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Behavioral/Cognitive
Visuomotor Memory Is Not Bound to Visual Motion
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The motor system adapts its output in response to experienced errors to maintain effective movement in a dynamic environment. This
learning is thought to utilize sensory prediction errors, the discrepancy between predicted and observed sensory feedback, to update
internal models that map motor outputs to sensory states. However, it remains unclear what sensory information is relevant (e.g.,
the extent to which sensory predictions depend on visual feedback features). We explored this topic by measuring the transfer of
visuomotor adaptation across two contexts where input movements created visual motion in opposite directions by either (1)
translating a cursor across a static environment or (2) causing the environment to move toward a static cursor (272 participants:
94 male, 175 female). We hypothesized that this difference in visual feedback should engage distinct internal models, resulting in
poor transfer of learning between contexts. Instead, we found nearly complete transfer of learning across contexts, with evidence that
the motor memory was bound to the planned displacement of the hand rather than visual features of the task space. Our results suggest
that internal model adaptation is not tied to the exact nature of the sensory feedback that results from movement. Instead, adaptation
relies on representations of planned movements, allowing a common internal model to be employed across different visual contexts.
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Human motor control requires constant calibration to remain effective in a dynamic environment. This adaptive process is
thought to be driven by error-based learning in internal models that either predict the sensory consequences of a planned
movement or output the required movement to realize a sensory goal. However, what sensory information is relevant is
unclear. We probed whether internal model adaptation, in response to rotated visual feedback, transferred across two
contexts where a common hand movement caused visual motion in opposite directions. We found near-complete transfer
of learning across these two contexts and that learning was tied to hand movements. These results indicate that internal
models operate at a level abstracted from the exact nature of the visual feedback provided.
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Significance Statement

and Wolpert, 1996; Mehta and Schaal, 2002), robust state
estimation (Desmurget and Grafton, 2000), and attenuating
self-generated sensory signals (Blakemore et al, 2000; Sawtell,
2017) by predicting the sensory consequences of a motor
command. Controllers, or inverse models, do the opposite: they gen-
erate the motor commands needed to achieve a sensory outcome
(Jordan and Rumelhart, 1992) and can operate as multiple
forward-inverse internal model pairs across different contexts
(Wolpert and Kawato, 1998; Haruno et al., 2001). The specific fea-
tures that make sensory information relevant for these internal mod-
els, and therefore what sensory feedback changes might delineate

Introduction

Internal models are central to current theories of motor control and
learning (Shadmehr and Krakauer, 2008; Franklin and Wolpert,
2011; Krakauer et al, 2019; McNamee and Wolpert, 2019).
Forward models are thought to be useful for online control (Miall
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context-specific internal models, is generally unclear.

This lack of clarity is felt when considering behaviors that differ
only in their visual feedback. For example, when moving a com-
puter mouse to highlight a specific word in a text document, we
might be surprised to find that the text moved toward the cursor.
It is unclear whether such visual differences matter to the motor
system. We recently tested an analogous scenario by comparing
a common reaching task where movement-contingent visual
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feedback varied between two contexts (Warburton et al., 2023). In
a Pointing context, a forward-directed hand movement would
translate a cursor upwards across static task objects. In a
Looking context, inspired by first-person shooter (FPS) video
games, the same input movement would tilt the view of the task
upward, effectively translating everything (except a centrally
fixed cursor) downward across the screen. Thus, while a given tar-
get can be acquired by a common reaching movement in either
context, the visual feedback experienced is oppositely directed
(Fig. 1, motion energy panel). Interestingly, within-subject task
performance and movement kinematics were highly correlated
across contexts, suggesting they may rely on shared internal
models.

Here we sought to more directly test whether the two visual
contexts engage the same internal models by assessing the trans-
fer of visuomotor adaptation between visual contexts. When the
usual mapping between a movement and its sensory outcome is
perturbed, such as introducing a rotation between hand and cur-
sor movements, future movements are adapted to minimize the
discrepancy (Shadmehr et al., 2010; Krakauer et al., 2019; Kim et
al., 2021), a process thought to rely on sensory prediction errors
(Mazzoni, 2006; Tseng et al., 2007). To remain useful for effective
control, internal models must be continuously calibrated, and
work has posited that adaptation is driven by updates to a for-
ward model (Shadmehr et al., 2010; Krakauer and Mazzoni,
2011), a controller (Raibert, 1978; Hadjiosif et al., 2021), or
both (Bhushan and Shadmehr, 1999). Critically, the observation
of poor learning transfer would suggest that the adapted internal
model is tied to the specific style of visual feedback presented.

To investigate the extent to which visuomotor adaptation is
bound to specific features of the visual feedback, we introduced
a 30° rotation between a reaching movement and the visual feed-
back of the reach, requiring that participants adapt their move-
ments to maintain accuracy (Cunningham, 1989; Krakauer et al.,
2000). We hypothesized that the distinct visual feedback in the
two contexts would engage separate internal models, indepen-
dently adapted, leading to limited transfer of learning. First, we
compared adaptation in either context, where we might expect
differences in the learning response if distinct internal models
are adapted. Next, we assessed transfer of learning from one
trained context to the other (untrained) one, where we would
expect poor transfer of learning if distinct adapted internal models
are engaged. Finally, we dissociated hand and visual movement
vectors to assess which feature was bound to learning.

Materials and Methods

Participants

In total, 276 participants were recruited to take part in the experiments.
After exclusions (n =2 in Experiment 2: 1 participant recorded no suc-
cessful movements after the first block, 1 participant’s data did not
upload; n=2 in Experiment 3: participant data did not upload), the
final sample was 272 participants. Participants were recruited through
Prolific.co, an online recruitment platform, and were restricted to those
living in the UK or USA, who had English as a first language, and had a
Prolific approval rating of 95% or above. Participants were paid between
£6.25 and £8 upon completion for expected completion times between 50
and 60 min depending on experiment. Experiments were approved by
the School of Psychology Ethics Committee at the University of Leeds,
and participants gave informed consent via a Web form prior to starting
the study. Given the experiment was completed online, which has been
associated with noisier responses within and between participants on
similar paradigms (Tsay et al, 2021), we recruited more participants
per group (between 30 and 39) than comparable laboratory studies
(Sheahan et al., 2016; Abekawa et al., 2022; Dawidowicz et al., 2022).
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Specifically, we aimed to recruit a typical sample from previous experi-
ments per input device, so we continued recruiting until we had at least
n =15 per input device per experimental group.

