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Visualising lead optimisation series using 
reduced graphs
Jessica Stacey1, Baptiste Canault2, Stephen D. Pickett2 and Valerie J. Gillet1* 

Abstract 

The typical way in which lead optimisation (LO) series are represented in the medicinal chemistry literature 

is as Markush structures and associated R-group tables. The Markush structure shows a central core or molecular 

scaffold that is common to the series with R groups that indicate the points of variability that have been explored 

in the series. The associated R-group table shows the substituent combinations that exist in individual molecules 

in the series together with properties of those compounds. This format provides an intuitive way of visualising any 

structure–activity relationship (SAR) that is present. Automated approaches that attempt to reproduce this well 

understood format, such as the SAR map, are based on maximum common substructure approaches and do not 

take account of small changes that may be made to the core structure itself or of the situation where more than one 

core exists in the data. Here we describe an automated approach to represent LO series that is based on reduced 

graph descriptions of molecules. A publicly available LO dataset from a drug discovery programme at GSK is ana-

lysed to show how the method can group together compounds from the same series even when there are small 

substructural differences within the core of the series while also being able to identify different related compound 

series. The resulting visualisation is useful in identifying areas where series are under explored and for mapping design 

ideas onto the current dataset. The code to generate the visualisations is released into the public domain to promote 

further research in this area.

Scientific contribution: We describe a software tool for analysing lead optimisation series using reduced graph 

representations of molecules. The representation allows compounds that have similar but not identical chemical 

scaffolds to be grouped together and is, therefore, an advance on methods that are based on the more traditional 

Markush structure and SAR tables. The software is a useful addition to the med chem toolbox as it can provide a holis-

tic view of lead optimisation data by representing what might otherwise be seen as separate series as a single series 

of compounds.

Keywords Reduced graphs, Visualisation, Lead optimisation, SAR

Introduction
The aim of the lead optimisation (LO) stage of drug 

discovery is to improve the physicochemical property 

profiles of compounds that have been found to exhibit 

activity against a target of interest. This typically involves 

attempting to improve the absorption, distribution, 

metabolism, excretion and toxicity (ADMET) proper-

ties while retaining or improving on potency. Once a few 

active analogues have been identified, substituents at dif-

ferent positions on the molecules are modified iteratively 
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to establish the structure–activity relationship (SAR) and 

identify compounds with improved properties. LO data-

sets, therefore, generally contain hundreds of molecules 

that are built around a small number of core scaffolds. An 

example is illustrated in Fig. 1, where the scaffold has dif-

ferent substitution points identified on the ring, indicated 

by the arrows. LO datasets are typically represented as 

Markush structures with associated R-group tables. A 

Markush structure depicts the core scaffold which is 

common to all members of a chemical series with the 

substituents shown as R groups. The associated R-group, 

or SAR, table is used to indicate the different substitu-

ents at each R group position for a particular molecule 

together with properties of the molecules [1, 2]. Markush 

structures and R-group tables have been widely adopted, 

especially in the medicinal chemistry literature, as they 

enable the SAR to be easily visualised.

Several different methods have been developed to auto-

mate the process of visualising SAR datasets. SAR maps 

are aimed at individual chemical series and aim to repro-

duce the Markush and SAR table described above [2]. 

A maximum common substructure (MCS) algorithm is 

used to identify the common substructure in a series of 

compounds which are then decomposed to identify lists 

of substituents and their attachment points to the com-

mon substructure. The substituent lists for two positions 

of variability are displayed as two-dimensional heatmaps 

(tables) with colour coding used to indicate the properties 

of the individual compounds. Wasseman and Bajorath 

extended this approach by introducing a graph structure 

for the display of chemical series to allow any number of 

substitution sites to be visualised [3]. These approaches 

assume a single analogue series is present. Stumpfe et al. 

developed a method to detect multiple series of ana-

logues based on the concept of matched molecular pairs 

(MMP) which are pairs of compounds that differ by a sin-

gle substituent [4]. The approach involves first generat-

ing a network by connecting compounds that represent 

MMP relationships. Disjoint clusters in the global net-

work were found to represent analogues series, that cover 

all of the substitution sites in the series.

