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Abstract 23 

Palladium nanoparticles stabilised by confinement in crosslinked amine-decorated, polymer 24 

immobilised ionic liquids catalyse the hydrolytic evolution of hydrogen from NaBH4 under 25 

mild conditions. A series of three PIIL supports NH2-ImxPIIL (x = 1, (2a); x = 2, (2b), x = 3, 26 

(2c); where x corresponds to the number of imidazolium cations in the repeat unit) were 27 

prepared with an increasing number of imidazolium cations such that bis(styryl)-based 28 

crosslinkers 1a and 1b contain one and two imidazolium cations, respectively, while 1c is a 29 

more extensive tris(styryl)-based crosslinker with three imidazolium cations. The composition 30 

of the support influences the performance of the corresponding PdNP@NH2-ImxPIILS (x = 1, 31 

(4a); x = 2, (4b); x = 3, (4c) as catalysts for the hydrolysis of NaBH4 and a comparison of the 32 

most efficient system against its unmodified counterpart (i.e. PdNP@H-Im2PIIL) confirmed 33 

that incorporation of the surface coordinated amine improved catalyst performance. Palladium 34 

nanoparticles stabilised by NH2-Im2PIIL were the most efficient catalyst and the maximum 35 

initial turnover frequency of 81 molH2.molPd-1.min-1 is higher than the 59 molH2.molPd-1.min˗1 
36 

and 32 molH2.molPd-1.min-1 obtained with PdNPs supported by NH2-Im1PIIL and 37 

NH2-Im3PIIL, respectively, as well as the 19 molH2.molPd-1.min-1 obtained with commercial 38 

10 wt% Pd/C. The results of kinetic studies, apparent activation energies and deuterium isotope 39 

effects have been compared with those in the literature and support a mechanism involving rate 40 

limiting activation of an O-H bond in water. Catalyst reuses studies showed that 41 

PdNP@NH2-Im2PIIL recycled with remarkable efficiency as high conversions were 42 

maintained across five runs with the catalyst retaining over 92% of its initial activity, an 43 

improvement on the 70% retention of activity with palladium nanoparticles supported by linear 44 

amine-modified imidazolium-based polymer, which demonstrates the beneficial effect of 45 

introducing crosslinking.  46 
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1. Introduction  49 

There is increasing global pressure to reduce our reliance on fossil fuels as they are a rapidly 50 

dwindling resource, and their use is also responsible for the escalating levels of atmospheric 51 

CO2. This is having a catastrophic and detrimental impact on the earth’s environment, including 52 

rising global temperatures, extreme and fluctuating weather patterns, and a negative influence 53 

on the earth’s ecosystem.1 As such there is an urgent need to identify alternative energy carriers 54 

that are sustainable and/or renewable and that provide clean energy.2 Hydrogen is among the 55 

most promising of these as it has a higher gravimetric energy density than petroleum (120 kJ 56 

g-1 v 47 kJ g-1) and can be generated by harnessing the sun’s energy to drive the electrolysis of 57 

water to deliver high purity green hydrogen while generating oxygen as the only by-product.3 58 

The use of green hydrogen as an energy carrier would mitigate further damage to the 59 

environment as it is carbon-free and the only by-product from its use in a fuel cell would be 60 

water.4 However, hydrogen is highly flammable, forms explosive environments and has a very 61 

low volumetric energy density of  5.6 MJ L-1, which presents major challenges for secure and 62 

safe storage as well as handling and transportation. These challenges will need to be addressed 63 

if the use of hydrogen and fuel cell technology in stationary, portable and transport applications 64 

is to become commercially viable.5 Potential solutions include reversible adsorption of 65 

hydrogen into the channels of a porous material,6 or the controlled release from low molecular 66 

weight solid-state or liquid chemical hydrogen storage materials.7 One of the most widely 67 

studied materials for hydrogen storage is sodium borohydride (NaBH4)8a-d as it is a stable solid 68 

with a high storage capacity of 10.8 wt%, that exceeds the minimum target of 5.5% set by the 69 

US Department of Energy (DOE), is non-toxic, inexpensive, water soluble and can be 70 

regenerated from its hydrolysis product in high yield by a relatively straightforward protocol.8e 71 

While sodium borohydride releases hydrogen when heated, this is not practical for portable 72 

applications as it is stable up to 400 ºC and although its hydrolysis is exothermic, it is slow and 73 
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requires a catalyst to accelerate the release of H2. To this end, considerable effort has been 74 

dedicated towards developing cost effective catalysts for the controlled release of hydrogen 75 

under mild conditions.9 While numerous homogeneous catalysts have been reported to catalyse 76 

this hydrolysis and high activities have been achieved, they often suffer from poor long-term 77 

stability, require costly supporting ligands and can be difficult to recover and recycle.10 78 

Nanoparticles are also attracting considerable attention as catalysts for the evolution of 79 

hydrogen from boron hydrides as their efficacy can be controlled through their size and 80 

morphology as well as specific metal-support interactions and the catalyst can be recovered 81 

and recycled or integrated into a continuous flow platform.11 However, small nanoparticles are 82 

inherently unstable with respect to aggregation to larger less active species and must be 83 

stabilised for use in catalysis.12 The most common approach to prevent or limit aggregation 84 

and improve the stability of nanoparticles is by encapsulation or immobilisation on supports 85 

such as porous carbon structures,13 zeolites,14 oxides,15 mesoporous silicas,16 porous organic 86 

polymers,17 metal organic frameworks,18 and most recently click dendrimers.19 This approach 87 

has proven particularly effective and there are numerous examples of supported noble and 88 

non-noble metal nanoparticles that catalyse the hydrolysis of NaBH4 with high initial TOFs, 89 

the most active of which are RuNPs confined in zeolite-Y and PVP-stabilised RuPd 90 

nanoparticles, with initial TOFs of 550 molH2.molRu-1.min-1 and 762 molH2.molcat-1.min-1, 91 

respectively.14d,20 Moreover, there is now increasing evidence that an organic modifier and/or 92 

ligand on the support can form a metal–organic interface with the nanocatalyst and enhance its 93 

performance by controlling the size and morphology of NPs, providing additional stabilisation 94 

and preventing overgrowth or aggregation, modulating the surface electronic properties to 95 

control adsorption/desorption of reagents and intermediates, controlling access of substrates 96 

through steric effects or through selective interaction with a functional groups or tailoring the 97 

hydrophilic or hydrophobic environment and thereby the solubility of reactants.21  98 
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 We have recently been exploring the effectiveness of heteroatom-donor modified 99 

polymer-immobilised ionic liquids as supports for NP catalysts on the basis that the weak 100 

electrostatic stabilization provided by the covalently attached ionic liquid fragment would be 101 

supplemented by a covalent interaction between the heteroatom donor and the NP surface.22 102 