Apparatus and experimental procedure

Participants completed experiments using their own personal computer
(restricted by Prolific’s screening criteria to those using a laptop or desk-
top) and completed reaching movements in the game using a mouse or
trackpad. In the main text, we present data from both mouse and track-
pad, as we did not observe any meaningful differences between these
input devices. Experiments were created using a recently developed
framework allowing within- and between-participant comparison of
Pointing and Looking movements (Warburton et al., 2023), which uses
the Unity game engine (2019.4.15f) and the Unity Experiment
Framework (Brookes et al., 2019). The experiments were delivered via
a WebGL build hosted on a Web page. No calibration procedure was per-
formed to equate stimuli size across disparate participant monitor
dimensions, so the physical size of the task was not constant across par-
ticipants. The experiments were designed to be visible on a 4:3 monitor
aspect ratio, with the height always taking up 4 arbitrary Unity units (au)
and wider aspect ratios featuring more of a task-irrelevant background
texture. The experiments could only be completed in full-screen mode
with the desktop cursor locked and hidden, with raw mouse or trackpad
input used to perform in-game movements.

Participants first filled in a form to provide details on age, gender,
handedness, computer type, and input device (mouse or trackpad) and
also clicked a button to ensure game audio was audible. During this stage,
participants used their desktop cursor to navigate the form, and the
movements of this cursor were tracked in pixel and Unity game units
to provide an initial calibration for the in-game cursor. Participants
were shown a cut-scene providing exposition for the purpose of the study
(popping nonsentient space bubbles), before completing a tutorial that
introduced aspects of the experimental task sequentially and interactively
to ensure participants fully understood how to complete the experiment.
Following this, participants were required to practice using both contexts
used in the experiment (Point and Look for Experiments 1-3, or Point
and Inverted Look for one group in Experiment 3), where they could
switch contexts and adjust cursor sensitivity with key presses. Once par-
ticipants had completed at least 20 trials in each context, they could pro-
gress to the main task.

Across all experiments, participants used their mouse or trackpad to
move an FPS style cursor toward a presented target and shoot it (Fig. 1a).
Throughout a trial, participants saw a dark space-themed background.
On top of this, the target plane was shown, which had a diameter of
3 au, a black background, and a thin ring around it which was white
for Experiments 1 and 2 and either yellow or cyan for Experiment
3. When a trial was ready to start, the start-point (0.1 au diameter circle
centered on the target plane) was colored orange. Participants needed to
move their in-game cursor, a small white circle surrounded by a thin
white ring of diameter 0.15 au (to mimic FPS style reticles), to the start-
point and left-click it to start a trial. If participants were within 0.05 au of
the start-point during this homing movement, the cursor snapped to the
start-point to speed up this centering (mimicking FPS-style auto-aim
features). Once the start-point had been clicked, a target (0.2 au diameter
magenta circle) immediately appeared on the target plane, and the start-
point turned green to indicate participants could attempt to move to and
left-click the target to shoot it. Potential targets were located in incre-
ments of 90° on an imaginary circle of diameter 2au. For Experiments
1 and 2, participants had a time limit within which to shoot the target.
If the time limit elapsed without a successful shot being registered, the
target immediately vanished and a whooshing sound was played. A
shot was only successful if, at the time of the left-click, the center of
the cursor intercepted the target circle. If the shot was successful, the tar-
get exploded and a shooting sound was played. Unsuccessful shots had
no effect upon the game, and an unlimited number of attempted shots
were allowed per trial. Feedback of a trial outcome, either a successful
shot or a lapsed time limit, was provided for 300 ms, during which the
start-point was colored gray. Upon feedback finishing, the start-point
turned orange, indicating that a new trial could begin. Participants had
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online feedback of the cursor throughout a trial, apart from Experiment
3, where certain trials had no feedback when returning to the start-point.

Cursor movements could be performed in two main contexts, either the
Point or Look (Fig. 1, with an Inverted Look context added for Experiment
3, Fig. 4a). In either context, a viewport camera provided a display of the
virtual environment, shown on the participant’s monitor, on top of which
a cursor was rendered. In the Point context, the camera remained static
throughout a trial, and input movements of the mouse or trackpad trans-
lated the cursor across this static display. In the Look and Inverted Look
contexts, input movements panned and tilted the camera’s view of the
scene while the cursor remained fixed to the center of the camera’s view.
This has the visual effect of a target being pulled toward the cursor, located
in the center of the screen. Critically, the two contexts were equated to
ensure identical movements were required to reach a given target in either
context. Details of the implementation are described in a previous paper
(Warburton et al., 2023). Following completion of the experimental trials,
participants filled in a questionnaire probing their perception of the exper-
iment’s performance (e.g,, lag, difficulty, technical issues), as well as ques-
tions about strategy use to overcome the imposed perturbation.

Experiment 1. Participants (n=68; mean age =36, SD age=11, age
range = 20-65; 24 male, 42 female) were assigned to complete the exper-
iment in either the Point (n=32) or Look (n=36) context. During the
main task, participants completed 680 experimental trials. Participants
first completed a baseline period of 100 experimental trials where no per-
turbation was applied to cursor movements. Following this, participants
completed 480 experimental trials with a 30° visuomotor rotation, where
the cursor movement was rotated away from the actual input movement
in either the clockwise or counterclockwise direction (counterbalanced
across participants within each group). Finally, participants completed
100 experimental trials where the perturbation was turned off to assess
after-effects of learning from the rotation period. Throughout the exper-
iment, trials were tested in cycles of four trials, where each target (0, 90,
180, or 270°) was tested in a random order. Participants were given
breaks of unrestricted length every 20 cycles through the experiment.