A variety of methods that are not specifically focused 

on compound series have been developed to organ-

ise and represent more heterogeneous datasets. These 

include methods based on the concept of molecular scaf-

folds which, distinct from MCS approaches, are defined 

according to rules that are independent of the dataset 

being processed [1]. The most common of these is the 

Murcko framework which was proposed by Bemis and 

Murcko [5].The Murcko framework involves removing 

the side chains from a molecule to leave the ring systems 

and any linking groups. The concept can be generalised 

by reducing all remaining atoms to carbon and all bonds 

to single bonds. The scaffolds can be used to cluster data 

according to distinct scaffolds at different levels of detail. 

Extensions of this basic approach have also been devel-

oped which allow compounds to be arranged hierarchi-

cally according to the constituent parts of their molecular 

scaffolds [6–8]. Other network-based approaches that 

are applicable to heterogeneous datasets include forming 

Fig. 1 An example of a Markush representation of a lead optimisation series which shows how different substituents have been explored on a core 

scaffold
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connections between pairs of molecules according to 

their structural similarity based on molecular finger-

prints [9–11]. Finally, dimensionality reduction tech-

niques including Principal Component Analysis (PCA), 

t-Distributed Stochastic Neighbor Embedding (t-SNE), 

Uniform Manifold Approximation and Projection 

(UMAP), and Generative Topographic Mapping (GTM) 

have been applied to chemical libraries to enable them to 

be plotted in 2- or 3-dimensions with their main appli-

cation being to compare the coverage of different com-

pound collections, see for example, [12].

A limitation of the MCS approaches to identify chemi-

cal series is that both the core scaffold and the substitu-

ents are represented as substructural fragments so that a 

small change to the core can lead to a new scaffold being 

produced and therefore a new Markush structure, which 

can then make it more challenging to interpret the SAR 

across the series. Here, we describe a method for rep-

resenting LO series that overcomes some of the limita-

tions of the typical Markush and R-group tables. Our 

approach is based on reduced graph (RG) representations 

of chemical structures which are insensitive to some 

small changes in substructures. An RG is a summary rep-

resentation of a molecular structure whereby atoms are 

grouped into RG nodes according to node definitions 

which are usually based on the presence of cyclic and 

acyclic features and functional groups. This enables dif-

ferent substructures to be reduced to the same node type 

so that the RG representation is a many-to-one represen-

tation where multiple molecules can produce the same 

RG. RGs have been used in a range of chemoinformatics 

applications from representing and searching Markush 

structures in chemical patents, to identifying SAR and 

for scaffold-hopping [13–17]. They have also been used 

in the inSARa approach to provide a network-based view 

of a chemical dataset with compounds being connected 

in the network if they share an MCS at the RG level [18].

Here we describe a method for organising compounds 

using reduced graphs that is aimed at identifying and 

visualising LO series. Our method is based on identifying 

one or more MCS that is common to a set of compounds. 

As the underlying representation is the reduced graph, 

the approach allows molecules with closely related but 

not necessarily identical substructural scaffolds to be 

grouped into a single series. The method is also able to 

identify different compound series within a single data-

set. We provide an illustration of the visualisation before 

describing the methodology in detail and its application 

to a publicly available dataset that represents different 

strands of a LO programme carried out at GSK.

Overview of the visualisation

Figure  2 presents an overview of the process for gener-

ating the visualisation for a LO dataset. The details are 

provided below in the Methods section. In summary, the 

molecules in a dataset are organised according to the RG 

equivalent of one or more Markush structures. First, the 

individual molecules are represented by RGs. Next an 

MCS algorithm is used to identify one or more RG sub-

graph which is common to a set of molecules; we refer 

to these as RG cores. An RG core therefore provides a 

summary representation of a set of closely related mol-

ecules. The nodes of the RG core are annotated with the 

substructures they represent in the individual molecules. 

Thus, it is possible to drill down and visualise the differ-

ent substructures that give rise to a node in the RG core. 

An illustrative example based on five molecules from 

the P2X7 dataset (described later in the Results section) 

is shown in Fig.  3. The molecules are first represented 

by RGs with the different colours and labels used to dif-

ferentiate the nodes (the node types and their labels are 

described below). Next, the largest RG subgraph that is 

common to all molecules is identified and becomes the 

RG core. Finally, the nodes are annotated with the under-

lying substructures which can be visualised in tabular 

form as shown. For this set of molecules, the underlying 

substructures for three of the nodes in the RG core do 

not vary across the series of molecules, hence there is just 

a single entry in the relevant column in the table. One 

of the nodes represents four different substructures and 

Fig. 2 Summary of the steps involved to organise and visualise molecules
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another represents three different substructures. Note 

that substructures with different substitution patterns 

are identified as distinct substructures so that the node 

labelled “No” has three different substructure entries in 

the table.

