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Abstract

Human-artificial intelligence collaboration (CAIT) presents considerable opportunities for
optimising supply chain outcomes. Nonetheless, it poses numerous ethical, technological, and
organisational obstacles that could impede its efficacy. This study contends that responsible
AI (RAI) systems can function as a conduit between CAIT and supply chain outcomes
to tackle these challenges. Accordingly, we leveraged the resource-based view (RBV) and
socio-technical system (STS) theoretical lenses to analyse the mediating role of RAI in the
relationship between CAIT and two supply chain outcomes (supply chain wellbeing (SCWB)
and sustainable business performance (SBP)). The suggested model was evaluated using PLS-
SEM on survey data from 301 supply chain managers in the UK. Our analysed data revealed a
statistically insignificant relationship between CAIT and supply chain outcomes (SCWB and
SBP). However, the mediating role of RAI was confirmed. The findings suggest that CAIT is
merely a component of a supply chain’s capacity to produce intrinsic resources, rather than
a universal solution. To harness the dividends of human-AI collaboration involves designing
boundaries, aligning CAIT to supply chain goals and integrating ethical and transparent
strategies. Our findings contribute to the discourse on AI use in supply chain literature by
showing that CAIT can influence supply chain outcomes by bridging ethical, operational and
technological gaps while fostering trust and efficiency.
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1 Introduction

Due to increased and unpredictable disruptions, SCWB as a multifaceted and dynamic con-
cept offers a comprehensive approach to managing supply chains (SC) (Vann Yaroson, 2024).
It measures the overall health of the SC and encompasses the simultaneous building of
resilience, navigating physical, emotional and social factors, incorporating external eco-
nomic factors, and managing global supplier networks. Sustainable business performance
(SBP) on the other hand requires a firm to integrate sustainability’s societal, environmental,
and economic values (Kamble et al., 2020) for competitive advantage. These multidimen-
sional constructs are inherently complex supply chain (SC) outcomes that require addressing
competitive priorities which may be challenging to manage.

Artificial intelligence (AI), defined as a form of machine intelligence that can learn and
adapt to various scenarios (Abedin et al., 2022), has emerged as a critical resource that may
foster SC outcomes through its predictive and analytical capabilities (Queiroz et al., 2021a).
It stems from the technology’s ability to analyse rich datasets for effective decision-making.
Data-driven businesses and SC firms have begun using AI-related technologies for effective
decision-making, to gain competitive advantages, and to build resilience (Belhadi et al., 2021).
For instance, Amazon has leveraged AI-powered predictive forecasting to address unprece-
dented demand, while UPS uses its AI-driven algorithm, ORION, to track and optimise
last-mile delivery (Chawla, 2024). A survey by McKinsey (Chui et al., 2022) demonstrated
that AI-powered SC facilitated inventory management processes by 65% and reduced costs
related to logistics by about 15%. Similarly, Gartner (2024) predicted a 40% compound
growth in AI-related investment between 2018 and 2024 as firms expect increased automa-
tion integration in their SC processes. AI, thus, improves SC operations and sustainability
practices by harnessing existing resources and building collaborative processes.

Nonetheless, a common association exists between AI-powered technologies and issues
such as data transparency, discrimination, algorithmic output interpretability (Mikalef et al.,
2022), bias, and the potential to maliciously exploit AI (Arrieta et al., 2020). An impor-
tant concern arises from the potential bias of AI algorithms, which may generate unfair
results based on historical data (Charlwood & Guenole, 2022). AI-driven supplier selection,
for example, may overlook risk-prone suppliers or make biased decisions based on histor-
ical data. Additionally, the ethical implications of AI-related technologies complicate the
enforcement of regulations and accountability (Ashok et al., 2022). For instance, a survey
by Secondmind (2024) showed that over 80% of US SC decision-makers have been left
frustrated by AI-powered tools when employed during a disruption. This is especially true
when it comes to SC’s decision-making capabilities (Munoko et al., 2020). Hence, the use
of AI-related technologies for decision-making may result in bias, which may lead to inade-
quate understanding of the environment, ineffective risk management techniques, or flawed
supplier selection processes. These challenges have raised concerns about the efficacy and
potential integration of AI-powered technologies into managing SC outcomes. It also implies
that managing AI-related technologies transcends engineering design and algorithmic poten-
tial to include societal and political concerns.

Scholars have alluded to the importance of human-AI collaborative strategies (CAIT) in
strengthening AI use for successful business outcomes (Jiang et al., 2023). CAIT refers to
the process of developing socio-technical systems in which humans and AI collaborate in
a mutually beneficial manner (Loske & Klumpp, 2021). It transcends human-AI interaction
to involve goal congruence, proactive task management and strategic alignment in tracking
progress. CAIT’s core premise lies in the social interactions between human judgement and
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emotional intelligence with AI systems’ computational power to mitigate any associated risks
(Simon et al., 2024). This unique synergy of human agents and AI enhances productivity,
decision-making and innovation across SCs. Several challenges inhibit CAIT design and may
affect performance (Johnson & Vera, 2019). These include information asymmetry, deciding
the boundaries of human and AI responsibilities, distrust of AI systems by humans, especially
with limited transparency, absence of skills and training, and the perpetuation of bias by AI
systems if training data is flawed (Petrescu & Krishen, 2023). This has led to calls for best
practice recommendations, particularly in making AI responsible for human-AI collaboration
for supply chain operations.

Making AI responsible (RAI) entails that AI tools operate ethically, fairly and accountably
(Mikalef & Gupta, 2021). The idea of RAI, while still in its infancy, is primarily intended to
help decision-makers understand the actions of an AI system, its output, and the principles that
underlie these outputs (Chowdhury et al., 2022a). The ability to obtain explanations for the
output that the AI system produces will lessen biases associated with SC operations (Modgil
et al., 2022). There are, however, fragmented approaches to the design and deployment of
RAI systems. While some studies suggest that tackling bias is key, others posit that it is
necessary to fundamentally alter the way RAI is approached to achieve successful business
outcomes using AI-powered systems (Felzmann et al., 2019). It thus implies that to achieve
SCWB and SBP using AI-powered systems, it is necessary to fundamentally alter the way
RAI systems are designed and deployed.

In this study, we advocate that CAIT strategies can leverage RAI systems to achieve
successful SC outcomes (SCWB and SBP). We also opine on the use of CAIT as a practical
approach to the design and deployment of RAI systems. These scenarios require integrating
employees’ knowledge and expertise with AI systems to significantly influence how an
organisation’s explainable and transparent AI systems are perceived (Kong et al., 2023).
There is still limited empirical understanding of the mechanisms through which human-AI
collaborative strategies create successful business outcomes. The paucity of studies in this
direction has resulted in a lack of understanding about the potential of human-AI collaboration
and leaves practitioners in uncharted waters when faced with such applications in their supply
chains. To obtain any meaningful theoretical and practical implications and identify critical
future research agendas, it is pertinent to understand how human-AI collaborative strategies
result in successful business outcomes (Toorajipour et al., 2021). Building on the concept of
CAIT, this study aims to answer two closely related research questions:

(1) Does human-AI collaboration result in enhanced SC outcomes (SCWB and SBP)?
(2) If so, do human-AI collaborative strategies enhance the relationship between CAIT and

SC outcomes through their effect on RAI?

To answer these questions, we ground our study theoretically on the resource-based view
(RBV) and socio-technical systems theory (STS). Our aim is to address this knowledge gap
and advance SC literature by drawing on existing studies that suggest a potential value genera-
tion that involves the use of human-AI strategies (Chowdhury et al., 2022a). Additionally, we
investigate the mediating function of RAI predicated on the idea that the use of AI systems in
SC operations requires that they be ethical, transparent and aligned with human values. Also,
by investigating the mediating function of RAI, we confirm the potential of human-centred
approaches in strengthening RAI principles through contextual understanding and human
judgement. The contribution of this study is twofold. Primarily, it shows the direct impact of
CAIT on the identification of human values in RAI design. The results enrich both AI and
STS literature by empirically confirming that firms’ intrinsic resources and socio-technical
interactions to effectively deploy human-AI strategies may favour RAI systems. Secondly,
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our study contributes to SC literature by demonstrating that CAIT impacts SCWB and SBP
indirectly by stimulating SCs to proactively combine the efficiency, data processing capa-
bilities and predictive power of AI with human creativity, ethical judgement and strategic
decision-making.

An overview of the paper is provided in this section. Section 2 presents the literature
review, followed by the theoretical foundation, hypotheses, and conceptualisation of the
study, followed in Sect. 3. The study’s methodological approach and findings are presented
in Sects. 4 and 5, respectively. We discuss the results and their implications in Sect. 5. The
conclusions and limitations of the study are outlined in Sect. 6.