To induce the type of time pressure that might be experienced in a
typical FPS-style game, the time limit within which participants had to
show a target was continuously staircased throughout the experiment.
A pair of staircases, initiated at 450 and 1,050 ms for mouse users or
780 and 1,380 ms for trackpad users [determined through previous
work (Warburton et al., 2023)], were interleaved and used equally within
each block to set the time limit for the upcoming trial. Following a 1-up
1-down procedure, the tested staircase’s time limit was decreased by
30 ms following a successful trial, and increased by 30 ms following an
unsuccessful trial, to approximately give a 50% success rate over the
course of the experiment.

Experiment 2. Participants were assigned to either Experiment 2a (n=
62; mean age =37, SD age =11, age range = 18-67; 24 male, 38 female) or
Experiment 2b (1 =66; mean age =36, SD age =11, age range = 20-75; 20
male, 46 female) and were further assigned to complete the rotation block
in either the Point (Experiment 2a, n = 32, Experiment 2b, n=35) or Look
(Experiment 2a, n =30, Experiment 2b, n=31) context. The experiment
consisted of 800 trials. Participants first completed 100 baseline trials in
the “untrained” context (the Look context for the Point Trained group)
and then 100 baseline trials in the “trained” context (the Point context
for the Point trained group). During these trials, no perturbation was
applied to the cursor. Following this, participants completed 480 trials in
the trained context with a 30° visuomotor rotation (direction counterbal-
anced within each group). For Experiment 2a, the perturbation was then
turned off, and participants completed 100 trials in the untrained context
and a further 20 trials in the trained context, to assess the transfer of learning
from the trained to untrained context. Participants in Experiment 2b com-
pleted the same pair of blocks after the rotation, but the perturbation was left
on during these blocks, as a second method of assessing transfer. As in
Experiment 1, trials were tested in cycles of the four target directions, and
the time limit was continuously staircased throughout to induce time pres-
sure. Participants were given untimed breaks after cycles 23 and 45 and
thereafter every 20 cycles.
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In Experiment 1, it was observed that participants sometimes initi-
ated movements to an uncued target (hereafter “jump starts”). To com-
bat this, a further trial outcome was added. If a participant’s movement at
a radius of 0.2 au was >60° in either direction from the ideal movement
path between the start-point and target, the trial immediately stopped,
and participants were shown an error message for 5 s instructing them
to make sure they waited to see the target before moving. This check
was performed early enough that participants only received a limited
sample of their movement on these failed trials. The trial was then
repeated, to ensure that participants all received the same number of
trials to assess learning and transfer.

Experiment 3. Participants (n=76; mean age=36, SD age=13, age
range = 19-67; 26 male, 49 female) were assigned to use either the Look
(n=40) or Inverted Look (1 =36) context during probe trials. In total, par-
ticipants completed 760 trials during this experiment. In contrast to the pre-
vious experiments, no time limit was used, as pilot testing found this caused
a substantial number of errors on the critical probe trials. Further, the ring
around the target plane changed color as participants returned their cursor
to the start-point to indicate the context of the upcoming trial.

Participants first completed 60 baseline trials to the top and bottom
targets (90° and 270°). The first 40 trials had 20 contiguous trials for each
tested context (Point and either Look or Inverted Look, in a random
order), followed by 20 trials where the two contexts were interleaved
to get participants used to switching between contexts. Participants
then completed 20 trials in the Point context to the top target, where
the no-feedback return was introduced. Here, upon clicking the target,
the cursor disappeared, and participants were required to return their
hand to a comfortable position within 1.5 s of outcome feedback extin-
guishing. Tones were played after 500, 1,000, and 1,500 ms to ensure par-
ticipants knew when their hand had to be back to a comfortable position.
After the final tone, the cursor appeared in the middle of the start-point.
From this trial onward, Point trials never had return feedback (whereas
Look and Inverted Look trials always had return feedback) and were
always directed to the 90° (top) target.

Participants then completed the baseline generalization block, an
unperturbed version of the generalization block. The baseline generaliza-
tion block consisted of 15 generalization cycles of 18 trials. The first three
trials were in the probed context, either Look or Inverted Look, and
probed participants movements to either the left or right target (0 or
180°) in the first trial and both the top and bottom targets in trials two
and three (arranged so the top target was tested first either seven or eight
times, in a random order across cycles). The first movement to a lateral
target served as an additional cue, as well as the ring color, that the con-
text had switched before the critical vertical targets were probed. The last
15 trials per cycle were in the Point context to the top target. During the
baseline generalization block, movements were unperturbed compared
with their nominal mapping. Participants then performed 120 trials in
the Point context with a 30° visuomotor rotation applied (rotation direc-
tion counterbalanced within each group). Because there was no return
feedback, participants only sampled learning during movements to the
top target, so should show only local generalization. Participants then
completed the generalization block, which had the same structure as
the baseline generalization block except the 15 Point trials per cycle
had the same visuomotor rotation as in the rotation block (while the
probe trials were never perturbed). Because the probe trials had return
feedback and probed both trained and untrained directions, unlearning
could occur during outward and return reaches, so these 15 trials “topped
up” learning to ensure the probes were made after learning again reached
asymptotic levels, as determined during pilot testing. While generaliza-
tion studies typically preclude feedback to avoid this issue, the feedback
during Look trials arose because the camera panned and tilted, so clamp-
ing the camera’s rotation during Look or Inverted Look probes would
give no indication a Look style movement had theoretically occurred.
Participants finally completed 20 Point movements with unperturbed
feedback, to assess after-effects. Participants were given breaks of unre-
stricted length during the 8th probe cycle in both the baseline generali-
zation and generalization blocks (after the probe trials but before the
top-up trials) and after 100 trials in the rotation block.
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The same online check for jump-starts used in Experiments 2a and 2b
was used here for trials during the first baseline block for both contexts
and thereafter only for the Point context. As we expected some level of
“slips” for the Inverted Look group (i.e., expressions of the non-inverted
mapping), we did not check for jump-starts during the probe trials.