Moreover, covalent attachment of the ionic liquid and the heteroatom donor to the polymer 103 

should combine effective stabilisation with the favourable characteristics of grafting to a 104 

support i.e. immobilise the ionic liquid and prevent leaching, facilitate separation, recovery, 105 

and reuse of the catalyst, and reduce the amount of ionic liquid required as the NPs would be 106 

embedded within the polymer immobilised ionic liquid. In addition, the evolving emphasis on 107 

the beneficial impact of ligands on the performance of nanocatalysts described above21 suggests 108 

that the steric and electron donor properties of the heteroatom in polymer immobilised ionic 109 

liquids could enable reaction- and/or substrate-specific catalysts to be developed and their 110 

efficacy optimised and, in this regard, could be exploited in the development of new catalyst 111 

technology.  112 

Despite the growing number of reports of support-grafted ionic liquids for the 113 

stabilisation of nanoparticles and their applications as catalysts,23 including CO2 114 

hydrogenation,24 C-C coupling,25 selective oxidations,26 reductions,27and additive-free 115 

hydrogen generation from formic acid,28 there are only a handful of examples of their use as 116 

catalysts for the hydrolytic dehydrogenation of hydrogen-rich boron compounds. For example, 117 

ultrafine highly dispersed AuPd nanoparticles stabilised by an imidazolium-based organic 118 

polymer catalyse the dehydrogenation of amine borane more efficiently than either of the 119 

monometallic counterparts,29 imidazolium-modified mesoporous silica stabilised PdNPs 120 

catalyse the hydrolysis of NaBH4 and retain their efficacy across five reuses,30 and polyionic 121 

liquid-supported RuNPs catalyse the reductive dehydrogenation of DMAB in the synthesis of 122 

benzimidazole from CO2 and 1,2-diamines and the DMAB-mediated reduction of 123 
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nitroaromatic compounds and olefins.31 As part of our research programme to explore the use 124 

of heteroatom donor modified PIILs as supports for the stabilisation of nanoparticles, we 125 

recently reported that ruthenium and platinum nanoparticles stabilised by amine-decorated 126 

PIILs catalyse the dehydrogenation of NaBH4 and DMAB.32 With the aim of exploring the 127 

influence of increasing the extent of crosslinking on the stability profile and longevity of the 128 

nanoparticles, the performance of PdNPs stabilised by amine-decorated PIILs derived from 129 

4-aminostyrene and imidazolium-based bis- and tris-crosslinkers as catalysts for the hydrolysis 130 

of NaBH4 was compared against PdNPs stabilised by linear amine-decorated 131 

imidazolium-based polymer as well as unmodified imidazolium/styrene-based polymer 132 

immobilised ionic liquid. Herein, we report our preliminary results from this study which 133 

demonstrate that PdNPs stabilised by amine-decorated crosslinked imidazolium-based polymer 134 

immobilised ionic liquids are more active than PdNPs supported on unmodified imidazolium-135 

styrene-based polymer and that the most efficient catalyst retained over 92% of its activity 136 

across five reuses. Kinetic studies and deuterium isotope effects were used to explore the 137 

mechanism, and the data is consistent with rate limiting activation of the O-H bond in water 138 

coupled with rapid transfer of hydride from the borohydride. While functionalisation of a high 139 

surface area support has been shown to have a beneficial effect on the performance of the 140 

embedded metal nanoparticles as a catalyst for the dehydrogenation of amine boranes 141 

compared with their unmodified counterpart,33 to the best of our knowledge there do not appear 142 

to be any reports of the use of an amine-modified polyionic liquid as a support for the 143 

stabilisation of palladium NPs for the catalytic hydrolytic dehydrogenation of hydrogen-rich 144 

boron compounds.   145 

 146 

  147 
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2. Results and Discussion  148 

2.1 Synthesis and Characterisation of Amine-Decorated Cross-Linked PIIL 2a-c, 149 

Tetrachloropalladate Loaded Precatalysts 3a-c and PIIL Stabilized PdNP Catalysts 4a-c.  150 

Crosslinkers 1a-c and the corresponding amine-decorated crosslinked polymer-immobilised 151 

ionic liquids 2a-c employed in this project are shown in Figure 1. Crosslinkers 1a-c were 152 

prepared by quaternisation of 1-(4-vinylbenzyl)-2-methyl imidazole with the appropriate 153 

electrophile 4-bromomethylstyrene for 1a, 1,4-bis(bromomethyl)benzene for 1b and 154 

1,3,5-tris(bromomethyl)benzene for 1c and their identity and purity were established using 1H 155 

and 13C NMR spectroscopy, FT-IR spectroscopy, mass spectroscopy and elemental analysis, 156 

full details of which are provided in the supporting information. The corresponding 157 

co-polymers 2a-c were prepared by an AIBN initiated radical polymerisation of 1a-c with the 158 

appropriate amount of 4-aminostyrene in ethanol at 80 °C. To this end, the 1:1, 1:2 and 1:3 159 

ratios of crosslinker to 4-aminostyrene shown in Figure 1 were chosen such that complete 160 

exchange of the halide for the tetrachloropalladate anion would afford precursors with an amine 161 

to palladium ratio of two as this would enable a direct and meaningful comparison of their 162 

performance as catalysts to be conducted.  163 

The tetrachloropalladate- based precatalysts PdCl4@NH2-ImxPIILS (x = 1, (3a); x = 2, 164 