2 Literature review

This section explores the literature on human-AI collaborative strategies (CAIT) (2.1), supply
chain well-being (SCWB) (2.2), sustainable business performance (SBP) (2.3), and (2.4) the
mediating role of responsible AI and the integrated RBV and STS theories to explain the link
between these ideas (2.5).

2.1 Human-AI collaborative strategies (CAIT)

CAIT describes the process of developing socio-technical systems in which humans and AI
collaborate in a mutually beneficial manner to achieve desired outcomes (Loske & Klumpp,
2021). It transcends human-AI interaction to involve goal congruence, proactive task man-
agement and strategic alignment in tracking progress (Haresamudram et al., 2023). CAIT
is exhibited when interactions between humans and machines are concise and devoid of
manipulation. By combining human judgement and emotional intelligence with AI-powered
systems’ computational power, advocates of CAIT believe that the associated risks and lim-
itations of AI use are mitigated (Kong et al., 2023). An example of human-AI collaborative
efforts is Swarm AI, based on the swarm intelligence found in biological systems that supports
faster decision-making (Metcalf et al., 2019). Swarm AI has demonstrated better predictions
than machine learning predictions as its AI algorithms are trained on identified behaviour,
and individuals’ application of tacit knowldge to AI algorithms and decisions (Jarrahi et al.,
2023). Thus, the unique synergy of humans and AI is expected to enhance productivity,
decision-making and innovation across SCs.

For successful business outcomes, some authors emphasise the need to accurately design
the AI pipeline to achieve CAIT (Thakkar, 2024). Others categorise CAIT as a subcate-
gory of human-AI transparency (Felzmann et al., 2019), which includes the interactions and
overlapping of AI system transparency and user transparency as presented in Fig. 1. In this
regard, transparency of AI systems involves bidirectional open access and explanations of
algorithmic models between systems and stakeholders (designer, regulatory and user). User
transparency includes norms and morals that directly or indirectly shape AI use and the under-
lying regulations framing (Haresamudram et al., 2023). Human-AI collaborative strategies,
thus, involve strategically and effectively harnessing these elements of AI’s ecosystem, a
process that is still evasive in the literature.

That notwithstanding, CAIT is based on three principles, which include the demand for
the collective efforts of humans and AI systems; open and cooperative action involving
all stakeholders; and non-manipulative and openly available information. These principles
suggest that AI system creators have a latent influence on AI itself and that social norms

123



Annals of Operations Research

Fig.1 CAIT and AI transparency subcategories

have an indirect impact on user behaviour. In addition, collaborative strategies for human-
AI interactions, therefore, are dependent on collaborators’ mobilised resources, available
technology and technical expertise to ensure that AI systems function well within a con-
sortium (Flyverbom, 2016). Also, to attain the intended outcomes, it is necessary to have
improved governance and oversight (Flyverbom et al., 2015). It therefore positions CAIT
as an intrinsic resource and a socio-technical system, distinguishing it from existing con-
siderations of human-AI interactions and demonstrating its bi-directional, multipartite and
collaboration-focused features.

2.2 Supply chain outcomes (SCWB and SBP)

Supply chain well-being (SCWB) is a comprehensive approach to assessing the overall
health of a SC. Its focus is on achieving a balance between operational excellence and ethical
consideration of all SC stakeholders (Vann Yaroson et al., 2024). SCWB’s fundamental
elements include the economic performance of the focus firm and its surroundings, due
diligence, risk and resilience, supplier relationships, employee satisfaction and sustainability.
It concerns SC performance (Mishra et al., 2022) with emphasis on structures erected to curb
human rights issues (Wenzel et al., 2019), due diligence (Verma et al., 2023), resources
conservation, external economic influences (Mariados et al., 2016), and long-term supplier
relationships (Wang & Zhao, 2023). The interaction of these components facilitates the
effective functioning of a SC while taking into account the ethical, physiological, and physical
welfare of its supply chain partners. SCWB reflects the emerging recognition of SCs as
ecosystems of human and ecological interactions (Wieland, 2021).

Tenets of SCWB opine that its comprehensive approach addresses issues of trade-offs
where managers must prioritise specific elements of their SC (Negri et al., 2022). For example,
some managers focus on building resilience and viability (Ivanov et al., 2021), others on
sustainability (Govindan et al., 2020), while others focus on SC partnerships (Dahlmann
et al., 2019). Efficiency in some parts of the SC often leads to trade-offs and does not denote
SCWB. A resilient SC with poor sustainable practices and a failing economic environment
may threaten its well-being. Thus, SCWB follows the survivability agenda of Ivanov (2022),
which advocates for an integrated approach to SC operations and extends existing studies
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that have examined these vital factors individually (Jabbarzadeh et al., 2018). Given this, we
argue for SCWB to facilitate effective SC management practices.

Similarly, sustainable business performance (SBP) is a multidimensional concept that
involves a firm’s ability to integrate sustainability’s societal, environmental, and economic
values (Chung et al., 2021). It focuses on organisations’ ability to offer products and services
profitably while ensuring business continuity with minimal environmental and societal harm
(Gong et al., 2018). Due to stakeholders’ growing interest in environmental preservation and
quality of life, firms attempt to integrate sustainability practices in their decision-making
frameworks for competitive advantage (Fernando et al., 2019). The societal dimension
focuses on the firm’s reputation and long-term relationship with its stakeholders (Sharma
et al., 2020), including fulfilling the needs of its employees, customers, and the public.
The economic dimension of sustainability aims at improving a firm’s financial performance
relative to competitors (Khan et al., 2021). The environmental side seeks to minimise harm-
ful ecological effects, including waste reduction and carbon emissions (Chowdhury et al.,
2022b).

Managing these SC outcomes may be challenging. For instance, ensuring consistency in
SCWB practices across diverse suppliers and SC partners spanning multiple countries with
diverse cultural, legal and regulatory standards may be difficult. In SBP, goal alignment may
be problematic as firms are required to balance their short-term profitability goals with long-
term sustainability objectives. For instance, profit margins and cost pressures may conflict
with investments in sustainability initiatives which may lead to trade-offs that are challenging
to navigate. Measurement and accountability present challenges, as SCWB and SBP (Mio
et al., 2022) may not be readily quantifiable, complicating the progress tracking and the
enforcement of standards. These elements collectively render SCWB and SBP concepts that
require substantial resources, dedication, and strategic alignment for effective management.

AI-powered models have been suggested as effective in managing SC networks (Zamani
et al., 2022), SBP (Ghobakhloo et al., 2021; Naz et al., 2021), supply chain resilience (Modgil
et al., 2022), and well-being (Vann Yaroson et al., 2024). However, the negative connotations
of AI use, including the lack of transparency in its design and deployment, have resulted in
stakeholders feeling cautious and sceptical. The absence of transparency can diminish the
visibility of suppliers’ operations, heighten risks by obscuring the understanding of opera-
tional processes, give rise to trust concerns, and present challenges in meeting compliance
requirements. The concept of CAIT is expected to address these shortcomings by highlight-
ing the importance of collaborative strategies between humans and AI systems that increase
transparency through building RAI systems. The limited availability of empirical research
on CAIT and SC outcomes presents an underlying motivation for our study.

2.3 Responsible artificial intelligence (RAI)

Responsible AI (RAI) is the idea that ethical, moral, and societal principles should be consid-
ered when designing and using AI-related technologies. Emerging as a solution to associated
AI challenges (Constantinescu et al., 2021), RAI offers several elements to developing safe
and trustworthy AI systems (Mikalef et al., 2022), including explainability (Arrieta et al.,
2020), accountability (Raja et al., 2023), and fairness (John-Mathews et al., 2022). Although
these approaches offer practical guidance for RAI design, their fragmented nature presents
a quagmire for AI users. There have been calls for a more holistic approach to RAI design
and deployment (Dignum, 2019). To this end, the Alan Turing Institute published a report
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proposing a set of ethical principles (fairness, accountability, sustainability, and transparency)
referred to as the FAST model (Leslie et al. 2019) as a practical approach to achieving RAI.

In the design of RAI from a holistic perspective, each principle addresses certain aspects of
the ethical dilemma of AI. AI accountability addresses the associated dangers of creating and
making decisions that are unjustifiable and/or illegitimate (Arrieta et al., 2020). It focuses on
the justification of intentions, motives, and rationales for AI decisions (Mikalef et al., 2021;
2022). AI accountability strongly relates to AI systems’ interpretability and the ability to
monitor decision-making processes from the black box system (Wieringa, 2020). Here, the
public helps identify, interpret, and evaluate the behaviour of an AI system. It implies that
the design and deployment of AI-related technologies should be continuously accessible,
recorded, analysed, and monitored using a defined protocol (Leslie, 2019). The principle of
AI fairness focuses on reducing unfair consequences, user discrimination, and misjudgement
of specific user groups using algorithms and data in operations (Memarian & Doleck, 2023).
Non-discrimination forms the bedrock for AI fairness (John-Mathews et al., 2022). The
sustainability context of RAI pertains to incorporating environmental, societal, and individual
considerations into the design and deployment of an AI system. This is done to minimise any
negative impact on these aspects of sustainability dimensions that support and promote the
long-term welfare and goals of users (Larsson et al., 2021).