Data analysis

Kinematic data (cursor position in x- and y-axis) was sampled at the par-
ticipant’s screen refresh rate (often approximately 60, 120, or 144 Hz)
and uploaded to a remote database during the experiments. Offline pro-
cessing was performed in R (version 4.2.2). Technical issues meant a
small number of trials were not uploaded, which removed 0.02% of trials
in Experiment 1, 0.05% of trials in Experiment 2, and 0.02% of trials in
Experiment 3. Further, a small number of trials were affected by an issue
that caused a large single-frame mouse input, causing participant’s cur-
sor to move a large distance suddenly and unexpectedly. This appears to
be an issue with WebGL games more broadly, so we could only filter out
affected trials post hoc by removing trials where cursor speed changed by
>40 au/s from a previous or following sample. This removed 0.4% of tri-
als in Experiment 1, 0.04% of trials in Experiment 2, and 0.3% of trials in
Experiment 3.

To ensure a common analysis procedure was applied for all partici-
pants, movement data was resampled to a consistent 100 Hz using linear
interpolation and filtered using a second order, zero-phase, low-pass
Butterworth filter with a 15 Hz cutoff, with the start and end of each tri-
al’s time series padded to avoid transient effects of the filter affecting the
movement data. Raw hand paths were visualized (Fig. 2b, rotated to a
common target and flipped to show a consistent rotation direction) to
ensure the actual movements performed by participants were consistent
with canonical observations for these task manipulations. To perform
quantitative analysis, key measures were extracted from the time series
of cursor movements. The main measure used throughout was hand
angle at peak speed. To extract this, the peak radial speed reached during
the trial was found and the input position at this time was identified
(unaffected by perturbations). Hand angle was then defined as the differ-
ence in angle between straight lines connecting the start-point to either
the target or input position at peak speed. For participants who experi-
enced a counterclockwise perturbation, the sign of the hand angle was
flipped so for both perturbation directions, positive hand angles reflected
a movement of the hand in the direction opposite to the perturbation.
For Experiment 3, hand angles on Inverted Look trials also had an
180° rotation applied so that they reflected the angle from the ideal
aim location to make Look and Inverted Look trials directly comparable.
Trials in Experiments 1 and 2 were grouped into cycles of four move-
ments (one to each target), with mean hand angles calculated per cycle,
whereas for Experiment 3 hand angles were left per trial.

In Experiment 1 we noticed participants occasionally initiated move-
ments to an uncued target, likely because the time pressure applied
induced some guessing. For example, at extremely low reaction times
in forced response paradigms, participants guess uniformly which target
will be probed (Haith et al., 2016). To alleviate the effect of this on our
data, we removed trials where the absolute hand angle at both peak speed
and take-off (hand angle at a radius of 0.2 au) were >60° from the ideal
angle, to ensure the included movements were not directed to an uncued
target, which removed 10.5% of trials for the first experiment (inclusion
of these trials did not change any statistical analyses). To counteract this,
Experiments 2 and 3 had online detection of “jump starts” to ensure any
such trials were repeated. This led to 5.3% of trials being repeated in
Experiment 2 and 1.6% of trials in Experiment 3 (note the reduction
in repeated trials when the time limit was removed for Experiment 3,
with a rate comparable with other online adaptation experiments;
Avraham et al,, 2021; Tsay et al., 2023a). Despite this, some trials did
not pass the filter at peak speed, removing 1.2% of trials in Experiment
2 (including these outliers produced identical analyses besides the trans-
fer analysis for Experiment 2b where, despite similar point estimates,
there was no statistical difference in transfer between contexts, nor a
reduction in learning for the Point-trained group) and 1.6% of trials in
Experiment 3 (inclusion of these trials did not change any statistical
analyses).
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To perform analyses based on periods of the experiment, average
hand angles over prespecified periods were calculated. For Experiment
1, where we wanted to understand how hand angle compared between
the contexts across the experiment, the baseline period comprised the
last 10 cycles of the baseline block, and early and late rotation and wash-
out were defined as the first and last 10 cycles of the rotation and washout
blocks, respectively. We also calculated a measure for the after-effect that
accounted for potential differences in asymptotic learning by subtracting
the hand angle during late learning from that during early washout. For
Experiment 2, where we were primarily concerned with transfer, we cal-
culated early and late rotation as in Experiment 1 and additionally calcu-
lated transfer as late learning subtracted from the first 10 cycles of the
transfer block. For Experiment 3, early and late learning was assessed
during the first and last 10 trials during the rotation block, respectively.
Analysis of probe trials used baseline-corrected values, where the average
hand angle per target in the baseline generalization block was subtracted
from average hand angle per target in the generalization block for each
participant, to correct for any intrinsic biases (analysis was identical
with or without baseline correction).

Statistical analysis

All statistical analyses were performed in R (version 4.2.2). For all
ANOV As assessing the progression of learning in Experiments 1-3 (per-
formed using the afex, BayesFactor, and bayestestR packages), in addition
to reporting the F statistic and p values, we included Bayes factors (BF,)
as a measure of the evidence for the alternative hypothesis (H;) over the
null hypothesis (Hy) to supplement the p values and partial eta squared
(1,") as a measure of effect size. For all follow-up ¢ tests using the esti-
mated marginal means (performed using the emmeans package) and
all independent ¢ tests, we use two-tailed tests and report the mean
and 95% confidence interval of the differences as well as p value and
Bayes factor. Finally, for all mixed-effect linear regressions (featuring a
random intercept for participant, performed using the Ime4 package
with p values from the ImerTest package calculated according to the
Satterthwaite approximation), we report the mean and 95% confidence
interval of the regression coefficient. All statistical tests were assessed
against a significance threshold of p <0.05.

Results

To compare participants’ adaptation to perturbations in an
FPS-style experiment, we utilized a framework allowing the style
of visual feedback to be compared between and within partici-
pants (Warburton et al., 2023). Using the Unity game engine, a
viewport camera provided a display of a virtual environment,
within which task-relevant objects like a start-point and target
were located (Fig. 1a). A cursor was rendered on top of this dis-
play, appearing like an FPS-style aiming reticle, which partici-
pants could control using their computer mouse or trackpad
(learning did not significantly differ between input devices across
all experiments, so is not considered hereafter). Upon left-
clicking the start-point, a target immediately appeared, and par-
ticipants attempted to move to and click on the target.