(3b); x = 3, (3c)) were prepared by exchange of the halide in 2a-c with an appropriate amount 165 

of tetrachloropalladate to afford the target Pd:N ratio of two and the corresponding PIIL 166 

stabilised catalysts PdNP@NH2-ImxPIILS (x = 1, (4a); x = 2, (4b); x = 3, (4c)) were 167 

subsequently generated by sodium borohydride-mediated reduction in ethanol. The palladium 168 

loadings in precursors 3a-c and catalysts 4a-c were determined to be between 0.41-0.96 mmol 169 

g-1 and 0.39-0.94 mmol g-1, respectively, using ICP-OES, full details of which are provided in 170 

the supporting information.   171 
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 172 

Figure 1. Composition of imidazolium-based crosslinkers 1a-c and the synthesis and composition of 173 

the corresponding amine-decorated imidazolium-based crosslinked PIILs 2a-c.   174 

 175 

 176 

The composition and purity of polymers 2a-c was confirmed by 1H NMR and solid 177 

state 13C NMR spectroscopy, IR spectroscopy, thermogravimetric analysis, and elemental 178 

analysis and the corresponding tetrachloropalladate precursors 3a-c and their derived PdNPs 179 

4a-c were characterised by a combination of techniques including solid state NMR 180 

spectroscopy, TGA, SEM, TEM, XPS, IR spectroscopy, and ICP-OES (see supporting 181 

information for further details). The solid state 13C NMR spectra of 2a-c and 3a-c each contain 182 

a series of characteristic resonances between  116 and 145 ppm associated with the carbon 183 
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atoms of the aromatic and imidazolium rings while higher field resonances between  11 and 184 

52 ppm correspond to the methyl group attached to C2 of the imidazolium ring, the saturated 185 

backbone derived from the styrene and the methylene carbon atoms of the imidazolium-benzyl 186 

unit; the solid state 13C NMR spectra of 3a-c also map closely to those of their precursors. 187 

Thermogravimetric analysis of polymers 2a-c showed an initial weight loss between 50 °C and 188 

110 °C associated with the removal of a minor amount of physiosorbed ethanol and/or water 189 

followed by two major degradation processes between 250-600 ºC (Figures S19, S25, S31); 190 

this stability profile confirms that these polymers are suitable as supports for the stabilisation 191 

of nanoparticles for use in catalysis.   192 

Surface characterisation of the tetrachloropalladate-loaded precursors 3a-c was 193 

undertaken by analysing the core electron excitation of nitrogen and palladium with X-ray 194 

photoelectron spectroscopy (XPS) to explore possible interactions between the amine and 195 

palladium. The discussed binding energies (BE) have not been rescaled with respect to an 196 

internal or external reference; instead, peak assignments relied on the comparison of BE 197 

separations (further details are provided in the SI). Examination of the local nitrogen 198 

environment of polymers 2a-c showed two peaks at 397.4 eV and 395.0 eV, which correspond 199 

to the nitrogen environments in the imidazolium ring and the amine, respectively.  Following 200 

impregnation of 2a-c with the tetrachloropalladate anion there was no discernible shift of the 201 

imidazolium N 1s peak of each of the precatalysts, 3a-c, which suggests that there is no 202 

interaction between the palladium and the nitrogen atoms of the imidazolium ring. Interestingly 203 

though, analysis of the N 1s region of 3a-c revealed the appearance of an additional component 204 

at ca. 396.0 eV in each sample examined, which we have assigned to a Pd-N interaction 205 

involving donation of electron density from nitrogen to palladium and a consequent shift of the 206 

N 1s peak to higher binding energy relative to their supports 2a-c (Figure 2 top). This 207 

interaction is consistent with our previous report of aniline-decorated PdNP catalysts for CO2 208 
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hydrogenation,22g and such interactions have previously been described in the deconvolution 209 

of N 1s data in other works.34a-c Quantitative analysis of the N 1s components was undertaken 210 

to estimate the proportion of amine that coordinated to palladium species in precatalysts 3a-c, 211 

which were all between 20-25%. Analysis of the Pd 3d core level for 3a-c revealed two Pd 212 

3d3/2 and 3d5/2 doublets consistent with presence of two Pd 3d electronic environments as well 213 

as a shake-up satellite line at 341.0 eV (Figure 2 bottom). The major doublet with a 3d5/2 214 

binding energy (BE) of 333.6 eV most likely corresponds to Pd(II) chloride species,34d while a 215 

minor component with slightly higher 3d5/2 binding energy of 335.2 eV is assigned to palladium 216 

coordinated to amine; a shift to higher binding energy after coordination to the amine indicates 217 

that the palladium species is more electron deficient. Although coordination of a heteroatom 218 

donor to a metal often results in an increase in the electron density at the metal and a consequent 219 

shift of the 3d peaks to lower BE, shifts to higher binding energy have been reported and 220 

attributed to strong metal support interactions.34e Alternatively this shift may reflect the change 221 

in the coordination environment and/or a lower charge at palladium resulting from substitution 222 

of chloride for amine in [PdCl4]2-. The palladium 3d core level of the nanoparticles 4a-c 223 

generated by reduction of 3a-c with NaBH4 typically contained two pairs of 3d5/2 and 3d3/2 224 

doublets; the pair with a 3d5/2 binding energy of 331.6 eV belong to Pd(0),34f while that with a 225 

higher 3d5/2 binding energy of 333.5 eV correspond to divalent palladium, indicating that 226 

reduction of the precatalyst to Pd(0) was not complete.  227 

Interestingly, analysis of the N 1s region of the XPS spectra of catalyst 4a-c revealed a 228 

dramatic reduction in the imidazolium nitrogen content compared with their supports 2a-c and 229 

precatalysts 3a-c. Quantitative analysis of the N 1s components determined that the relative 230 

contribution of imidazolium nitrogen atoms to the N 1s region decreased by 52-67 at.%. This 231 

loss of imidazolium appears to occur during the sodium borohydride-mediated reduction of 232 

precatalysts 3a-c to the corresponding PdNPs 4a-c. While we have recently discovered that the 233 
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benzylic imidazolium fragment of amine-decorated polymer immobilised ionic liquids is 234 

susceptible to cleavage during their use as supports for the PdNP catalysed reduction of carbon 235 