Despite the agitation for the design and deployment of RAI systems, there is less informa-
tion available on their implementation and use in SC operations. For instance, it is unclear how
incorporating fairness into an AI system specifically addresses biases in supplier selection
or enhances interpretability for decision-making in SCs. Therefore, this study proposes that
incorporating collaborative techniques into human-AI interactions is an essential resource
for the design and implementation of RAI systems. This, in turn, helps achieve the aims of
SC outcomes, including SCWB and SBP. In line with the RBV and STS theories, this study
suggests that CAIT, as an organisation’s intrinsic resource, leads to favourable SC outcomes.
However, human–machine socio-technical interactions that result in a holistic deployment of
RAI (fairness, accountability, and sustainability) mediate these relationships. Sociotechnical
interactions are essential for human and AI systems to work well together. These interac-
tions create holistic RAI systems that support organisations in achieving their goals, such as
SCWB and SBP.

2.4 Theoretical lens

Our theoretical framework is predicated on the ideas of social-technical systems (STS) and
the resource-based view (RBV). RBV, as a theoretical framework, explains how firms use
their resources to achieve competitive advantage and maintain integrity in various environ-
ments (Barney, 1991). The underlying notion is that a firm’s competitive edge is dependent
on its unique tangible and/or intangible assets, often characterised as valuable, scarce, inim-
itable, and non-substitutable (Collis & Montgomery, 2008). From this perspective, a firm’s
ability to efficiently leverage these resources can be a source of significant business value.
In essence, resources are the inputs that facilitate a firm’s transformation process to achieve
favourable outcomes (Madhani, 2010). Human-AI collaborative strategies are considered
unique resources that organisations need to understand for effective implementation due to
their processing capabilities (Chowdhury et al., 2023). Nevertheless, merely implementing
these technologies in business operations does not guarantee that firms and SCs will gain a
competitive edge. For resources to translate to competitive advantage, they must be effectively
harnessed. A firm’s socio-technical capital is distinctive, based on organisational dynamics,
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culture, and human practices materialised through technologies. The ability to strategically
harness human-AI collaborative interactions to achieve business outcomes demonstrates
CAIT as an intrinsic resource (Haresamudram et al., 2023). Developing these strategies
is complex and requires a significant commitment from all involved stakeholders to maintain
mutually beneficial outcomes. As such, CAIT represents an inimitable and non-substitutable
combination of human, cultural, and knowledge resources that are unique, rare, and non-
substitutable for an organisation. It also suggests that as technologies evolve, businesses that
embrace human-AI collaboration will be better positioned to navigate future challenges and
capture new opportunities. CAIT has been studied in nexus requiring satisfactory business
outcomes, including employee well-being (Chowdhury et al., 2023), organisational perfor-
mance (Przegalinska et al., 2025), sustainable business performance (Bag et al., 2021) and
SC operations (Loske & Klumpp, 2021). While CAIT itself is considered a resource, it is not
inherently a source of competitive advantage until it has been effectively harnessed to a capa-
bility. By effectively leveraging the design of human-AI collaborative strategies, this resource
can be transformed into a valuable capability that drives sustainable business outcomes.

STS theory, as posited by Applebaum (1997), explains how societal elements (users,
decision-makers, designers, and regulators), technical systems (technological resources)
and technology-driven processes are connected to achieve intended business outcomes. The
objective is to strategically harness the benefits of collaborating with humans and machines
for competitive advantage and business performance. Extant literature considers human-AI
collaboration a socio-technical system (STS) (Chowdhury et al., 2022a), which posits that
humans collaborate with technologies to eliminate obstacles (Przegalinska et al., 2025). This
collaboration occurs not only through interactions between AI systems and users but also
between AI and its developers, regulators, and business owners (Fig. 1). In our study, we
portray CAIT as a collaborative process that involves the socio-technical interaction between
systems, their developers, and end users. It is not limited to a narrow perspective but includes
broader stakeholder interactions. We examine how humans and systems function as STSs
to provide complete and accurate information (Larsson & Heintz, 2020). STSs also play a
crucial role in enhancing RAI, which is an important aspect of human-AI collaboration in
creating valuable business outcomes (SBP and SCWB) (Ananny & Crawford, 2018).

Therefore, our narrative advocates for using STS theory to frame CAIT as a socio-technical
partnership between humans and AI systems to promote responsible AI (RAI). This includes
measures of AI accountability, fairness, and sustainability. We empirically test CAIT as a
socio-technical intrinsic resource that facilitates holistic approaches to designing and deploy-
ing RAI (accountability, fairness, and sustainability) to achieve favourable business outcomes
(SBP and SCWB).

2.5 Knowledge gaps

Current scholarship suggests that collaboration between humans and AI systems can yield
favourable business outcomes, such as increased efficiency, improved responsiveness, and
enhanced decision-making (Chowdhury et al., 2022a). However, these intersections are still
emerging, which present several knowledge gaps. For instance, the boundary-spanning AI-
driven decision-making and human roles in SC operations remain scarce in the literature
(Hermann and Huang, 2020). It is also unclear how biases in AI algorithms influence SC
decisions and affect human well-being, as algorithms have not been developed to assist
collaborative processes. This may invariably suggest that CAIT is an emerging theme in SC
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management literature that requires both theoretical and empirical investigations to better
understand the elements that influence these symbiotic linkages in SC operations.

Further, the literature has progressed from exploring AI adoption propensity by stake-
holders and its accrued dividends in SC operations to understanding how to successfully
implement these technologies (Tsolakis et al., 2023). There has also been a growth in lit-
erature on the associated ethical implications of human-AI collaborative strategies (Boni,
2021). Thus, highlighting the importance of CAIT (human intuition and judgement and AI-
powered analytical tools) for favourable business outcomes. However, there is a paucity of
empirical evidence to support the implementation process and how these factors address
AI strategy. There is also a lack of theoretically grounded research models and frameworks
to understand human-AI collaborative strategies in SC operations. Theoretical foundations,
supported by empirical studies involving SC managers, can offer insights into pertinent key
areas required to formulate strategic initiatives aimed at achieving desired business outcomes
when implementing CAIT.

Although existing studies on human-AI collaboration have considered CAIT as a socio-
technical system, empirical examination of this strategy as an intrinsic resource is limited.
Intrinsic resources in the context of establishing and understanding the combinatorial factors
of human-AI collaboration for successful business outcomes have not been acknowledged in
extant literature (Przegalinska et al., 2025). Our research builds upon the RBV and STS to
develop a model that examines the CAIT-SCWB and CAIT-SBP nexus as well as the medi-
ating function of RAI. The choice of integrating two theoretical lenses is deemed necessary
as it provides a holistic framework for addressing the technical, societal and organisational
dimensions of SCWB and SBP. The aim is not to only theorise CAIT as a socio-technical
system but also to develop unique insights about its impact (through RAI dimensions) on
SCWB and SBP. Our theoretical model will help us understand what capabilities are required
to strategies CAIT within organisations.

This study offers substantial contributions to Operations and Supply Chain Management
(OSCM) research in several key areas. First, we use RBV and STS theories to answer the call
on the importance of CAIT in solving SC-related challenges (Loske & Klumpp, 2021). Our
study responds to the call by Mikalef et al. (2022), who advocate for practical approaches
to the design and deployment of RAI. More specifically, we expand discussions around RAI
design and use for SC outcomes from a holistic perspective. A summary of constructs and
definitions is provided in Table 1.

3 Model development

The theoretical model developed in this study is rooted in the RBV and STS theoretical
lenses. The hypothesised relationships are provided in Fig. 2 and discussed in detail below.