An RG core can also be represented using pie charts 

to display the nodes as shown in Fig. 4 where the RG 

core represents a set of 302 molecules identified in the 

P2X7 dataset. The size of each node is proportional 

to the number of unique substructures in the series 

of molecules it represents, and each node is divided 

into segments of size proportional to the frequency 

of occurrence of a given substructure in the set. In 

the example shown, two of the nodes (Ge and Li) each 

represent a single substructure which is common to 

all molecules in the set. The numerical labels attached 

to each node in the figure are simply node indices to 

enable the nodes to be identified uniquely. The other 

three nodes, Ca, No and Hg represent multiple sub-

structures. Node Ca is the largest and represents 28 

different substructures; the No node represents seven 

different substructures; and the Hg node represents 

three substructures. The depiction of the nodes of an 

RG core as pie charts of varying size and numbers of 

segments enables the extent to which substituents at 

those positions have been explored to be readily seen 

Fig. 3 Illustration of the application of the workflow to compounds in the P2X7 dataset, which is described later
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and can give an indication of regions of chemical space 

that have been under- and over-explored. The visuali-

sation is interactive such that a node can be selected 

and a pop-up window is displayed showing a table of 

substructures that map to the node and the number of 

times that substructure occurs at that position in the 

set of molecules that map to the RG core, as shown in 

Fig. 5 The median, mean and standard deviation of the 

pIC50 activity data is also reported for those molecules 

that contain that substructure, in order to indicate the 

effect of each substructure on the activity.

An RG core can also be represented as a table. An 

extract of the table for the RG core shown in Fig. 4 is 

displayed in Fig.  6 where the RG core is shown as a 

SMARTS expression at the top of the table. Each col-

umn represents a different node in the RG core and 

each row represents a unique set of substructures as 

they exist in one or more molecules in the series. The 

sixth column shows the substructures combined into a 

connected substructure with further substitution posi-

tions highlighted which show where those molecules 

are extended beyond the RG core. The final column 

indicates the number of molecules that contains that 

combined substructure. There can be multiple mole-

cules represented by each row since the visualisation 

is focused on the core only and there can be variation 

beyond the core. In the table, the columns for each 

of nodes 1Ge and 2Li represent a single substructure 

which is common to all molecules, respectively, how-

ever, the entries in columns representing nodes 0Ca, 

3No and 4Hg vary, either by substitution pattern or by 

substructure.

Implementation

The visualisation is an interactive tool implemented via 

a combination of Python 3, Flask, D3, JavaScript, HTML 

and CSS and is presented as a webpage. The engineer-

ing of the tool is illustrated in Fig. 7. The user can view a 

pre-processed dataset in which case the data is extracted 

from the corresponding hierarchical data format (HDF) 

file. The user can also import a new dataset as a set of 

SMILES strings with a corresponding IDs and pIC50 val-

ues. In this case, some pre-processing steps are executed 

to remove duplicates and to check for valid SMILES, 

these are then followed by creating the RGs, extracting 

the RG cores and then extracting the metadata to display 

within the RG visualisation.

Methods
Generating RGs

Figure  8 shows the workflow to generate a RG from a 

molecule. First, functional groups are identified as hydro-

gen bond donor (HBD); hydrogen bond acceptor (HBA); 

or both hydrogen bond donor and acceptor (HBA-HBD), 

based on user-defined SMARTS (SMILES Arbitrary Tar-

get Specification) [19] which are provided via an input 

file. The SMARTS definitions used for the examples 

shown here are as follows (HBA: [$([!#6; + 0]);!$([F,Cl,Br

,I]);!$([o,s,nX3]);!$([Nv5,Pv5,Sv4,Sv6])]; HBD: [!#6;!H0]). 