dioxide, loss of imidazolium resulting from treatment with sodium borohydride is more 236 

surprising.22g At this stage we tentatively suggest that this loss is also due to cleavage of the 237 

benzyl-nitrogen bond in much the same manner as benzyl protecting groups are removed using 238 

palladium catalysed hydrogenation. However, we cannot exclude reduction of the imidazolium 239 

ring to a cyclic amine as this would also shift the N 1s peaks to lower binding energy and result 240 

in a decrease in the imidazolium content. The Pd 3d core level of catalysts 4a-c typically 241 

contained two pairs of 3d5/2 and 3d3/2 doublets; those with 3d5/2 binding energies of 331.6-331.7 242 

eV corresponding to Pd(0) while the pair with 3d5/2 BE’s of 333.4-333.5 eV correspond to 243 

divalent palladium, indicating that reduction to Pd(0) is not complete (Table S6). Incomplete 244 

reduction may be associated with Pd(II) species strongly coordinating to Lewis basic donors 245 

which would limit their reducibility.34a To this end, qualitatively, there is a greater proportion 246 

of Pd(0) compared with Pd(II) species in 4a than either 4b or 4c; this could be attributed to the 247 

higher amine to palladium ratio as a higher amine loading would necessarily influence the 248 

number of Pd(II)-amine interactions and thereby the extent of reduction. It is unlikely that the 249 

divalent Pd species is due to the presence of PdO as the Pd(II)-Pd(0) BE separation of ca. 1.8 250 

eV is much larger than the 1.35 eV or even 0.65 eV observed previously for PdO-Pd(0) 251 

mixtures.34g,h However, the full-width at half maximum values of the Pd(II) species in catalysts 252 

4a-c are 1.5 times larger than those measured for 3a-c, therefore a more complicated mixture 253 

of species is probable. 254 

 255 

 256 

 257 
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 258 

Figure 2. N 1s core level XPS spectra (top) and Pd 3d XPS spectra (bottom) of tetrachloropalladate 259 

based precatalysts PdCl4@NH2-ImxPIILS (3a-c).  260 

 261 

TEM micrographs of 4a-c revealed that the palladium nanoparticles are near 262 

monodisperse with average diameters of 3.67 ± 0.99 nm (4a), 2.13 ± 0.51 nm (4b) and 2.76 ± 263 

0.93 nm (4c). Representative micrographs and associated distribution histograms based on the 264 

sizing of at least 100 particles are shown in Figure 3. To this end, there have been numerous 265 

reports in which a Pd---N interaction involving an amine-modified support appears to play an 266 

important role in the growth of small highly dispersed nanoparticles. Examples with mean 267 

diameters similar to those in 4a-c include aminopropyl functionalised SBA-15 (1.5–1.6 nm),35 268 

amide and pyridine functionalised porous organic copolymers (1.9–2.4 nm),36 amine-modified 269 

activated carbon,37 amine-modified reduced graphene oxide,38 amine-modified mesoporous 270 

silica (2.3–3.48 nm)39 nitrogen-doped carbon and carbon nanotubes,40 and diamine alkalised 271 

reduced graphene oxide.41  272 

 273 
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 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

Figure 3. (a, c, e) High resolution TEM images of PdNPs for PdNP@NH2-ImxPIILS (4a-c), 285 

respectively, and (b, d, e) the corresponding size distribution determined by counting > 100 particles. 286 

N.B. White scale bar is 10 nm in all cases.   287 

 288 

2.2 PdNP Catalysed Hydrolytic Evolution of Hydrogen from NaBH4 289 

Having recently explored the efficacy of amine-decorated imidazolium-based polymer 290 

immobilised ionic liquid stabilised Ru and Pt nanoparticles as catalysts for the hydrolytic 291 

evolution of hydrogen from NaBH4,22h,32a-b the project was extended to explore the influence 292 

on catalyst performance of increasing the extent of crosslinking in the amine-decorated PIIL 293 

support in order to develop a catalyst with a stable activity profile and good mechanical 294 

integrity for integration into a continuous flow system. Preliminary comparative studies were 295 
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conducted using 0.35 mol% of 4a-c to catalyse the hydrolysis of 20 mL of 0.028 M NaBH4 at 296 

313 K, the results of which are presented graphically in Figure 4. The progress of the reaction 297 

was monitored by measuring the amount of water displaced from an inverted burette assembly 298 

to quantify the volume of hydrogen liberated as a function of time. Under these conditions, 299 

hydrogen evolution started instantaneously upon addition of the NaBH4 i.e. there was no 300 

apparent induction which is consistent with catalysis by the preformed metallic PdNPs. All data 301 

were corrected by subtracting the volume of hydrogen liberated under the same conditions at 302 

the same time intervals but in the absence of catalyst. The data in Figure 4 shows that 4a and 303 

4b are more efficient catalysts for the hydrolytic evolution of hydrogen from NaBH4 than 4c 304 

as evidenced by the initial TOFs of 59 and 81 molH2.molPd-1.min-1 for 4a and 4b, respectively, 305 

compared with 32 molH2.molPd-1.min-1 for 4c. The influence of the amine on catalyst efficacy 306 

was explored by comparing the performance of 4b against PdNPs stabilised by unmodified 307 

polymer generated by the copolymerisation of crosslinker 1b with styrene in place of 308 

4-aminostyrene i.e. H-Im2PIIL.22c Under otherwise identical conditions, 4b was markedly more 309 

active than its unmodified counterpart as evidenced by the TOF of 45 molH2.molPd-1.min-1. 310 