Input movements could control the cursor in one of two ways
(Fig. 1b). In the Point context, the in-game camera remained sta-
tionary throughout. The start-point and target, therefore, remain
stationary on the display throughout a trial, and input move-
ments translated the cursor on top of this static display. This is
consistent with how people normally interact with their comput-
er’s desktop environment and standard practice for the study of
visuomotor adaptation (Cunningham, 1989; Krakauer, 2009;
Krakauer et al., 2019; Morehead and de Xivry, 2021). In the
Look context, the cursor is always fixed to the center of the cam-
era’s display, while input movements are yoked to the in-game
camera, panning and tilting its view of the virtual environment.
This is consistent with how FPS games are designed, where
mouse movements control a character’s view of the environment.
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Task setup. a, A visual representation of the task as seen by a participant in the Point mode. Participants used their personal computers and could interact with the task using either

a trackpad or computer mouse. Participants left-clicked a start-point and were shown one of four targets to move to. Participants attempted to move to and left-click the target within a
continuously staircased time limit. b, Differences between the contexts, illustrated for a common “up” movement of the input device. In the Point mode, input movements translate the cursor
across a static background. In the Look mode, the same input movements cause the view of the virtual environment to shift, giving visual feedback where everything except the cursor moves.

This gives rise to oppositely directed visual motion energy as the movement evolves over time.

For example, moving the mouse forward would cause the
in-game camera’s view to pan up (Movies 1, 2). Given that the
participant’s display always shows the camera’s view, this has
the effect of the environment moving down on the display, as
if the target is pulled down toward the centrally located cursor.
Critically, the two contexts were equated such that the same input
movement in either context would reach a given target, allowing
unbiased comparison of behavior between the contexts [see
Warburton et al. (2023) for details].

Participants adapt similarly in the point and look contexts
In Experiment 1, we began by assessing whether there were differ-
ences in how participants adapted to a perturbation in either con-
text. The visual presentation of the perturbation differed between
the contexts, which the participant must use for both online feed-
back corrections and trial-to-trial adaptation. In the Point context,
the cursor moved 30° from the intended direction, whereas in the
Look context, the perturbation was applied to the camera’s rota-
tion which caused the virtual environment to move 30° from the
intended direction across the screen (Fig. 2a). During a trial,
upon clicking the start-point, a target immediately appeared in
one of four locations, located on an imaginary circle in 90° incre-
ments. Participants had to move to and click on the target within a
time limit to “shoot” it; otherwise, the target would disappear. The
time limit was continually staircased throughout the experiment to
maintain a ~50% success rate, inducing the type of time pressure
players of FPS games might experience.

Participants first completed a baseline block with veridical
movements, showing average movements that were straight to
the target (Fig. 2b). A visuomotor perturbation was then intro-
duced, where the visual feedback of a movement was rotated
around the start position by 30° from the input movement,
requiring participants to compensate for this perturbation to
be successful. Early movements (first 10 cycles) during this phase
showed a large corrective movement near to the target but had
straightened by the end of the block (last 10 cycles). Once the per-
turbation ceased, both groups showed similar “hooked” move-
ments in the opposite direction to overcome after-effects,
which were still present by the end of the washout period.

This learning is quantified in the average hand angles (mea-
sured at peak speed) per group over the time course of the exper-
iment (Fig. 2¢). During the late rotation period, where learning
appeared to have become asymptotic, participants in each group
compensated by 21.3° (Point: 95% CI = 19.4°-23.2°, Look: 19.9°-
22.8°). To assess differences over the learning block, hand angles
over predefined periods were assessed using a 2 (context, Point vs
Look) x2 (period, early vs late rotation) mixed ANOVA
(Fig. 2d). The ANOVA showed a main effect of period
(Fa1, 66) = 560.36, p < 0.001, BF,, > 100, 77,” = 0.90), indicating par-
ticipants had greater hand angles during late rotation, but no
main effect of context (F(;e6 =147, p=0.230, BF;(=0.51,
1> =0.02). There was, however, a significant interaction between
context and period (F(16=4.77, p=0.032, BF;4=1.77, 17p2=
0.07). Participants in the Point group reached a higher compensa-
tory hand angle than those in the Look group during early learning
(estimated marginal mean difference [95% confidence interval] =
2.30° [0.46° 4.15°], tss)=2.49, p=0.015, BF;y=3.33), but were
not significantly different during late learning (—0.03° [—2.46°,
2.40°], tesy=—0.03, p=0.980 BF;(=0.25). We also characterized
the after-effect as the difference between early washout and late
learning, to account for any potential differences in asymptotic
learning that may have arisen (Fig. 2¢). The decrease in hand angle
from late learning to early washout was not significantly different
between the Point and Look groups (—0.74° [-3.29°, 1.81°],
tis6) = 0.58, p=0.565, BF;o=0.29).

Learning transfers from a trained context to the other
untrained context

Opverall, behavior in Experiment 1 was strikingly similar between
contexts, reaching similar asymptotic levels and decaying in a
similar fashion upon removal of the perturbation. The similarity
of learning, as well as the similarity across multiple movement
metrics in a previous study (Warburton et al., 2023), is consistent
with (but insufficient to prove) the use common internal models
between contexts. To test this more directly, we trained partici-
pants to counteract a perturbation in one context, a process
thought to be driven by updates to a forward model and/or con-
troller, before switching to the other, untrained, context. If these
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contexts do not engage the same adapted internal model, we
would expect poor transfer of learning to the untrained context.

In Experiment 2a, participants were assigned a (trained) con-
text to learn to counteract the perturbation in. An experimental
trial mimicked Experiment 1 but followed a different block
schedule. Participants performed a pair of unperturbed baseline
blocks in both the untrained and trained context before learning
to counteract a 30° visuomotor rotation in the trained context. To
observe the expression of after-effects following a context switch,
participants then performed an unperturbed block in the
untrained context, before finally performing an unperturbed
block in the trained context.