3.1 CAIT and SC outcomes (SCWB and SBP)

Proponents of CAIT advocate for the combination of human creativity, ethical judgement and
contextual understanding with AI’s computational power may significantly enhance business
outcomes (Hermann and Huang, 2020). Defining CAIT from this perspective recognises the
addition of a new resource and undergoing an internal redesign of operational processes
(Saenz et al., 2020) which may affect team performance. From an RBV perspective, human
capital (intuition, ethical judgement and insights) and AI analytical tools are considered
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Table 1 Constructs and definitions of the conceptual research model

Construct Role Definition Source (s)

Human-AI collaborative strategy
(CAIT)

Independent
variable

Human-AI collaborative strategies refer to the process
of developing socio-technical systems in which
human agents and AI systems collaborate in a
mutually beneficial manner

Adapted from Kong et al. (2023)

AI accountability First-order
construct

AI accountability refers to the process of enabling the
user to identify, interpret and evaluate the behaviour
of an AI system

Adapted from Wieringa (2020)

AI fairness First-order
construct

AI fairness focuses on reducing unfair consequences,
discrimination, and misjudgement of a specific user
group using algorithms and data in operations.
Non-discrimination forms the bedrock for AI fairness

Adapted from Memarian and Doleck (2023)

AI sustainability First-order
construct

AI sustainability refers to the integration of
environmental, social, and individual factors into the
development, design and interactions offered by an
AI system

Adapted from Bjorlo et al. (2021)

Supply chain well-being (SCWB) Outcome Supply chain well-being (SCWB) is defined as the
comprehensive approach to a SC’s overall health.
The emphasis is on the balance between operational
excellence and the responsible treatment of all
stakeholders

El-Baz and Ruel (2021); Gu et al. (2021); Queiroz
et al. (2021a and 2021b); Wamba and Queiroz
(2021); Wieland and Durach (2021); Vann
Yaroson et al. (2024)

Sustainable business performance Outcome A holistic view of sustainability dimensions, including
business, economic and environmental to facilitate
business performance

Epstein and Roy (2003); Dey et al. (2020) and
(2019); Saha et al. (2022); Vann Yaroson et al.
(2024); Gupta et al. (2021)

Responsible AI (RAI) Mediating
variable

Responsible AI refers to the holistic approach of
integrating ethical, moral and societal principles in
the design and use of AI-related technologies

Second-order construct

1
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Fig. 2 The proposed research framework

critical resources for desired (Barney, 1991). Similarly, the ability to successfully combine
and transform these resources to achieve the desired outcomes is rare. It implies that for
CAIT, SC managers must possess the knowledge, skills and experience to effectively use AI
technology that facilitates its integration with other SC operations (Davenport & Ronanki,
2018) and adapt to changes induced by AI technology.

Traditionally, the use of AI in SCs involves processing large quantities of real-time
inventory-level data for accurate demand forecasting and strategic procurement (Toorajipour
et al., 2021). Challenges may arise from the inability to successfully integrate human and AI
systems due to misalignment of processes, boundary issues, organisational culture, lack of
interoperable systems, and insufficient training and expertise (Loske & Klumpp, 2021). For
example, in demand forecasting, Nair and Saenz (2024) argued that the degree of involve-
ment of agents in CAIT differed by product characteristics. Where fast moving products
with limited historical data may require higher human intuition than highly volatile prod-
ucts. Simon et al. (2024) showed that terms of interoperability including setting objectives,
clarifying roles, negotiating responsibilities and coordinating mechanisms for effective col-
laboration were pertinent in CAIT. These highlights understanding boundary constraints, and
the flexibility required for CAIT.

In SCWB, however, the focus differs. The scope transcends optimising processes to
addressing ethical practices, improving workforce development and long-term stability. Thus,
the intuition and ethical judgement of SC managers in these scenarios encompass social and
ethical considerations that support informed decision-making (Charles et al., 2023). These
in turn contribute to efficiency, cost reductions and value creation. Thus, our study contends
that CAIT is an intrinsic resource necessary for organisations to achieve competitive advan-
tage. These intrinsic resources include the skills, expertise, and capabilities of human agents
interacting with AI systems. Similarly, the resources employed to develop CAITs contribute
to building socio-technical capabilities for the design and deployment of RAI for successful
business outcomes. In response, we argue that collaborative strategies that enhance human-
AI interactions can overcome these challenges and improve business outcomes. Hence, we
propose the hypothesis:
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HI SCs that possess human-AI collaborative strategies and can effectively integrate them

into business operations will achieve supply chain well-being.

AI-powered technology capabilities have been documented to facilitate endeavours that
contribute to the preservation of environmental resources, including low-carbon management
(Roux et al., 2023); greener transport networks (Song et al., 2021); and weather forecasting
(Cardil et al., 2019). Integrating human-AI dimensions into the decision-making regarding
sustainability provides opportunities and insights that help firms improve sustainability prac-
tices (Kar et al., 2022). For instance, the actionable insights provided by AI may provide
inspiration for innovative, sustainable business practices, including innovative products and
services and business model innovation (Di Mattia et al. 2008). Actions towards attaining
innovative business models may enhance employee skills and attitudes towards sustainabil-
ity, which may in turn enhance sustainability performance. These successes are dependent
on the successful design, deployment and integration of human agents and AI systems col-
laborative strategies. As such, AI system design must extend beyond analysing patterns and
trends to understanding sustainability drives and goals within the framing of human intuitions
and judgements. SC firms that adopt human-AI collaborative strategies and integrate them
effectively into their operations can achieve long-term sustainable business performance.
It highlights the importance of synergy between human intelligence and AI in the modern
business environment.

H2 SC firms that possess human-AI collaborative strategies and can effectively integrate

them into business operations will achieve sustainable business performance.

3.2 CAIT and RAI

RAI requires holistic integration (accountability, fairness and sustainability) in its design
and implementation (Dignum, 2019). However, understanding the process involved remains
inconclusive in the existing literature. Primarily, researchers highlight the need for trans-
parency in all dimensions. AI accountability, for instance, is achieved through making
algorithms accountable (Busuioc, 2020). Here, algorithmic transparency is believed to
facilitate accountability as users and policymakers investigate the reasons behind AI decision-
making. Wachter et al. (2017) and Busuioc (2020) demonstrated that AI accountability
depends on the transparency of algorithmic models transmitted to users. Other studies argue
that transparency in process development is critical (Vythilingam et al., 2022).

The contention is that AI system designers are responsible for creating accountable pro-
cesses and that their transparency supports AI accountability. For instance, Vythilingam et al.
(2022) showed that AI users’ refusal to disclose personal information about past unethical
behaviour and emotions to an AI system adversely affected the development process. Yet,
some studies view AI transparency and accountability as interrelated factors (Ahmad et al.,
2020; Sharma et al., 2022a), a source of trust (Shin, 2023) and demonstrate the convergence
of the two concepts. Overall, hidden biases can undermine the accountability of AI inter-
actions, and mitigating this issue requires transparency from humans and AI system design
(Berscheid & Roewer-Despres, 2019).

Similarly, AI fairness as a dimension of RAI emphasises transparency as critical in deploy-
ing AI fairness (Claure et al., 2022) to address potential harm and discriminatory bias that
may arise from human-AI collaboration. Zhang et al. (2020) highlighted the importance of
policymakers in clearly defining users’ social, normative, and legal boundaries through iter-
ative and interactive processes for AI fairness. Other studies support human collaboration
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(Ruf & Detyniecki, 2021). In this context, the authors argue that limiting AI fairness to com-
putational and algorithmic issues is inadequate as it does not address the dialogue or trust
between designers and machines (Saeed & Omlin, 2023). Therefore, AI fairness necessitates
transparent user feedback through collaborative strategies for human-AI interactions. CAIT
emphasises human-AI interaction through strategies that promote transparency, leading to
a shared understanding of perceived fairness (McEneaney, 2013). We hypothesise that the
deployment of AI fairness is influenced by the collaborative strategies of human-AI interac-
tions.

AI sustainability depends on the ability of AI systems to integrate societal and environmen-
tal factors into their design and implementation. Additionally, it provides proactive guidance
to consumers regarding sustainable efforts through AI interactions (Van Wynsberghe, 2021).
These skills depend on the transparency of AI systems, as academics suggest that the absence
of open and honest interactions among firms impedes the creation of sustainable AI (Osifo,
2023). Some studies argue that openness between AI systems and their users is essential
for AI sustainability (Sanders et al., 2019). Encouraging the development of sustainable AI
systems requires a link between a firm’s governance transparency and the transparency of its
AI systems (Al Shamsi et al., 2020). Others believe that ethics and transparency necessary for
AI sustainability result from the joint effort of AI creators and users, necessitating long-term
commitment and trust from human agents to AI systems (Bedué & Fritzsche, 2022; Khakurel
et al., 2018). However, these claims have not been fully substantiated in the literature. There-
fore, this study proposes that the use of collaborative approaches that enhance human-AI
transparency can establish ethical principles that foster the development of more sustainable
AI systems. Therefore, we argue that open and collaborative strategies that facilitate coop-
eration between humans and AI significantly influence the design and deployment of RAI
systems.

H3 Human-AI collaboration, when structured as a socio-technical system, statistically sig-

nificantly enhances responsible AI outcomes.