While this modification alone suggests that removal of the amine could be responsible for the 311 

reduction in activity, it will be necessary to explore further modifications and conduct a more 312 

thorough investigation to establish the influence of the amine loading (amine to IL ratio), the 313 

type of amine and the amine to palladium stoichiometry on catalyst efficiency and thereby 314 

understand how polymer composition influences catalyst performance. The efficacy of 4a-c as 315 

catalysts for the hydrolytic evolution of hydrogen from NaBH4 was also compared with 316 

commercially available 5 wt% Pd/C and 10 wt% Pd/C and the initial TOFs of 23 317 

molH2.molPd-1.min-1 and 19 molH2.molPd-1.min-1, respectively, are significantly lower than 318 

those obtained with 4a-c. In addition, pre-stirring 5 mol of Pd/C with a homogeneous aqueous 319 

solution of each of the polymers 2a-c for 12 h prior to addition of the NaBH4 only resulted in 320 
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a slight improvement in the initial TOF compared with the same loading of Pd/C but in the 321 

absence of 2a-c.  322 

 323 

Figure 4. Hydrolytic release of hydrogen from NaBH4 as a function of time at 313 K catalysed by 0.35 324 

mol% of 4a-c, PdNP@H-Im2PIIL and commercial 5 wt% Pd/C and 10 wt% Pd/C and their 325 

corresponding initial TOFs.   326 

 327 

 While comparisons of catalyst performance to literature reports must be treated with 328 

an element of caution due to the disparate conditions and the lack of standard protocols, a 329 

survey of relevant studies revealed that the TOF of 81 molH2.molPd-1.min-1 obtained with 2b 330 

appears to be among the highest reported for the aqueous phase dehydrogenation of sodium 331 

borohydride catalyzed by a monometallic palladium nanoparticle-based catalyst. For example, 332 

this initial TOF is significantly higher than that of 2.2 molH2.molPd-1.min-1 reported for click 333 

dendrimer supported PdNPs,19a 10.9 molH2.molPd-1.min-1 (23.0 mLmin-1gcat-1) obtained at 295 334 

K with palladium nanoparticle multiwalled carbon nanocomposites,13f 4.6 molH2.molPd-1.min-1 335 

for ultrasmall palladium nanoparticles stabilised in beta-cyclodextrin derived organo-nanocup 336 

capping agents,42 14.6 molH2.molPd-1.min-1 (2.4 ± 0.3 x 10-4 s-1) with 10 % Pd/C,43 and 7 337 

molH2.molPd-1.min-1 obtained at 295 K with palladium mesoporous carbon composite,13e 338 
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although it is lower than the 348 molH2.molPd-1.min-1 reported for CoFe2O4 modified PdNPs,44 339 

and 495 molH2.molPd-1.min-1 for palladium nanoclusters supported by partially decomposed 340 

porous ZIF-67,45 as well as 263.4 and 762 molH2.molPd-1.min-1 obtained with a bimetallic 341 

magnetic Co-Pd/C nanocomposite46 and PVP stabilized RuPd nanoparticles,20 respectively. As 342 

the PIIL based precursors are prepared by anion exchange-based impregnation this method is 343 

currently being applied to prepare precatalysts with well-defined stoichiometries of noble and 344 

non-noble metals to develop multimetallic NPs and investigate their composition-performance 345 

profiles to identify more cost-effective catalysts for optimisation.  346 

 347 

2.3 Kinetic Studies on the Hydrolytic Evolution of Hydrogen from NaBH4 
348 

The disparate initial TOFs obtained with 4a-c prompted us to investigate the kinetics of 349 

hydrolysis as a function of temperature to determine the activation parameters for the release 350 

of hydrogen from NaBH4 and to compare the data with related literature reported systems. A 351 

series of reactions were conducted to determine the initial rates of hydrolysis as a function of 352 

time across a narrow range of temperatures from 294 K to 323 K. The apparent activation 353 

energies (Ea) for the hydrolysis of 0.028 M NaBH4 catalysed by 0.35 mol% 4a-c were 354 

calculated to be 39.5 kJ mol-1 (4a), 39.4 kJ mol-1 (4b) and 48.5 kJ mol-1 (4c), from the 355 

corresponding Arrhenius plots of ln(k) against 1/T (lnk = lnA - Ea/RT) shown in Figures 5b, d 356 

and f); the initial rates were calculated from the linear portion of the plots of the volume of 357 

hydrogen released against time (Figure 5a, c and e). These activation energies are comparable 358 

to that of 45.1 kJ mol-1 recently reported for PdNPs supported over fused graphene-like material 359 

(PdPGLM)47 but slightly lower than the 62.7 kJ mol-1 for palladium nanoparticle multiwalled 360 

carbon nanotube composites,13f 63.1 kJ mol-1 for magnetic recyclable CoFe2O4-modified 361 

PdNPs,44 58.5 kJ mol-1 calculated for PdNPs supported by partially decomposed porous 362 
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ZIF-67,45 and 58.9 kJ mol-1 for ultrasmall palladium nanoparticles stabilised by 363 

organo-nanocups,42 and higher than the 28.0 kJ mol-1 for Pd/C,43b 27.9 kJ mol-1 palladium 364 

mesoporous carbon composites,13e 14 kJ mol-1 for PdNP incorporated in mesoporous 365 

MCM-41,48 and 22.3 kJ mol-1 for carbon nano tube-graphene supported PdRu.49 The lower 366 

apparent activation energies for 4a and 4b compared with 4c are consistent with their efficacy 367 

as the former have comparable initial TOFs which are higher than that obtained with 4c.    368 

The hydrolytic dehydrogenation of NaBH4 was also investigated as a function of the catalyst 369 

concentration to determine the reaction order by measuring the initial rates of hydrolysis of 20 370 

mL of 0.028 M NaBH4 at 323 K across range of catalyst concentrations from 0.7 mol% to 2.45 371 

mol%. The resulting plots of the initial hydrogen generation rate against catalyst loading on a 372 

logarithmic scale were all straight lines with slopes of 0.97 (4a), 0.99 (4b) and 1.02 (4c) 373 

indicating that the hydrolysis is first order with respect to catalyst (Figure 6a-b and Figures 374 

S2a-f in the supporting information). A survey of the relevant literature revealed that this data 375 

is consistent with recent reports for the hydrolysis of boron hydrides catalysed by mono and 376 

bimetallic noble metal-based NPs including Co0.97Pt0.03@CeOx nanocomposite grown on 377 

carbon-grafted graphene oxide (slope = 1.167),50 PtCo@dendrimer (slope = 0.85),19a magnetic 378 