There appeared to be a greater difference between contexts
than in Experiment 1, with greater hand angles for the group train-
ing in the Point context (Fig. 3a). Hand angles during the learning
block (Fig. 3b) significantly increased between early and late
learning (F 60)=604.56, p<0.001, BF;,> 100, 11p2 =091) and
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were greater for participants trained in the Point context
(Fa1,60) = 13.35, p<0.001, B, =51.24, 17,> = 0.18), with no signifi-
cant interaction (F(; 69)=0.32, p=0.575, BF;0=0.29, 11p2 =0.01).

We next checked for differences in the expression of after-
effects. If the learning was bound specifically to the trained context,
we would expect a sharp drop in hand angle upon switching to
the untrained context. The reduction in hand angle from late
learning to early transfer (Fig. 3c) was not significantly different
between trained contexts (0.41° [—1.45° 2.27°], t0)=0.44,
p=0.660, BF;;=0.28). Critically, there was no significant differ-
ence in the reduction of hand angle when participants switched
context, compared with when participants did not switch context
in Experiment 1, for either the group trained in the Point context
(—1.02° [-3.31°, 1.28°], t(62)=0.88, p =0.380, BF,( = 0.36) or Look
context (—2.16° [—4.40°, 0.07°], t64y = 1.93, p=0.058, BF ;o =1.21).
This indicates there was no evidence for a reduction in after-effects
when participants switched to an untrained context.
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Figure 3.  Learning transfers between context. a, Time course of the mean hand angle averaged over cycles (4 movements). The line shows the average hand angle from the target direction
over participants, with the shaded area showing 95% confidence intervals. The labels show periods of cycles over which measures of learning were operationalized. Shaded horizontal bars
underneath show whether participants were currently completing trials in the trained or untrained context. b, Mean hand angles over periods of the experiment. The period labels are abbre-
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and vertical bars show the 95% confidence intervals. d-f, As a—c with the perturbation left on when switched to the untrained context.



8 « J. Neurosci., April 23, 2025 « 45(17):¢1884242025

Similar analyses were performed for Experiment 2b, where the
perturbation was left on as participants were switched to the
untrained context. Hand angles again appeared to be greater for
those trained in the Point context (Fig. 3d). Hand angles during
the learning block (Fig. 3e) were again significantly greater during
late learning (F(; 64y = 557.21, p < 0.001, BF,( > 100, qu =0.90), and
for the participants trained in the Point context (F;e4)=10.02,
p=0.002, BF,,=14.01, ’71>2 =0.14), with no significant interaction
(Fruen =0.18, p=0.674, BF;g=0.27, ,> < 0.01).

Despite the perturbation being left on in this task, we would still
expect a substantial drop in hand angle immediately after transfer
if the contexts did not share an internal model. The change in hand
angle from late learning to early transfer (Fig. 3f) was significantly
lower for participants who trained in the Point context compared
with the Look context (—1.95° [-3.53°, —0.37°], t(s=—2.47,
p=0.016, BF;( =3.18). Participants who trained in the Point con-
text showed a small but significant reduction in hand angle
from late learning to early transfer (—1.07° [-2.05°, —0.09°],
tea=—2.23, p=0.032, BF,p=1.56), whereas participants who
trained in the Look context showed no significant difference in
hand angle between late learning and early transfer (0.88°
[~0.43°, 2.19°), f(30) = 1.37, p=0.180, BF;o = 0.45).

Mixed-effect linear regressions across the untrained transfer
block (cycles 170-195) showed that participants trained in the
Point context had an intercept significantly lower than asymp-
totic learning upon switching to the Look context (8=-—1.28
[—2.33° —0.24°], t=—2.41, p =0.019), with no significant change
over cycles ($=0.01 [—0.03°, 0.05°], t=0.53, p=0.599), whereas
the intercept did not differ for participants trained in the Look
context (f=0.11 [-0.82° 1.05°], t=0.23, p=0.816) but hand
angle did significantly increase over cycles (8=0.07 [0.03°
0.12°], t=3.15, p=0.002). Both regressions suggest asymptotic
learning is slightly lower in the Look context—with those
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transferred to it experiencing a rapid decrease in hand angle
and those transferred from it able to increase their compensatory
angle slightly. Nevertheless, both experiments clearly show that
the bulk of learning transfers to the untrained context.

Learning generalizes around the planned movement of the
hand

The previous experiment found that the bulk of learning trans-
fers between the visual contexts. We suggest this shows the con-
texts do engage a common adapted internal model and that
learning generalizes around a feature common to both tasks.
Visuomotor rotations induce learning that generalizes locally
around an aiming vector (Day et al., 2016; McDougle et al.,
2017). Whether learning is bound to an aim location in visual
or motor space is unclear—the two are typically confounded.
To investigate this, we used a manipulation taken from the FPS
gaming domain, where a subset of games and gamers “invert”
their mapping, such that they move their mouse or joystick for-
ward to look down in the game (Fig. 4a). The Inverted Look map-
ping should therefore allow us to dissociate whether learning at a
single target (Fig. 4b) generalizes locally around the planned vec-
tor of the hand, where it would generalize roughly around the
trained handspace direction, or the planned vector of the cursor,
where it would generalize roughly around the trained visual tar-
get (Fig. 4c).

In Experiment 3, participants were split into two groups
where the spatial generalization of learning was assessed with
either Look or Inverted Look probes. Experimental trials using
the probed context proceeded as in the previous experiments
with two exceptions—there was no time limit, and the upcoming
context was signaled by a color cue as participants returned to the
start-point. Experimental trials using the Point context were sim-
ilar except no feedback was provided as participants moved their
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included an Inverted Look context to dissociate them. When participants move their mouse forward, their in-game view pans down. b, Participants learned to counteract a visuomotor rotation at
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hand back to the start-point (see Materials and Methods).
Following baseline trials to introduce this change in trial feed-
back, participants completed a baseline generalization block,
where 15 generalization cycles were performed. Each cycle had
three trials in the probed context, first to either the left or right
target and then to both the top and bottom targets, followed by
15 Point trials to the top target. No perturbation was applied dur-
ing this block, and it allowed the later generalization block to be
baseline corrected, removing systematic biases in reaches
(Ghilardi et al., 1995).