3.3 Themediating role of responsible AI (RAI)

Integrating accountability, fairness and sustainability elements of RAI in the design and
deployment of AI systems has been suggested to address the associated AI challenges and
thus enhance SC outcomes. AI accountability, for instance, through effective monitoring
and auditing, leading to streamlined operations will ensure that AI systems adhere to regu-
latory standards, thereby avoiding legal complications and penalties (Mikalef et al., 2022).
Non-discriminatory harm as a minimum standard of fairness (Leslie et al., 2019) addresses
biases and facilitates secure procurement by ethically connecting and working with suppliers
(Sanders et al., 2019; Wang et al., 2022). This approach mitigates discrimination or unfair
impacts on their stakeholders and effectively establishes confidence between SC focal firms
and their stakeholders, mitigates risks, and promotes sustainable business performance (Wu
et al., 2024). It implies that AI fairness ensures non-discrimination in decisions related to
stakeholder selection and permits a fair breakdown of stakeholders. Stakeholders who feel
aggrieved by a failure to comply with this non-discriminatory principle could file lawsuits,
which may economically penalise the organisation. Following Malesios et al. (2020) model,
AI fairness is a sustainable practice that contributes to the SC outcomes.

RAI also focuses on the impact of AI systems on individuals and society from a more
sustainable perspective (Sharma et al., 2022b). This is done to minimise any negative impact
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that supports and promotes the long-term welfare and goals of users (Larsson et al., 2021).
In SC outcomes, AI-related systems have been used to enhance the speed, accuracy and
efficiency in designing and sourcing sustainable products as well as adapting to customers’
real-time needs (Sanders et al., 2019; Wamba et al., 2020; Hallikas et al., 2021; Saha et al.,
2022). However, there is less focus on how AI systems can impact workers’ health and safety,
stability and survivability of SCs.

As such we contend that with RAI as a bridge between CAIT and SC outcomes, human-AI
integration that adheres to human values, regulatory requirements, and ethical principles will
be enhanced. RAI also enhances the impact of CAIT on SC outcomes by proactively build-
ing trust through transparent decision-making, facilitating explainability, increasing trust
and enhancing collaborations. The mediating role of RAI may human agents to view AI
collaborators as teammates and/or tools rather than as threats (Herrmann and Huang, 2020).
RAI therefore bridges the gap between AI-powered technical capabilities and human-driven
socio-organisational goals enabling SC outcomes. These connections, however, have not
been extensively studied in the current OSCM literature.

H4a Responsible AI (RAI) mediates the link between human-AI collaboration and supply

chain well-being by fostering effective socio-technical system alignment.

H4b Responsible AI (RAI) mediates the link between human-AI collaboration and sustain-

able business performance by fostering effective socio-technical system alignment.

4 Methodology

4.1 Instrument development and design

This study examined the contribution of CAIT in enhancing SCWB and SBP mediated by
the holistic dimensions of RAI (fairness, accountability, and sustainability) using the RBV
and STS theories. A cross-sectional survey-based instrument (questionnaire) was developed
from the existing literature to identify the appropriate constructs and test the hypothesised
model. The initial questionnaire was piloted among ten SC experts in the UK to assess the
questionnaire’s face validity, identify wording and formatting ambiguity, and determine if the
constructs realistically reflected concerns in the industry about RAI (Saunders et al., 2019).
Repetitive and unclear wordings were removed or changed, and new items were added. This
was in line with experts’ recommendations.

Respondents who completed the survey needed to be knowledgeable about the investigated
phenomenon (Bryman et al., 2019). As such, respondents had to meet a set of recruitment
criteria, including (1) frequency of technology use at work, (2) managerial capacity for
decision-making within the UK’s operations and supply chain management, and (3) aware-
ness of AI systems and their implications for competitive advantage in SCs (see Sect. 4.2.).
Purposive sampling, a non-probability sampling technique, was considered appropriate for
determining the sample size (Saunders et al., 2019). This technique ensured that anyone
identified as matching the recruitment criteria was invited to participate in the study using
the Prolific (www.prolific.com) survey recruitment platform. The survey questionnaire was
hosted on Qualtrics, a web-link survey. Ethics approval was obtained from the Toulouse
Business School (TBS).

The scales for the various constructs were adopted from validated instruments in existing
literature. Appendix A provides a summary of the scales used, their descriptive statistics
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and the supporting literature. Five constructs—collaborative AI (CAIT), fairness, account-
ability, sustainability, sustainable business performance (SBP), and supply chain well-being
(SCWB)—were mobilised to test the hypothesised model. CAIT was measured using a four-
item scale adapted from Kong et al. (2023). Responsible artificial intelligence (RAI) was
measured as a Type II second-order construct (reflective first-order and formative second
order). Type II second-order construct provides a framework for researchers to model abstract
dimensions by specifying lower-order components (Hair et al., 2019). In this study, RAI is
composed of three lower-order constructs (AI accountability, fairness and sustainability).
The proposed model is consistent with the guidelines by Diamantopoulos and Winklhofer
(2001). It implies that the first-order constructs are theoretically distinct and contribute to the
second-order construct. A six-item scale measured SBP (Dey et al., 2020) and SCWB (Vann
Yaroson et al., 2024). The items within each construct were measured using a five-point Lik-
ert scale, where 5 indicated “strongly agree” and 1 indicated “strongly disagree”. A summary
is provided in Table 1. Firm size (turnover) and industry type were used as control variables
in this study. Industry types were controlled since they captured different conditions of the
environment that may influence a SCs design and deployment of AI systems.

4.2 Data collection

The UK’s SC was the empirical context of this research because of its AI advances and
initiatives to accelerate AI adoption. The government AI Readiness Index (Oxford Insights,
2022) ranked the UK third out of 181 countries in AI adoption after the USA and Singapore. It
was also imperative that the participants were directly engaged in AI implementation for SC
strategies and had knowledge of the subject matter (Bryman et al., 2019). Each participant
was expected to represent a focal firm and provide their perspective on the phenomenon
being studied. The questionnaire was administered through a web-link survey sent via email
to participants across several industries in the UK’s SC. It included additional information
on research intent, consent, and assurance of confidentiality.

We obtained 301 usable responses. The demographic characteristics indicated that over
50% of the respondents held either operations or production managerial roles and decision-
making responsibilities. The size of the firms represented in the study varied from medium-
sized firms (8.30%) to large corporations (61.8%). The majority of the respondents (57.8%)
worked in the service industry, 10.3% in health/pharmaceuticals, 9.96% in manufacturing,
8.97% in retail and wholesale, 5.64% in construction/mining, 4.65% in transportation, and
2.66% in food. A summary of the information is provided in Table 2. We used Harman’s
single-factor test (Harman, 1976) and the Variance Inflation Factor (VIF) criteria (Kock,
2015) as suggested by Queiroz et al. (2021b) and Podsakoff et al. (2003) to look for a
common method bias (CMB) and collinearity. The findings indicate the absence of CMB, as
the cumulative average for Harman’s test was 28.5% and the VIF values were below 4 (see
Appendix B).

4.3 Data analysis and findings

Partial least squares structural equation modelling (PLS-SEM) was used to analyse the data.
This was considered appropriate for our investigation based on the recommendations of
Wolf et al. (2013) and Sideridis et al. (2014) due to the complex nature of our model, which
required no prior assumptions. The study’s goal was predictability, which PLS-SEM provides
(Sarstedt et al., 2020). In addition, our statistical analysis demonstrated sampling adequacy,
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Table 2 Demographic
characteristics of responding
firms

Profile Sample (N = 301) Percentage
(%)

Gender

Male 180 59.8

Female 120 39.8

Prefer not to say 1 0.03

Respondent’s position

Operations/production
manager

153 50.8

Business strategist/executive 65 21.6

Other 42 13.9

Supply chain/logistics
manager

41 13.6

Firm size (Annual Turnover M, £)

< 20 25 8.3

20–50 21 6.97

50–150 21 6.97

151–250 11 3.65

251–400 18 5.98

401–600 19 6.31

> 600 186 61.8

Industry

Services 174 57.8

Health/pharmaceuticals 31 10.3

Manufacturing 30 9.96

Retail/wholesale 27 8.97

Construction/mining 17 5.64

Transportation 14 4.65

Food 8 2.66

as a sample size of 250 (fewer than 301) was required to achieve the desired statistical power.
A two-stage reflective formative approach was employed using a disjoint two-stage approach
(Becker et al., 2012), where the first stage considers only the lower-order components and
gets the later variable scores to form higher-order constructs (Sarstedt et al., 2020; Wetzels
et al., 2009).

4.3.1 Reliability and validation of measurement scales

We established the reliability and validity of the first-order constructs using the outer loadings,
Cronbach’s alpha score, and composite reliability. All the values were above the recom-
mended 0.60 threshold (Hair et al., 2019). The convergent validity of all the constructs was
above the threshold of 0.60, indicating a good fit of the measurement variables used for the
model. Discriminant validity was tested using Fornell and Larcker’s (1981) criteria and con-
firmed using Hair et al.’s (2019) recommendation. This meant that the AVE’s square root for
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the identified constructs was higher than the scores’ square root. The results are presented in
Table 3. The findings suggest that values exceeded the recommended 0.5 threshold, indicating
that all the constructs were reliable and valid.