Co-Pd/C nanocomposite (slope = 1.173),46 Ni2Pt@ZIF-8 (slope = 0.82),51 ‘click’ dendrimer 379 

stabilised PtNPs (slope = 0.88),19b and a bimetallic graphene-cobalt-platinum nanohybrid 380 

catalyst.52 381 

 382 

 383 

 384 

 385 

 386 
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 387 

Figure 5. (a), (b) and (c) Plots of volume of hydrogen liberated against reaction time for the hydrolysis 388 

of 20 mL of 0.028 M NaBH4 across a range of temperatures catalysed by 0.35 mol% 4a, 4b and 4c, 389 

respectively, and the associated Arrhenius plots for hydrolysis of NaBH4 catalysed by (d) 4a, (e) 4b and 390 

(f) 4c; the initial rates were calculated from the slopes of the fitted lines. Each hydrolysis was conducted 391 

in triplicate. Initial rates (k) = moleH2.min-1.  392 

 393 

 394 
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 395 

Figure 6. (a) Volume of hydrogen liberated as a function of reaction time for the hydrolysis of 20 mL 396 

of 0.028 M NaBH4 catalysed by various amounts of 4b. (b) Corresponding plot of the initial hydrogen 397 

generation rate against catalyst concentration in logarithmic scale. Conditions: 0.56 mmol NaBH4 398 

(0.021 g), 0.35, 0.7, 1.05, 1.4, 1.75, 2.1, 2.45 mol% 4b, water (20 mL), 323 K. Volumes measured are 399 

an average of three runs. Initial rate (k) = molH2.min-1.   400 

 401 

 402 

Figure 7. (a) Volume of hydrogen liberated as a function of reaction time for the hydrolytic 403 

dehydrogenation of NaBH4 catalysed by 4b (7.05 mol, 0.01 g) in water (20 mL), initial concentrations 404 

of sodium borohydride ([NaBH4]0 = 0.35, 0.70, 1.05, 1.4, 1.75, 2.1 mM). (b) Corresponding plot of the 405 

initial hydrogen generation rate against sodium borohydride concentration in logarithmic scale. 406 

Volumes measured are an average of three runs. Initial rate (k) = molH2.min-1.   407 
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The corresponding kinetic study to investigate the variation in the rate of hydrolysis as 408 

a function of the substrate concentration was conducted at 323 K using 7.05 mol of 4b as 409 

catalyst with initial concentrations of NaBH4 that correspond to substrate:catalyst ratios 410 

between 1:1 and 6:1. Such low catalyst to hydride ratios were required for this kinetic study to 411 

avoid [BH4]- induced dynamic saturation of the active sites on the catalyst surface as a high 412 

sodium borohydride concentration would give zero order kinetics, as previously reported.53 413 

The slope of 0.98 obtained from the logarithmic plot of the hydrogen generation rate against 414 

the concentration of NaBH4 catalysed by 7.05 mol of 4b with initial concentrations of NaBH4 415 

between 0.7 mM and 2.4 mM confirms that the hydrolysis is first order with respect to hydride 416 

(Figure 7a-b). Similarly, under the same conditions slopes of 1.016 and 1.017 were obtained 417 

with catalysts 4a and 4c, respectively, both of which are consistent with first order kinetics 418 

(Figure S3a-f in the supporting information). While zero order kinetics with respect to hydride 419 

concentration are commonly reported for this hydrolysis, these reactions are typically 420 

conducted at high borohydride:catalyst ratios where the surface active sites are likely to be 421 

completely saturated, kinetic studies conducted at low concentrations of hydride have been 422 

reported to be first order with respect to hydride for platinum and palladium dispersed on the 423 

surface of functionalised carbon nanotubes,54 as well as palladium and ruthenium on carbon.55  424 

 425 

2.4 Kinetic Isotope Effects  426 

Deuterium labelling studies and the kinetic isotope effect have been routinely employed 427 

to probe the catalytic hydrolysis of boron hydrides to elucidate information about the rate 428 

limiting step and several pathways have been proposed.19b,c,51,56,57,58 Although the kinetics of 429 

this hydrolysis are complicated it is clear that borohydride provides one of the two hydrogen 430 

atoms of the derived hydrogen gas while the other is derived from the water,7b,11c and that the 431 
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rate limiting step involves activation of one of the O-H bonds in water as evidenced by a large 432 

kinetic isotope effect when the hydrolysis is conducted in D2O compared with H2O.19a-c,59,60,56 433 

One of the most commonly proposed pathways involves hydrogen bond facilitated oxidative 434 

addition of one of the O-H bonds in a surface coordinated [H3B----H----H---OH]- ensemble 435 

(Scheme 1a). The hydrogen would then be liberated from the surface in a final reductive 436 

elimination between the water derived NP-H and a borohydride derived NP-H, generating the 437 

monohydroxylated borane [HO-BH3]- (Scheme 1b) which participates in subsequent hydride 438 

transfers to ultimately generate Na[BO2]. While the borohydride derived NP-H may result from 439 

either hydride transfer or oxidative addition of a B-H bond, hydride transfer is more likely as 440 

borohydrides are extremely powerful transfer reagents. In an alternative pathway, Jagirdar and 441 

Ma have suggested that one of the O-H bonds of water is activated by a hydrogen bonding 442 

interaction between water and a borohydride-derived surface coordinated hydride i.e. 443 

N---H--H---OH (Scheme 1c-d).61      444 

 445 

 446 

 447 

 448 

 449 

Scheme 1. Possible pathway for the metal nanoparticle catalysed hydrolytic evolution of hydrogen from 450 

the hydrogen bonded array [H3B-H------H----OH]- via; (a) rate limiting oxidative addition of an O-H 451 

bond and hydride transfer followed by (b) reductive elimination of H2 and abstraction of a surface 452 

hydroxide to liberate [H3B-OH]-; (c) rapid hydride transfer followed by (d) hydrogen bond activation 453 

of the O-H bond; Inset: HN---H----OH2 hydrogen bond between a surface grafted amine and the 454 

[H3B-H------H----OH]- ensemble facilitating activation of the O-H bond. 455 
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The role of H2O in the hydrolytic evolution of hydrogen from NaBH4 catalysed by 0.35 456 

mol% 4b was explored by comparing the rates of hydrolysis of 0.028 M NaBH4 in H2O and 457 