Participants next experienced 120 Point trials to the top tar-
get, where they learned to counteract a 30° visuomotor rotation.
Critically, because participants did not have return feedback dur-
ing these trials, learning should only generalize locally around the
aiming vector. Both groups learned to counteract the perturba-
tion similarly, with hand angles increasing between early
(10.2°) and late learning (24.2% F(74y=251.69, p<0.001,
BF, > 100, ,” = 0.77), and no significant effect of probed context
(Fa,74y=0.96, p=0.331, BF,,=0.35, 1 2-0.01) or interaction
(Fi1.74)=0.04, p=0.849, BF,0=0.24, 7, < 0.01).

Participants then completed the generalization block, which
was identical to the baseline generalization block except that
the 15 Point trials per cycle had the 30° visuomotor rotation
applied. Because unlearning will occur during the unperturbed
probe trials, enough relearning trials (established in a pilot study)
were allowed to “top up” learning for the top target (average hand
angle over last 5 top up trials = 26.2°). Taking just the probe trials
in the same and opposite direction to the trained handspace
direction (Fig. 4d), a significant main effect of angle from the
trained handspace direction indicated learning generalized
around the planned hand vector (F(;;4)=197.04, p<0.001,
BF,,> 100, 11},2 =0.73). Further, there was a main effect of probed
context (F(; 74)=9.64, p=0.003, BF;,=9.66, ;1P2 =0.12), indicat-
ing hand angle was greater for the Look probes, and a significant
interaction (F(;74)=13.88, p<0.001, BF;p=95.26, npz =0.16).
This interaction was followed up by assessing the differences in
hand angle between trained and untrained movement directions.
Hand angle was greater for the trained handspace direction com-
pared with the untrained handspace direction in both Look
(11.61° [9.81°, 13.40°], t(74)=12.90, p<0.001, BF;o>100) and
Inverted Look groups (6.74° [4.85°, 8.63°], t74y=7.11, p<0.001,
BF,o > 100; Fig. 4e). Therefore, both groups show a robust trans-
fer of learning from the trained Point context to the probed Look
or Inverted Look context, supporting the previous experiment’s
results, and the results are consistent in that learning generalizes
around planned movement of the hand.

This difference was, however, significantly greater for the
Look group compared with the Inverted Look group (4.87°
[2.26°, 7.47°], t(74) = 3.73, p < 0.001, BF; = 69.94). A mixed-effect
linear regression, assessing how hand angle for the trained input
direction changed over generalization cycle, showed there was no
significant difference between probed context on the first gener-
alization cycle (f=-2.17 [-5.02° 0.69°], t=—1.48, p=0.140).
The Look group showed no significant change in hand angle
over cycles ($=0.04 [-0.12°, 0.20°], t=0.45, p=0.651), but the
Inverted Look had a significant decrease in hand angle over
cycdles (B=-029 [-0.53°, —0.05°], t=-2.40, p=0.017).
Therefore, while hand angle is not significantly lower for the
Inverted Look group at the start of the generalization block,
the groups diverged over the cycles. This could indicate that,
for the Inverted Look group, transferred learning itself reduced
over cycles, which could happen if the number of top-up trials
was not enough for the group to re-establish a consistent amount
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of implicit learning or that participants formed an explicit strat-
egy to overcome the implicit learning shown in the trained input
direction, which was possible given participants had full vision
during the probe trials.

Discussion

Here we examined transfer of visuomotor adaptation across two
task contexts where a common input movement drove categori-
cally distinct visual feedback. We found that adaptation occurred
similarly in both contexts and transferred readily between them.
Additionally, we showed that learning generalizes around the
planned movement of the hand, rather than specific visual fea-
tures of the task. These results demonstrate that visuomotor
adaptation modifies an element of the visuomotor control circuit
that is downstream of the specific features of the visual feedback.
We believe these results have meaningful implications for the
theory of internal models, particularly regarding the role of sen-
sory feedback in motor control.

Visual contingencies

Following our previous work, which demonstrated similar goal-
directed movements were elicited in response to two styles of
visual feedback delivering motion energy in opposite directions
(Warburton et al., 2023), we found that visuomotor adaptation
is not critically tied to such categorical differences in
movement-related visual motion. Learning progressed similarly
between visual contexts in the first experiment, with both groups
showing a comparable reduction in hand angle once the visuomo-
tor rotation ceased. In Experiment 2, we showed that learning in
one visual context transfers almost entirely to the other, untrained,
visual context. The third experiment further demonstrated trans-
fer of learning from the trained Point context to untrained Look
and Inverted Look contexts. While there is debate around the error
signal important for visuomotor adaptation (Tseng et al., 2007;
Kim et al.,, 2019; Tsay et al., 2022), and what changes this error
drives (Shadmehr et al., 2010; Hadjiosif et al., 2021), we find that
the same motor memories are engaged and altered by these differ-
ent forms of visual feedback.