Second-order constructs were validated using weights of the outer loading and variance
inflation factor (VIF). In line with recommendations by Hair et al., (2017), the findings show
that VIF values are below 3 as presented in Table 4. The Normed Fit Index (NFI) value was

Table 3 Assessment of reliability, convergent and discriminant validity of reflective constructs

(1) (2) (3) (4) (5) (6)

(1) ACCT n/a

(2) CAIT 0.591 n/a

(3) FAIR 0.627 0.735

(4) SBP 0.456 0.392 0.461

(5) SCWB 0.584 0.523 0.573 0.611

(6) SUST 0.698 0.722 0.829 0.491 0.602 n/a

AVE 0.729 0.545 0.666 0.535 0.507 0.576

Cronbach alpha 0.630 0.722 0.835 0.781 0.804 0.816

Composite reliability 0.843 0.827 0.888 0.851 0.860 0.872

Table 4 Second-order construct validation

Constructs Measures Weight VIF R2 Q2 Q2predict

Human-AI collaboration (CAIT) CAIT1 0.315 1.41

CAIT2 0.315 1.348

CAIT3 0.395 1.545

CAIT4 0.324 1.318

Supply chain well-being (SCWB) SCWB1 0.199 1.502 0.316 0.079 0.149

SCWB2 0.259 1.807 0.095

SCWB3 0.246 1.519 0.101

SCWB4 0.225 1.401 0.052

SCWB5 0.245 1.835 0.073

SCWB6 0.226 1.675 0.05

Sustainable business performance
(SBP)

SBP1 0.218 1.68 0.198 0.026 0.067

SBP2 0.316 2.021 0.025

SBP3 0.299 1.516 0.043

SBP5 0.28 1.384 0.036

SBP6 0.248 1.325 0.052

Responsible AI (RAI) ACCT 0.334 1.392 0.386 0.157 0.379

FAIR 0.425 2.037 0.332

SUS 0.423 2.139 0.307

Model fit (SRMR) 0.074
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0.725, following Bentler and Bonett’s recommendations from 1980, and the SRMR was 0.07
(Hu & Bentler, 1999), indicating that further evaluations of the model’s fit were adequate.

4.3.2 Structural model

We assessed the model’s in-sample explanatory power using R2 and its out-of-sample pre-
dictive relevance using RMSE and Q2 (Sarstedt et al., 2020). The significance of estimates
(t-values) is obtained by performing a bootstrap analysis with 10,000 replicates. The partial
least squares method structural equation modelling (PLS: PLS-SEM) was used to test our
theoretical framework and hypothesised relationships on SmartPLS. The structural paths and
the associated coefficients of the model are shown in Fig. 3 and Table 5. Our analysis revealed
a statistically insignificant effect between CAIT and SCWB (β = 0.096, t = 0.1454, p > 0.05)
or SBP (β = 0.031, t = 0.411, p > 0.05). Additionally, the link between RAI, supply chain
well-being (β = 0.480, t = 8.164, p > 0.05), and sustainability (β = 0.474, t = 7.622, p >

Fig. 3 Estimated relationships of structural model. Note: ***p < 0.001, **p < 0.01, *p < 0.05

Table 5 Hypothesis testing of structural paths

Hypothesis Structural paths β T statistics P values Outcome

H1 CAIT—> SCWB 0.096 1.454 0.146 Not supported

H2 CAIT—> SBP 0.031 0.411 0.681 Not supported

H3 CAIT—> RAI 0.622 15.675 0.000*** Supported

H4a RAI—> SBP 0.419 6.592 0.000*** Supported

H4b RAI—> SCWB 0.492 8.662 0.000*** Supported

Control Firm size—> SCWB − 0.044 0.987 0.324 Not supported

Control Firm size—> SBP 0.047 0.875 0.382 Not supported

Control Industry—> SCWB 0.073 1.54 0.124 Not supported

Control Industry—> SBP 0.012 0.202 0.84 Not supported

CAIT = human-AI collaboration, RAI = Responsible AI, SCWB = supply chain well-being, SBP = sustain-
able business performance, p < .01**
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0.05) is positive and statistically significant. The effect size (F2) was also examined to decide
the effect size. F2 allows us to evaluate the contribution of an exogenous construct to the
R2 of an endogenous latent variable. We also examined the influence of control variables
on SCWB and SBP. The results showed that the effect on firm size and industry type were
insignificant on the two outcomes.

4.3.3 Test for mediation

To examine the mediating role of responsible AI (RAI) on SCWB and SBP, a bootstrapping
approach is used (Preacher & Hayes, 2008). We used the parameter estimates from the
bootstrapping process in PLS on a resampling of 10,000 subsamples to calculate the standard
error of each mediating effect. The mediation path ratio was then calculated by dividing the
indirect effect by the total effect. In line with the recommendations by Sarstedt et al. (2019),
we first confirm the mediated paths (CAIT → RAI → SCWB and CAIT → RAI → SBP)
are significant by first including the direct paths (CAIT → SCWB and CAIT → SBP) in
the model. Our analysed data showed that both supply chain well-being (β = 0.096, t =

0, p > 0.05) and sustainable business performance (β = 0.031, t = 0.411, p > 0.05) were
non-significant, indicating full mediation. Confidence intervals greater than zero provided
further justification for our mediation analysis. In Table 6, the outcomes of the meditation
analysis are associated with H4a and H4b.

4.3.4 Predictive validity

The model was also assessed using the Q2 predictive validity to establish the relevance of
the exogenous variables (Woodside, 2013). Q2 prediction is used to verify how well the
observed values are reproduced by the model and its estimated parameters (Chin, 1998). To
imply the predictive relevance of the hypothesised structural model, Q2 values are expected
to be greater than 0 (Hair et al., 2019). The analysed data showed that responsible AI (Q2

= 0.379), supply chain well-being (Q2
= 0.149), and sustainable business performance

(Q2
= 0.067) have values greater than 0, depicting satisfactory predictive relevance. The

model fit was examined using the test of composite-based standardised root mean square
residual (SRMR). As presented in Table 4, the SRMR value of 0.074, which is below the
0.08 threshold, confirms the overall fit of the PLS path model (Henseler et al., 2016).

5 Discussion and implications

5.1 Discussion

Although there is growing interest in human-AI collaboration in SC operations, the conditions
under which these can be integrated to achieve desired business outcomes are still largely
underexplored in empirical literature. Our analysed data offer striking results, which con-
trast the vast amount of literature advocating for the transformative power of human agents
and AI systems. This may be largely due to the absence of empirical evidence grounded
in a theoretical framework (Simon et al., 2024). Existing studies also note that human-AI
collaboration transcends the technical tasks to include the design, deployment and the suc-
cessful symbiotic relationship of human agents and AI systems. Interestingly in a survey by
Secondmind (2024), managers cited distrust and interoperability as major inhibitors when
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Table 6 Mediation analysis

Effect Structural path β T value Ratio to total effect (%) Bias corrected 97.5% confidence interval Outcome

Direct CAIT—> SCWB 0.096 1.454 23.8 [−0.037–0.219] Full mediation
(Hypothesis 4a supported)

Indirect CAIT—> RAI—> SCWB 0.306 7.595*** 76.1 [0.229–0.385]

Total effect CAIT—> SCWB 0.402

Direct CAIT—> SBP 0.031 0.411 10.6 [−0.118–0.180] Full mediation
(Hypothesis 4b supported)

Indirect CAIT—> RAI—> SBP 0.260 6.245*** 89 [0.176–0.340]

Total effect CAIT—> SBP 0.292
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employing human-AI collaborative strategies to achieve desired business outcomes. Similar
findings were noted by Simon et al. (2024) who showed the importance of interoperability,
mutual learning and trust interacting over time to develop CAIT. Even though we are now
aware that the technical knowledge and AI systems are not sufficient to facilitate SC-wide
desired business outcomes, these remain largely underexplored, particularly SCWB and SBP.

Building on these identified theoretical gaps in the literature, the objective of this study was
to understand whether human-AI collaboration could lead to the desired business outcomes of
supply chain well-being and sustainability and if responsible AI intervened in the relationship.
To address these questions, the notion of human-AI collaboration was conceptualised as an
intrinsic resource that firms need to integrate and align with their business processes to achieve
desired outcomes. We grounded the human-AI collaborative strategy in the RBV and socio-
technical systems (STS) lens to emphasise the non-technical resources to be considered in
its design and deployment.