D2O at 323 K. Under otherwise identical conditions comparative kinetic studies revealed that 458 

the hydrolysis in H2O was more rapid than in D2O as evidenced by a primary kinetic isotope 459 

effect (kH/kD) of 3.6 (Figure 8). Similar values of kH/kD were obtained for reactions catalysed 460 

by 4a (kH/kD = 2.7) and 4c (kH/kD = 3.7) and the corresponding data is presented graphically in 461 

Figures S4a-c of the supporting information. These values indicate that rate limiting activation 462 

of one of the O-H bonds in water is integral to the catalysis as they are comparable to the kH/kD 463 

value of 1.8 reported for a detailed kinetic study on the hydrolysis of NaBH4 in alkaline media 464 

catalysed by 5 wt% Pt/C,56 as well as values reported for NiNP@ZIF-8 (kH/kD = 2.49),57 465 

dendrimer stabilised palladium nanoparticles (kH/kD = 2.3),19b and PtCo@dendrimer (kH/kD = 466 

2.4).19c However, this data does not distinguish between a pathway in which the hydrogen 467 

bonded ensemble activates the O-H bond to generate a surface-coordinated borohydride and a 468 

water derived metal hydride and one in which concerted activation of O-H and B-H bonds 469 

afford borohydride and water-derived metal dihydrides. Thus, additional kinetic studies were 470 

undertaken by comparing the initial rates of hydrolysis of 0.028 M NaBH4 and NaBD4 in H2O 471 

using 0.35 mol% 4b as the catalyst. Analysis of the initial rates obtained at 323 K under 472 

conditions of catalysis gave a KIE of 1.05 (Figure 8b) and similar values were also obtained 473 

with catalysts 4a and 4c (Figure S5a-c) While these values are consistent with activation of 474 

only the O-H bond in the rate determining step with rapid transfer of hydride from the [BH4]- 475 

to the surface of the NP, activation of the O-H bond may occur by either hydrogen bonding to 476 

a surface hydride or by formation of a hydrogen bonded surface-coordinated ensemble between 477 

[BH4]- and water, as described above. At this stage we favour the former as the latter might be 478 

expected to manifest itself as an inverse KIE, which may become apparent through additional 479 

KIE studies under stoichiometric conditions. Finally, the efficacy of 4b compared to its 480 
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unmodified counterpart, PdNP@H-Im2PIIL, may be associated with the formation of a HN---481 

H----OH2 hydrogen bond between a surface grafted amine on the PIIL support and the [H3B-482 

H------H----OH]- ensemble, facilitating activation of the O-H bond (Scheme 1, inset), in a 483 

manner similar to that previously described for the dehydrogenation of formic acid.62 However, 484 

further catalyst modifications to explore the influence of the polymer composition, the surface 485 

amine group and its loading on catalyst performance coupled with in operando surface 486 

investigations and additional kinetic studies will be required to develop a more detailed 487 

understanding of how the amine effects catalyst performance.  488 

  489 

Figure 8. (a) Comparison of the initial hydrogen release from 20 mL of 28 mM NaBH4 in H2O and D2O 490 

catalysed by 0.35 mol% 4b (2.8 mg) conducted at 323 K. Volumes measured were an average of three 491 

runs. (b) Hydrogen release from 20 mL of a 28 mM solution of NaBH4 (red line) and NaBD4 (blue line) 492 

conducted in H2O at 323 K and catalysed by 0.35 mol% 4b (2.8 mg).  493 

 494 

2.5 Catalyst Reuse Studies  495 

 The longevity and stability profile of 2b as a catalyst for the hydrolysis of NaBH4 was 496 

investigated using recycle studies to assess the potential for use in scale-up or for integration 497 

into a continuous flow-based system, as previously reported for the PdNP@PPh2-PEGPIILS 498 

catalysed reduction of nitroarenes.22b As a result of the practical problems associated with 499 
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isolating the small amount of catalyst typically required for a hydrolysis experiment without 500 

incurring any attrition during the recovery procedure, a reuse experiment was conducted using 501 

2 mol% loading of catalyst 4b and the amount of gas generated from 20 mL of 0.011 M NaBH4 502 

was monitored as a function of time until the reaction reached completion. The aqueous 503 

reaction mixture was then re-charged with an additional portion of sodium borohydride and the 504 

gas evolution monitored again; this sequence was repeated to obtain a profile of the catalyst 505 

performance as a function of reaction time and reuse number. The resulting plot of volume 506 

against time in Figure 9a shows that the catalyst retained its activity as comparable conversions 507 

were reached at the same time across five reuses. Moreover, there was only a minor reduction 508 

in catalyst activity in successive runs, as defined by the percentage reduction in the initial rate 509 

based on the slope of the linear portion of the plots in Figure 9a. The corresponding profile in 510 

Figure 9b shows that 4b retained ca. 92 % of its activity across the five runs, which is an 511 

improvement on the corresponding activity profile for linear amine-decorated non-crosslinked 512 

polymer-immobilised ionic liquid-stabilised PdNPs, which only retained 70% of its initial 513 

activity across 5 runs under otherwise identical conditions. A comparison with selected relevant 514 

literature reports revealed that the activity profile obtained with 4b is comparable to or an 515 

improvement on recycle studies with noble metal nanoparticle/support systems such as 516 

ultrafine ruthenium nanoparticles anchored on a MOF/COF dual carrier,18a ruthenium modified 517 

titanium dioxide support, which retained over 80% of its activity, magnetic Co-Pd/C 518 

nanocomposites,46 palladium nanoparticles embedded on mesoporous carbon materials,13e  519 

“click”-dendrimer-supported synergistic bimetallic nanocatalysts,19a zeolite confined 520 

RuNPs,14d and graphene quantum dots-transition metal nanoparticles,63 each of which retained 521 

between 70-95% of their initial activity up to the fifth reuse. The slight decrease in activity as 522 

a function of run number may be due the change in pH, which increases with the extent of 523 

hydrolysis due to formation of basic sodium borate by-product. This could be addressed in a 524 
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carefully engineered continuous process which would avoid build-up of borate by-product or 525 

by using aqueous borate buffered solution to maintain the pH between 7.2 and 8, as reported 526 

by Sneddon et al. for the rhodium catalysed release of hydrogen from ammonia triborane; under 527 

these conditions the Rh/Al2O3 catalyst showed little change in the hydrogen release rates over 528 

