks were later

deployed for a real-time implementation of the digital twin

framework on a new machining test. This test replicated

the cutting parameters of Test B from the DOE, enabling

a comparison between the offline and real-time results. The

framework executed data collection, processing, and feature

extraction in real-time, feeding live features to the networks

in a parallel manner (as depicted previously in Fig. 3). Subse-

quently, the networks predicted wear, updated their internal

state based on the latest data point, and displayed the current

wear prediction to the user interface as shown in Fig. 20.

Figure 21 includes the predictions from the four networks,

while Table 5 presents the corresponding prediction RMSE

values.

The results for the real time prediction revealed reason-

ably accurate with RMSE values as low as 119.36 µm, hence

the predictions followed closely the tool wear trend and cap-

tured the inflection point of the rapid wear stage leading to

failure. Interestingly, most networks predicted slightly higher

wear values compared to the measured data. This discrepancy

could be attributed to a potentially more aggressive initial

wear stage in the real-time test compared to the initial DOE

machining tests dataset. This could lead to a higher steady

wear stage inflection point, creating a steeper wear trajectory.

These challenges are anticipated when dealing with real-

time sensor data, which may be susceptible to noise and the

inherent stochastic nature of the machining process; as evi-

denced by the correlation results previously described for

the centre points of the DOE machining tests, which were

highly correlated repetitions, but still not identical. Nonethe-

less, these results successfully validate the proof-of-concept

for the digital twin framework, demonstrating promising out-

comes.

The scope of this research was to evaluate the feasibility

of deploying AI models for real-time tool wear prediction

in an industrially relevant setting. While the study provides

insights into wear progression trends, it is not a fundamen-

tal analysis of wear mechanisms. Future work should focus

on improving the accuracy of the deep learning models and

ensure these provide better real-time predictions and inte-

grating additional process monitoring techniques to enhance

predictive accuracy. Similarly, future work should look at

the full integration of the in-situ inspection system to enable

the continuous learning during the real-time implementation

of the system, whenever tools are inspected in-situ and mid

process to verify the predictions.

Table 4 Training and validation
prediction RMSE (mean and
max) results for DOE machining
testing

Network No Architecture Training
RMSE
(µm)

Validation
RMSE
(µm)LSTM

hidden
units

Fully
connected
hidden units

Drop out
rate

Batch
size

1 51 108 0.2466 6 7.75 33.17

2 130 95 0.2494 5 17.87 65.5

3 132 150 0.227 5 28.16 49.47

4 136 93 0.2003 6 28.21 52.96
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Fig. 19 Validation prediction results for the top four networks on the DOE machining testing: a network 1; b network 2; c network 3; d network 4
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Fig. 20 Digital twin framework user interface during real-time machining testing
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Fig. 21 Prediction results for the top four networks on the real-time machining testing

Table 5 Prediction RMSE results
for the top four networks on the
real-time machining testing

Network No Real-time testing RMSE (µm)

1 119.3621

2 145.3745

3 165.8503

4 171.4894

Conclusions

The current paper investigated the development and imple-

mentation of a digital twin framework for intelligent real-

time tool wear prediction in a machining process. The key

findings of this study are as follows:

• The deep learning models, optimised using Bayesian opti-

misation, demonstrated the ability to accurately predict

tool wear based on sensor data from the DOE machining

tests with RMSE values as low as 33.17 µm.

• The real-time implementation of the digital twin frame-

work on a new machining test validated its functionality

in practical scenarios by yielding a prediction RMSE of

119.36 µm.

• The observed discrepancies between predicted and mea-

sured wear in the real-time testing highlighted the chal-

lenges associated with real-world sensor noise and poten-

tial variations in the machining process compared to
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controlled environments. However, the predictions closely

followed the overall wear trend, including capturing the

inflection point of rapid wear increase.

• The novel digital twin framework demonstrates its poten-

tial for online tool wear monitoring with the ability to

process live sensor data, generate real-time wear predic-

tions, and update its internal state based on the latest

information.

• Future work of this research should explore other DL mod-

els to enhance the digital twin framework’s capabilities.

T. Similarly, further data collection could also improve

the generalisability of the DL models and their robust-

ness to real-world variations. Additionally, incorporating

a continuous wear monitoring element through an in-situ

inspection system would enable tool wear verification. and

continuous learning.
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