Our analysed data, however, found an insignificant link between CAIT and business out-
comes (SCWB, SBP). The findings highlight that the deployment of strategies to facilitate
human-AI collaboration must extend beyond basic analysis patterns and trends in managing
supply networks (demand forecasting, supplier selections, inventory management, risk man-
agement) and sustainability performance. It requires first identifying SC and sustainability
drivers and goals for designing AI systems that meet these requirements. Human-AI collabo-
ration in these scenarios is not one-size-fits-all (Nair & Saenz, 2024) but requires flexibility,
following a reiterative process of designing and realignment. For instance, in SCWB where
the emphasis is on the balance between operational excellence and the responsible treatment
of all stakeholders (Vann Yaroson et al., 2024), human-AI collaboration may fail if AI systems
have been designed to achieve standardised SC goals. While these findings contrast existing
studies (Kar et al., 2022), they open up the debate on the forms of strategies that SC and
sustainability-driven firms require to achieve human-AI synergy for successful outcomes.

The significant mediation of RAI in the link between CAIT, SCWB and SBP reinforces
the alignment and reiterative process in the design and deployment of human-AI collabora-
tion strategies. SCWB and SBP goals require understanding the dynamic nature of human
elements. Consequently, RAI ensures that human-AI integration adheres to human values,
regulatory requirements, and ethical principles (Mikalef & Gupta, 2021). It delivers trans-
parency and accountability, helping humans understand and trust decisions made by AI.
RAI therefore bridges the gap between AI-powered technical capabilities and human-driven
socio-organisational goals enabling supply chain well-being and sustainability.

By proactively building trust through transparent decision-making, RAI facilitates trust
by holding AI systems accountable to ethical and sustainability standards.

5.2 Theoretical implications

Our findings have several theoretical implications. For instance, the desired SC outcomes of
human-AI collaboration to date have focused on logistics (Loske & Klumpp, 2021); demand
forecasting (Nair & Saenz, 2024) and retail operations (Revilla et al., 2023). There is limited
evidence of a holistic approach to SC operations where cognisance is given to humans in the
loop. We address this shortcoming by providing empirical support for the framing of human-
AI collaborative strategies and the resulting business outcomes (SCWB and SBP) through
RAI, by analysing data from 301 SC executive-level managers. Through our narrative and
research model, CAIT is described as an intrinsic resource within a socio-technical system
designed to enhance SCWB and SBP through the integration of RAI dimensions. Hence, SCs
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that focus their efforts on designing and deploying CAIT can use it to drive strategy and inform
the decision-making processes of top management. Investment in CAIT with considerations
for RAI can facilitate the speedy generation of insights, create real-time monitoring of SC
activities and identify operational inefficiencies.

Secondly, the absence of a significantly direct link between CAIT, SCWB and SBP may
suggest the narrow focus of CAIT. It may infer the need to vary human-AI collaborative
design across firms, SCs, product categories and the various dimensions of SCWB and SBP.
Our analysis aligns with some studies which imply that CAIT strategies cannot be boxed
into a single category -one-size-fits-all-and that the responsibility of the agents (human-AI)
may vary depending on the SC goal, product characteristics and/or data type (Nair & Saenz,
2024). This identifies CAIT as a flexible and social-technical system that needs to be aligned
with organisational goals to achieve a desired business outcome.

In addition, the impact of CAIT on both SCWB and SBP is found to be fully mediated
by RAI indicating that RAI can fundamentally alter the way SCs employ human-AI col-
laborations. Given that there will always be a gap between human intuition and AI models,
embedding RAI dimensions will facilitate the modelling of the minds (Vossing et al., 2022),
which will lead to the nurturing of trust (Simon et al., 2024), mitigate information asymme-
try and improve transparency. It also highlights the importance of organisational culture and
learning in human-AI collaboration, as upskilling and reskilling of managers will require
embedding shared values and assumptions of AI use. The findings align with Kong et al.
(2023), who found that human-AI collaboration, especially among employees, enhanced
their skills and judgements.

Through our analysis, we developed a framework for human-AI collaboration establishing
boundaries which hitherto were elusive in existing literature. Figure 4 illustrates the bound-
aries and decision-making distribution between human and AI-powered systems in human-AI

Fig. 4 A Framework for human-AI collaboration for supply chains
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collaboration to achieve business value in SCs It shows the distinct phases of an operational
cycle where the vertical axis indicates the degree to which tasks or roles are handled by human
agents or AI systems. Human agents are emphasised in the upper half of the framework while
AI agents are in the lower half. On the horizontal axis, the decision and /or workload in the
human-AI collaborative strategies are presented where more human involvement is on the
left while those relying on AI are on the right. The regulating quadrant involves tasks relat-
ing to oversight, and compliance which are typically regulators and governing authorities
and require high human involvement and less reliance on AI for decision-making. In the
initiation quadrant (top right), task setting and designing of AI systems requires input from
owners, designers and developers. Human agents at this stage are responsible for establishing
goals and frameworks for AI operations. Introducing RAI dimensions and organisation goals
is usually in this quadrant. The monitoring (bottom right) quadrant involves overseeing AI
systems and their output, ensuring that performance aligns with expectations. Human agents
here including users, supply chain managers and developers are responsible for verifying
and interpreting AI results to ensure compliance. The embodiment quadrant requires that
tasks are fully automated, and decisions are supported by AI-powered systems. AI manages
routine tasks and human involvement is minimal. Even though the quadrants are distinct,
the framework is a cyclical process, showing feedback or iterative refinement between these
phases.

Finally, by comprehensively examining the characteristics of accountability, fairness, and
sustainability in RAI, our research is among the first to offer evidence of its significance in
human-AI collaboration. Particularly, on how enhanced human-AI collaborative strategies
augment RAI systems. This is warranted as intrinsic organisational collaboration techniques
promote sociotechnical interactions between human agents and AI, leading to an integrated
strategy for RAI systems. A positive and significant link between CAIT and RAI indicates
that human-AI interactions are essential to the development of RAI. The accountability
component enhances transparency in decision-making, fairness emphasises the necessity for
inclusivity and reduces discriminatory outcomes (Saeed & Omlin, 2023), and sustainability
underscores the importance of communication among stakeholders. The affirmative corre-
lation between CAIT and RAI underscores the necessity for constructive discourse among
stakeholders. Simon et al. (2024) assert that effective dialogue should not solely focus on
rectifying AI system deficiencies but also improve users’ decision-making processes by util-
ising quality interactions and recognising unconscious biases. This effect could enhance a
SC’s reputation and strengthen long-term partnerships among stakeholders, addressing the
societal dimensions of SBP (Kamble et al. 2020; Sharma et al., 2020).

5.3 Practical implications

Our analysed data offer several implications for practitioners. First, this study shows that
human-AI collaboration transcends investment in another trending emerging technology
and/or humans and AI working together. Complementing those mentioned above, our results
demonstrate that efficiently harnessing the associated dividends of human-AI collaborative
strategy requires recruiting employees with good technical and managerial skills across all
levels of SC operations, embedding AI use in the decision-making process to build trust and
fostering an organisational culture of learning to facilitate the integration processes. This
reframes AI from being merely a tool to becoming an integral team member in SC opera-
tions. Thus, CAIT requires the combined effects of these intrinsic resources and strategically
aligning these resources with organisational goals to achieve desirable business outcomes. It
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therefore implies that human-AI collaboration requires actioning several processes, with top
management commitment and a clear plan for SC-wide adoption of AI use and deployment.

Secondly, existing studies have already highlighted the importance of all these factors in
human-AI collaboration and offering managers guidelines in its design and implementation
(Chowdhury et al., 2022a; Simon et al., 2024). One of the most elusive elements is achieving
the right boundary between human intuition and AI capabilities devoid of discrimination and
ethical bias to foster trust. With several studies now reporting the importance of trust and
responsibility in AI system use (Omrani et al., 2022), embedding responsibility in human-AI
collaboration is critical to achieving business goals. It also requires an interactive process
where AI systems learn from humans which in turn feedback in a loop as presented in Fig. 4.

In essence, responsible AI culture rests on the idea that priority be accorded to AI sys-
tems that enable, transparency, fairness and accountability. As an emerging area of interest
among managers, responsible AI systems will require internal organisation redesign, includ-
ing skilling and reskilling managers who collaborate with AI systems for decision-making.
Thus, achieving interoperability will require complementarities of both agents (human and
AI), focus on data requirements and the anticipation of organisational constraints. This will
facilitate the establishment of boundaries for AI use when blended with human intuition.
SC firms that can successfully integrate these resources to achieve seamless human-AI inte-
gration forge a stronger connection with SCWB and SBP. To achieve this, however, top
management needs to demonstrate the strategic symbiotic relationship between humans and
AI systems. Here emphasis is on the importance of stakeholder relationships within the RAI
ecosystem, including designers, users, regulators, and AI systems.