A functional group is identified as HBA-HBD if both the 

HBA and the HBD SMARTS patterns are matches. Rings 

are identified using the smallest set of smallest rings and 

individual rings are labelled as Aromatic or Aliphatic 

along with their hydrogen bonding characteristics: inert 

Fig. 4 An RG core that represents 302 compounds in P2X7. The nodes are represented by text labels that specify the node type and numerical 

indices which allow them to be identified uniquely. The text labels correspond to elements outside of those commonly seen in organic molecules, 

for example, “Ca” represents an aliphatic node with hydrogen bond acceptor character. The different node types and their labels are described later. 

The substructures represented by the node labelled “3No” are shown in Fig. 5
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Fig. 5 The substructures represented by No node of the RG core shown in Fig. 4
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(i.e. no hydrogen bonding character); HBA; HBD; or 

HBA-HBD.

The acyclic components of the chemical graph are 

then analysed. Acyclic functional groups that have 

been identified as HBD, HBA or HBA-HBD are rep-

resented by Acyclic nodes with the appropriate label. 

Any remaining heteroatoms, including halogen atoms, 

and any branched carbon atoms form nodes which are 

labelled as “Complex”. Finally, any acyclic atoms that 

have not previously been included in nodes are defined 

as Acyclic inert nodes. Next, adjoining nodes are 

combined and merged as follows: neighbouring nodes 

of the same type are combined together to form a single 

node; a HBD or HBA node next to a HBA-HBD is sub-

sumed within the latter node; Acyclic inert nodes con-

nected to one or more “Complex” nodes are combined 

into a single node labelled “Complex”.

The final step is to connect the nodes via edges 

according to the bonds in the original structure. A pair 

of nodes is connected by a single edge unless the two 

nodes represent fused rings when they are connected 

by two edges.

Fig. 6 A snippet of the table representation of the RG core shown in Fig. 4
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Two additional rules have been implemented. The first 

is the handling of carbonyl groups; both the carbon and 

oxygen are considered as a single HBA node unless the 

carbon atom is within a ring, in which case the oxygen is 

considered on its own and forms an Acyclic HBA node 

distinct from the ring node. The second is that a halogen 

next to a HBA group is combined into the HBA node so 

that, for example, acyl chlorides form a single node, as 

shown in Fig. 9. The latter rule was implemented for com-

pleteness, since although acyl halides are not expected 

to occur in LO series due to their reactivity, some were 

encountered during testing of the methods on ChEMBL.

The RG nodes are labelled using elements not typically 

found in organic molecules as shown in Table 1. This is 

in keeping with previous publications relating to reduced 

graphs and allows the RGs to be represented using stand-

ard SMILES grammar so that they can be processed as 

molecule-types using the RDKit chemoinformatics 

toolkit.

As indicated above, each node is also annotated with a 

SMARTS string that represents the corresponding sub-

structure, with the attachment points being labelled as 

wild atoms. For example, a phenyl ring with a single con-

nection point is represented by a node labelled as No and 

annotated by *c1ccccc1.

Generating RG cores

The method for generating the RG cores for a dataset is 

similar to that described by Gardiner et al. and is based 

on iteratively calculating MCSs between pairs of RGs 

[20]. Figure 10 shows a flowchart of the algorithm. There 

are two user defined parameters: a similarity threshold 

which is used to determine the near neighbours of each 

RG; and the minimum RG core size which is the mini-

mum number of nodes that an RG core should have. The 

similarity between two RGs, A and B, is calculated using 

the graph variant of the Tanimoto coefficient [21]:

where A is the number of nodes in RG A; B is the number 

of nodes in RG B; and MCS is the number of nodes in the 

MCS.

The steps to generate the RG cores are as follows:

1) Generate the RG for each of the molecules (which 

are in arbitrary order). Calculate the pairwise similar-

ity between all RGs in the dataset and, for each RG, 

store its near neighbours based on the user-defined 

similarity threshold. Put all molecules into a list.

2) The molecule in the list with the most neighbours is 

identified as the centroid.

3) Starting with the most distant neighbour of the cen-

troid, find the MCS between the centroid and each 

neighbour in turn until an MCS is found where the 

number of nodes is equal to or exceeds the user-

defined minimum size. This MCS is then set as the 

candidate MCS for an RG core, both molecules are 

removed from the list of molecules, and the algo-

rithm continues to Step 4. If an MCS of the required 

T =
MCS

A + B − MCS

Fig. 7 Engineering of the visualisation tool
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size is not found, then the largest MCS amongst the 

neighours is taken as the candidate MCS and that 

neighbour is removed from the list of molecules.