Internal models
Internal models are ubiquitous in modern theories of motor con-
trol and learning (Shadmehr and Krakauer, 2008; Krakauer et al.,
2019; McNamee and Wolpert, 2019). Both controllers (inverse
models) and forward models require continuous calibration to
maintain skilled moment, but there is ongoing debate as to which
primarily drives adaptation. Where jointly assessed, learning in a
forward model appears to be relatively more important (Bhushan
and Shadmehr, 1999). Indeed, updates to a forward model driv-
ing adaptation has emerged as a popular hypothesis (Shadmehr
et al., 2010; Krakauer and Mazzoni, 2011; Haith and Krakauer,
2013), with sensory prediction errors thought to be the key error
signal (Mazzoni, 2006; Tseng et al., 2007). If updates to a forward
model drive adaptation, our current results would suggest that
sensory predictions must be made at a sufficiently abstract level
for either visual context to engage the same adapted forward
model. Notably the relative motion between cursor and target
is the same at any given point in time between the two visual con-
texts. This means that displacement vectors between cursor and
target in visuospatial coordinates would constitute a sufficiently
abstracted level of visual representation for sensory predictions.
Alternatively, adaptation may be driven by updates to the con-
troller (or inverse model). Some putative neural architectures
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suggest the involvement of forward models (e.g., a forward model
may be used to convert performance errors into motor errors to
train an inverse model; Jordan and Rumelhart, 1992; Miall and
Wolpert, 1996; Flanagan et al., 2003). In contrast, performance
errors in direct policy learning (Hadjiosif et al., 2021) or corrective
movements in feedback-error learning (Kawato and Gomi, 1992;
Albert and Shadmehr, 2016) could be used to train the controller
without the requirement of a forward model. Under this scenario,
our results would suggest that the input to the inverse model must
cover both visual scenarios. In some formulations this input is a
desired sensory state (Jordan and Rumelhart, 1992), which could
again be cursor-target displacement vectors in visuospatial coordi-
nates. Other formulations have a desired trajectory or “motor
plan” as the input to the inverse model (Kawato and Gomi,
1992), in which case the translation of a desired sensory change
to an abstract motor plan must occur upstream. In either case,
our results would suggest that more direct representations of sen-
sory outcomes are not relevant to the motor system.

The outlined forward and inverse model adaptation scenarios
are consistent with research demonstrating a critical role for move-
ment vectors in motor control and learning. The effector-centered
direction and extent of a movement appear to be key parameters,
specified separately during planning (Rosenbaum, 1980; Favilla et
al., 1989; Gordon et al., 1994; Vindras and Viviani, 1998). Further,
the movement vector appears to be the predominant feature
remapped during adaptation (Krakauer et al, 2000; Wang and
Sainburg, 2005; Wu and Smith, 2013), with spatial generalization
greatest in the direction participants aimed toward (Day et al.,
2016; McDougle et al., 2017; Kim et al., 2022). By dissociating
hand and cursor movements in Experiment 3, we showed that
the locus of learning is specifically the planned movement vector
of the hand, rather than a visually referenced aim location. This
places the hand space vector between effector and goal as a com-
mon currency for the motor system. This is consistent with the
hypothesized role of the posterior parietal cortex as a sensorimotor
interface which encodes effector-target vectors in multiple coordi-
nate frames (Buneo and Andersen, 2006) and work suggesting the
connection between the posterior parietal cortex and premotor
areas as an adaptation locus (Tanaka et al., 2009).

In principle the two visual contexts could engage distinct
internal models and distribute learning to each other through a
mixture-of-experts approach (Wolpert and Kawato, 1998;
Haruno et al., 2001). However, this would require that partici-
pants already had the requisite internal models for the Look con-
text. Only 19 of 68 participants in Experiment 1 reported playing
FPS games, with 14 reporting playing no games at all, and tasks
thought to elicit de novo acquisition of a new internal model
show extended periods of poor performance (Haith et al.,
2022). It therefore seems unlikely that participants with little to
no experience with FPS games could acquire such internal mod-
els and switch between them so rapidly.

We expect that the learning observed reflects both implicit
and explicit processes (Taylor et al., 2014; McDougle et al,
2016). Our conclusions about internal models are focused on
the implicit component. In cases where learning is explicit and
cued by context, strategies can be rapidly disengaged
(Morehead et al,, 2015, 2017; Tsay et al., 2023b; Chen et al,,
2024), whereas in Experiment 2a we found similar aftereffect
profiles whether participants did or did not switch context.
Further, in Experiment 3 we observed generalization of learning
from a trained Point context to untrained Look and Inverted
Look contexts. The reduction in hand angle from top-up training
trials to probe trials would suggest the modulation of an explicit
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strategy. However, the fully cued nature of the probe trials, along
with the lack of substantial generalization to untrained direc-
tions, is consistent with the probe trials sampling internal model
adaptation. As such, we believe our results can only be explained
by a shared adapted internal model.

Contextual cues

Recent work has found contextual cues that allow multiple visuo-
motor maps to be learned concurrently. Primarily these are cues
relevant to the movement itself, for example, the physical work-
space location (Hwang et al., 2006; Howard et al., 2013), planned
movement (Hirashima and Nozaki, 2012), or (planned) lead-in
or follow-through movement (Howard et al, 2012, 2015;
Sheahan et al.,, 2016; Dawidowicz et al., 2022). However, some
visual cues, like the visual workspace location (Howard et al.,
2013) or participant gaze location (Abekawa et al., 2022), also
appear effective. Thus, while we found that learning transferred
between visual contexts by default, these visual contexts may serve
as effective contextual cues. Indeed, many gamers express an
Inverted Look mapping in an FPS game, moving their mouse for-
ward to reach a target directly down, yet switch to typical Point
movements when moving their cursor in other non-FPS games.
Future research could, therefore, look at the time scale and cues
necessary to allow opposing mappings to be retained long term
and contextually switched in this manner.

Studying learning in FPS games

Video games offer an exciting opportunity to study situated
skilled behavior. For example, data collected from a commercial
FPS aim-trainer game have been used to investigate long-term
skill acquisition (Listman et al., 2021) and the kinematic corre-
lates of skill (Donovan et al., 2022). Such approaches enable a
player’s game skill to be tracked (Stafford and Dewar, 2014;
Stafford and Vaci, 2022), offering insights about long-term motor
learning that are difficult to make with restricted laboratory stud-
ies. Movement kinematics have also been used to study the
dynamics of perceptual and cognitive processes (Spivey and
Dale, 2006; Song and Nakayama, 2009; Freeman et al., 2011;
Dotan et al., 2019). Given that FPS games typically engage a range
of perceptual, cognitive, and motor abilities (Green and Bavelier,
2012), the kinematic data recorded in gameplay may provide
unprecedented insights into situated skill. Our current and pre-
vious findings (Warburton et al., 2023) suggest that movement
and learning properties are largely invariant to the differences
in visual feedback between FPS games and traditional laboratory
setups, which should give researchers the confidence to utilize
this exciting medium to study skilled behavior.

Data Availability
All data and scripts to analyze the data are available at https://osf.
io/8s9mk/.
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