Core resources and protocols needed to develop these strategic relationships need to
be outlined to help managers construct assessment tools to benchmark their strengths and
weaknesses. The main pillars that constitute RAI systems can help identify weak points
and intrinsic resources in the design and deployment of human-AI collaborative strategies
prioritised for better integration. Policymakers and managers should prioritise these protocols
to ensure ethical AI use. Additionally, developers must encourage active user participation
to address ethical concerns comprehensively and avoid bias (Richey et al., 2023).

Given that SC firms are still at the nascent stage of their human-AI collaborative strategy,
it is pertinent to have a good overview of the requirements and associated costs. Additionally,
while it may be easy to acquire some resources, such as AI systems and even human skills,
other resources, such as seamless integration, interoperability, trust, responsible AI culture
and understanding the demarcation between AI systems and human judgement, require care-
ful planning and well-documented processes across stakeholders and the entire supply chain.

Further, our analysed data show that even by fostering strong human-AI collaborative
strategies, supply chain well-being and sustainability are not directly achieved. It implies
that although SCs may be able to establish human-AI interactions, further action is required
for desired outcomes to materialise. Human-AI collaborative strategy is only an element of a
SC’s ability to generate intrinsic resources, and harnessing its benefits involves designing and
aligning these strategies to SC goals. It is not one size fits all and requires flexibility, agility
and SC capabilities. Managers need to realise that the human-AI collaboration strategy is
only one element of the system; the other is responsiveness, which requires alignment with
business goals.

Finally, we highlight the need for SC managers to prioritise AI interoperability for RAI sys-
tem performance, especially given SCWB’s and SBP’s multifaceted nature. Identifying and
optimising the components of the human-AI collaborative ecosystem is crucial. As illustrated
in our framework, this ecosystem involves interconnected roles among stakeholders, forming
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a virtuous cycle where transparency drives efficiency. By adopting these collaborative strate-
gies, SC managers can ensure continuous human-AI interaction, aligning RAI systems with
the sustainability goals of Industry 5.0 (European Commission, 2021). This approach not
only promotes individual organizational transparency but also generates broader ecosystem
benefits.

6 Conclusions, limitations, and areas for further research

This study evaluated the impact of CAIT in enhancing SBP and SCWB. More specifically, the
moderating role of RAI from a holistic perspective was analysed to include accountability,
fairness, and sustainability. A theoretical framework using the RBV and STS perspectives
was developed and tested on a sample of 301 SC managers in the UK. The empirical analysis
identified CAIT as an intrinsic resource necessary for SC firms to build and design RAI
systems. Similarly, the socio-technical interactions that produce RAI systems moderate the
link between CAIT, SBP, and SCWB. The findings suggest that while AI-powered technolo-
gies can address SC challenges, several conditions may be required. These include designing
collaborative AI strategies for human-AI interactions as an organisational intrinsic resource.
Human-AI interactions are socio-technical interactions. Consequently, CAIT is an essen-
tial organisational resource for designing and implementing RAI in a way that effectively
addresses SC problems. Our research contributes to the SC literature by highlighting the
benefits of using AI-powered technologies through collaborative human-AI strategies and
the mediating effect of designing and deploying RAI systems holistically.

Like any other study, this research has several limitations that should be considered as
avenues for future research. First, while the study focused on SC managers across several
industries in the UK, some sectors were more heavily represented than others, which may
have skewed the results. Future studies should focus on a single industry for more detailed
insight, as the applicability of AI technologies varies among sectors.

Second, the human-AI interactions at the heart of the CAIT are particularly complex.
Our study reveals a multitude of actors involved in CAIT’s development, from designer to
user, from expert to layman. Moreover, these interactions are multi-level, from the simple
human-AI level to the higher team-system level. Future research is necessary to gain a better
understanding of these various levels of interaction, their dynamics, and the main obstacles,
especially if human–machine interactions are particularly complex and multi-level in the
context of CAIT and, more broadly, RAI.

Third, while our study views CAIT as a socio-technical and unique resource, specific to
each organisation, our model focuses only on its consequences, not its antecedents. Future
research could focus on its antecedents, i.e., the organisational factors necessary for its devel-
opment, to enhance sustainable performance. Future research should focus on developing
governance frameworks and strategies dedicated to CAIT and, more broadly, RAI.

Finally, given the scale of AI development in all organisational activities and its role
as a decision-making tool, this study may bring implications beyond SC and information
systems research to support RAI’s development using CAIT. CAIT could also serve as a
fundamental concept for enhancing various aspects of sustainable performance, including
innovation, human resources development, recruitment activities, and automated financial
decision-making.
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Appendix A: Outer loading for first-order construct

ACC CAIT FAIR Firm size SBP SCWB SUST Industry

ACC1 0.836

ACC2 0.727

ACC5 0.664

CAIT1 0.733

CAIT2 0.699

CAIT3 0.810

CAIT4 0.707

FAIR2 0.847

FAIR3 0.751

FAIR4 0.810

FAIR5 0.852

Firm size 1.000

SBP1 0.693

SBP2 0.797

SBP3 0.729

SBP4 0.644

SBP5 0.720

SBP6 0.630

SCD1 0.631

SCD2 0.763

SCD3 0.725

SCD4 0.653

SCD5 0.769

SCD6 0.722

SUS1 0.729

SUS2 0.705

SUS3 0.760

SUS4 0.814

SUS5 0.783

Industry 1.000
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Appendix B: Descriptive statistics of measurements

Items Standardised loading Mean SD t-values

ACCT1 0.839 0.839 0.021 39.076

ACCT2 0.736 0.733 0.044 16.647

ACCT5 0.666 0.663 0.051 13.184

CAIT1 0.734 0.734 0.035 21.235

CAIT2 0.702 0.699 0.04 17.623

CAIT3 0.811 0.811 0.023 35.662

CAIT4 0.711 0.708 0.04 17.635

FAIR2 0.848 0.848 0.018 46.811

FAIR3 0.754 0.752 0.034 21.908

FAIR4 0.812 0.811 0.028 29.107

FAIR5 0.853 0.853 0.018 46.566

SBP1 0.705 0.704 0.041 17.391

SBP2 0.804 0.803 0.024 33.065

SBP3 0.724 0.722 0.039 18.595

SBP4 0.649 0.648 0.047 13.841

SBP5 0.725 0.724 0.035 20.491

SBP 0.625 0.624 0.051 12.273

SCWB1 0.632 0.631 0.053 11.944

SCWB2 0.767 0.767 0.03 25.287

SCWB3 0.734 0.733 0.035 21.057

SCWB4 0.66 0.658 0.046 14.388

SCWB5 0.771 0.771 0.027 28.323

SCWB6 0.734 0.734 0.035 21.236

SUST1 0.733 0.731 0.039 18.858

SUST2 0.708 0.707 0.039 18.021

SUST3 0.764 0.763 0.035 21.847

SUST4 0.817 0.817 0.021 38.233

SUST5 0.785 0.784 0.034 23.307
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Appendix C: Path coefficient

Path
coefficients

Alpha
1%,
power
80%

Alpha
5%,
power
80%

Alpha
1%,
power
90%

Alpha
5%,
power
90%

ACC—> SBP 0.177 323 199 418 275

ACC—> SCWB 0.126 631 389 819 539

CAIT—> ACC 0.491 42 26 55 36

CAIT—> FAIR 0.584 30 19 39 26

CAIT—> SUST 0.561 32 20 42 28

FAIR—> SBP 0.17 348 214 451 297

FAIR—> SCWB 0.235 182 112 235 155

Firm size—> SBP 0.044 5155 3176 6686 4399

Firm size—>
SCWB

- 0.044 5196 3201 6739 4434

SUST—> SBP 0.186 290 179 376 248

SUST—> SCWB 0.252 159 98 206 136

Industry—> SBP 0.024 17,881 11,016 23,192 15,258

Industry—>
SCWB

0.078 1656 1020 2148 1413

Appendix D: Fornell-larcker criterion for LOC

ACC CAIT FAIR Firm size SBP SCWB SUST Industry

ACC 0.746

CAIT 0.491 0.739

FAIR 0.56 0.584 0.816

Firm size 0.147 − 0.004 0.037 1

SBP 0.389 0.293 0.4 0.083 0.704

SCWB 0.403 0.4 0.478 − 0.01 0.528 0.712

SUST 0.587 0.561 0.701 0.048 0.412 0.491 0.759

Industry 0.048 − 0.003 − 0.043 − 0.074 0.027 0.084 0.029 1
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Appendix E: Control variables

Control Supply chain well-being Sustainable business
performance

Weight t value Sign Weight t value Sign

Firm size − 0.05 1.104 0.269 0.045 0.839 0.401

Industry type 0.071 1.475 0.14 0.011 0.196 0.844
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