4) For all other RGs in the molecule list,

a) Compare the RG with the candidate MCS.

b) If the RG contains the candidate MCS, then the 

RG is associated with the candidate MCS and is 

removed from the molecule list, and the search 

moves to the next RG in the list;

 Else if the RG does not contain the candidate 

MCS then a new MCS is found between the RG 

Fig. 8 The workflow used to generate RG representations is shown on the left with an example on the right

Fig. 9 Merging of halogens into HBA nodes
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and the candidate MCS. The new MCS must be a 

subgraph of the candidate MCS and the number 

of nodes in the MCS must be equal to or exceed 

the user-defined minimum.

 i. If the new MCS passes these requirements, 

it becomes the new candidate MCS, the 

molecule (and all previously identified 

molecules) are associated with the new 

candidate MCS, the molecule is removed 

from the molecule list and the search 

moves to the next RG in the list.

 ii. If the MCS does not pass these require-

ments, then the candidate MCS is 

unchanged, the RG is passed over and the 

search continues.

Table 1 The mapping of reduced graph nodes to heavy atoms

Node definition SMILES code

Acyclic inert Li

Acyclic HBA Ga

Acyclic HBD Gd

Acyclic HBD-HBA Ge

Aromatic inert No

Aromatic HBA Na

Aromatic HBD Nd

Aromatic HBA-HBD Ne

Aliphatic inert Co

Aliphatic HBA Ca

Aliphatic HBD Cd

Aliphatic HBD-HBA Ce

Complex Hg

Fig. 10 Flowchart to generate RG cores. The Find_Candidate_MCS function starts with the most distant neighbour of the given mol 

and determines the MCS. If the MCS is greater than or equal to the threshold size then the algorithm proceeds with this. If not, the other 

neighbours are tried in turn, until an MCS that is larger than the threshold size is found. If none is found then the neighbours are considered in turn 

and the largest MCS is retained as the Candidiate_MCS
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c) Once all the RGs within the dataset have been 

searched, the candidate MCS becomes an RG 

core and is added to a list of RG cores.

5) A check is then made to determine whether all the 

RGs within the dataset are associated with an RG 

core, that is, if the molecule list is empty

a) If so, the process stops.

b) If not, then the process is repeated from Step 2.

Figures  11 and 12 show implementation examples of 

the workflow. In Fig.  11, all pairs of RGs are within the 

defined similarity threshold of 0.5 and, therefore, all 

molecules are in the nearest neighbour (NN) lists of all 

others. The first molecule is therefore identified as the 

centroid and its furthest neighbour is determined. The 

MCS between these two molecules is found and, as it 

meets the minimum core size requirement of four, the 

process continues. This MCS is found in the rest of the 

molecules within the dataset, and the process completes 

with one RG core identified.

Figure 12 shows the same dataset as in Fig. 11, however, 

the similarity threshold for determining near neighbours 

has been increased to 0.7 so that the number of neigh-

bours is no longer the same for all the molecules. Four 

of the molecules now have three neighbours. The first 

molecule is chosen as the centroid, as in the previous 

example. However, a different molecule is now identified 

as the furthest neighbour and, therefore, a different initial 

candidate MCS is found. The second molecule contains 

the MCS and so is added to the list of represented mol-

ecules. The third molecule does not and therefore a new 

MCS is found and becomes the new candidate MCS. The 

iterations continue using the new candidate MCS, which 

is found in the remaining molecules. Note that the same 

RG core is identified in both cases even though the data 

is processed in different ways, however, this is not always 

the case when the threshold is varied.

Assigning molecules to RG cores

Following the identification of RG cores, a second pass 

is made through the data to ensure that each molecule 

is associated with all the RG cores that it contains, as 

described below. This step is needed because a molecule 

may have been missed due to the order in which they are 

processed. Following this step, it is possible that a given 

molecule may be associated with more than one RG core. 

This step also enables the RG core to be annotated with 

the underlying substructures and the SAR tables to be 

constructed by using the mapping procedure described 

below.

Mapping molecules to RG cores

The mapping of the molecules onto the RG cores is not 

straightforward since there can be multiple ways to map 

a molecule. For example, Fig.  13 illustrates a molecule 

that has two different mappings onto the RG core. The 

RG core consisting of 5 nodes is shown top right along-

side a typical Markush representation of the molecules. 