11 cycles.64  529 

 530 

 531 

Figure 9. (a) Plots of volume of hydrogen liberated against time for the hydrolysis of 20 mL of 0.011 532 

M NaBH4 catalysed by 2 mol% 4b at 323 K during the reusability study across 5 runs. (b) Conversion 533 

reached in each run and percentage of the initial activity remaining after successive reuses. Volumes 534 

measured were an average of three runs.  535 

 536 

 537 

The heterogeneous nature of the active species was explored by conducting a pair of 538 

parallel hot filtration experiments. In the first, 0.35 mol% 4b was used to catalyse the 539 

hydrolysis of 20 mL of 0.028 M NaBH4 and the reaction allowed to reach ca. 50% conversion 540 

(ca. 5 min) at which point the reaction mixture was filtered through a 0.45 m syringe filter 541 

and the hydrogen subsequently liberated from the recovered filtrate was quantified for a further 542 

25 min. After subtracting the background hydrolysis, the resulting data in Figure 10a shows 543 
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that there was no further measurable evolution of hydrogen indicating that filtration removed 544 

the active palladium species. In the second hot filtration experiment, a hydrolysis was allowed 545 

to reach completion after which the reaction mixture was filtered through a 0.46 m syringe 546 

filter and the recovered filtrate charged with a further 1 mL portion of 0.56 M NaBH4 and the 547 

gas evolution monitored. The volume of gas liberated was quantified and found to correspond 548 

closely to the background hydrolysis, which is also consistent with catalysis by a heterogeneous 549 

species. Furthermore, analysis of the recovered filtrate from the second hot filtration 550 

experiment revealed that the palladium content was below the detection limit of ICP-OES (<0.1 551 

mg L-1), providing further evidence that leaching of palladium was unlikely. However, routine 552 

hot filtration tests such as these do not distinguish between catalysis at the surface of a 553 

heterogeneous species and leaching-redeposition to generate an active homogeneous species, 554 

although such a process may well manifest itself in a change in the size, size distribution and/or 555 

morphology of the nanoparticles. To this end, TEM analysis of the catalyst recovered after the 556 

5th run revealed that the nanoparticles remained near monodisperse with a mean diameter of 557 

2.6 ± 0.6 nm, which is similar to that of 2.13 ± 0.51 nm pre-catalysis (Figure 10b), confirming 558 

that agglomeration is not significant and that leaching and redeposition is unlikely.    559 

 560 

 561 
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Figure 10. Hot filtration experiment for the hydrolysis of 28 mM NaBH4 catalysed by 0.35 mol% 4b 562 

showing that filtration of the reaction mixture at ca. t = 5 min quenches the activity. (a) Red line - 563 

reaction in the presence of catalyst 4b and blue line - reaction catalysed by 4b and filtered at t = 5 min. 564 

(b) Sizing histogram of PdNPs for 4b after use in 5 hydrolysis runs and inset TEM image of the material, 565 

N.B. white scale bar is 20 nm.    566 

 567 

3 Conclusion  568 

Palladium nanoparticles stabilised by a series of crosslinked amine-decorated polymer-569 

immobilised ionic liquids catalyse the hydrolytic evolution of hydrogen from NaBH4 under 570 

mild conditions and are markedly more efficient than commercial 5 wt% and 10 wt% Pd/C and 571 

5 wt% Pd/C/NH2-ImxPIIL, as well as PdNPs stabilised by unmodified H-Im2PIIL; this suggests 572 

that the surface coordinated amine plays a role in improving catalyst performance. The highest 573 

TOF of 81 molH2.molPd-1.min-1 obtained with PdNP@NH2-Im2PIIL is among the highest 574 

reported for the hydrolytic evolution of hydrogen from NaBH4 catalysed by a monometallic 575 

palladium nanoparticle-based system. Kinetic studies, apparent activation energies and 576 

deuterium isotope effects are consistent with a mechanism involving rate limiting activation of 577 

one of the O-H bonds of water, while activation of the B-H bond either by hydride transfer or 578 

oxidative addition appears to be rapid. At this stage we tentatively suggest that the amine may 579 

play a cooperative role to facilitate the rate limiting cleavage of the O-H bond, although we 580 

cannot eliminate/exclude alternative explanations including modification of the surface 581 

electronic structure or control of the growth and dispersion of the NPs. Reuse experiments 582 

showed that PdNP@NH2-Im2PIIL recycled with remarkable efficiency and retained over 92% 583 

of its initial activity over five runs which is an improvement on the 70% obtained for palladium 584 

nanoparticles supported by linear amine-modified imidazolium-based polymer which 585 

underpins the beneficial effect of introducing the crosslinking on catalyst longevity. Although 586 
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NaBH4 can deliver high-purity H2 at room temperature with controllable kinetics via catalytic 587 

hydrolysis it will be necessary to close the loop by effecting its regeneration from the borate 588 

by-product. To this end, high yields of NaBH4 have recently been achieved by reacting NaBO4 589 

with CO2 to afford Na2B4O7.10H2O and Na2CO3 which were both subsequently ball-milled 590 

with Mg under mild conditions. This is an improvement on previous methods as it is cost 591 

effective and efficient, avoids the use of expensive reducing agents such as MgH2 and does not 592 

require energy-intensive dehydration of Na2B4O7·10H2O or a high pressure of hydrogen. 593 

Studies are currently underway to prepare additional polymer modifications and identify an 594 

optimum composition to further improve catalyst activity and stability and to unequivocally 595 

establish whether the amine influences nanoparticle growth/dispersion, surface electronic 596 

properties or participates in the elementary steps of the catalysis. A parallel programme has 597 

also been initiated to explore the effect of confinement on the activity and stability of PdNPs 598 

immobilised within the pores of amine-decorated Mesoporous Ionic Liquid-Functionalised 599 

Silica.   600 
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