A molecule to be mapped is shown below along with its 

RG representation which has two Ge nodes attached to 

the right-most Li node. These two Ge nodes represent 

the substructures labelled as (1) and (2), respectively, on 

the molecular structure shown bottom left. Two map-

pings are therefore possible to the RG core, each of which 

results in a different substructure being associated with 

the starred Ge node. In the LO dataset from which the 

example is derived, all the molecules have a terminal 

COOH group attached to the Li node and hence the 

most appropriate mapping in this case is the node that 

represents substructure (2). Thus, in this example it is 

possible to disambiguate potential mappings by consider-

ing all the molecules that map to the RG core. In general, 

however, the underlying substructures will not be identi-

cal and ambiguous mappings are resolved by considering 

a range of increasingly detailed features of the underly-

ing molecules. The most effective of these is to consider 

the topological distances between pairs of nodes, as 

described below where the aim is to identify mappings 

where the through-bond distances between nodes are 

similar across the series of molecules represented by the 

RG core, that is, the substructures represented by the 

nodes are of a similar size.

For each RG core, a first pass is made through the mol-

ecules and all molecules that have only one mapping are 

mapped to the RG core and the nodes of the RG core 

are annotated with the corresponding substructures. 

These unique mappings then form a basis for resolving 

the mappings of molecules that have multiple ways of 

being mapped to the RG core. Ambiguous mappings are 

resolved by calculating node topological distance maps 

and substituent topological distance maps for both the 

RG core and the individual molecules to be mapped, as 

described below.

First, a node topological distance map is created for 

an RG core by considering each molecule with a unique 

mapping, in turn. The node topological distance map 

consists of all pairs of nodes together with the topological 

(through-bond) distance between them, which is defined 

as the shortest bond distance between any pair of atoms 

in the mapped molecule, where one atom is taken from 

each node. An example of a node topological distance 

map is shown in Fig. 14. For example, the shortest bond 

distance between nodes 1 and 2 is a single bond (and is 

represented in the topological distance map by 1–2:1), 
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Fig. 11 Example of the RG core extraction methodology when the similarity threshold is 0.5 and the minimum number of nodes is 4
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Fig. 12 Example of the RG core extraction methodology when the similarity threshold is 0.7 and the minimum number of nodes is 4
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Fig. 13 The Markush structure (with R-groups) is shown at the top together with RG core extracted from the dataset. The molecule bottom left 

has two different mappings to the starred Ge node shown by the highlighted substructures

Fig. 14 The node topological distance map for an example molecule



Page 15 of 27Stacey et al. Journal of Cheminformatics           (2025) 17:60  

whereas the shortest bond distance between nodes 1 

and 4 is seven (and is represented by 1–4:7). If a newly 

created node topological distance map is the same as an 

existing one, then it is discarded and the count for the 

existing map is incremented, otherwise it is appended to 

form a list of node topological distance maps for the RG 

core.

A substituent topological distance map is also created 

by finding the shortest topological distance between 

each node and each substitution site on the RG core. 

An example of a substituent topological distance map 

is shown in Fig.  15 where three substituent sites are 

present indicted by  R1,  R2 and  R3 in the original mol-

ecule. These represent parts of the original molecule 

which are not included within the RG core. For each 

node, the topological distance to each of the sub-

stitution sites is found, for example, for node 2 the 

through-bond distances to  R1,  R2 and  R3 are 4, 4 and 3, 

respectively and these are encoded as 2: [3, 4, 4] where 

the distances are sorted from shortest to longest. As for 

the topological distance maps, the unique substituent 

topological distance maps are aggregated (with associ-

ated frequency counts) over all molecules with unique 

mappings to the RG core.

The molecules with ambiguous mappings to the RG 

core are then considered. For each molecule with mul-

tiple mappings, its node topological distance map and 

substituent topological distance map are calculated and 

compared with the aggregated maps for the RG core as 

follows.

If the molecule’s topological distance map is the same 

as just one of those associated with the RG core then 

this mapping is used. If there are multiple matches, then 

the mapping with the largest number of examples in the 

aggregated map for the RG core is used. If there is more 

than one such match, then the substituent topologi-

cal distance maps are compared with the corresponding 

aggregated substituent topological distance maps for the 

RG core and similar conditions applied, i.e., if there is a 

unique match this is chosen, followed by the one with 

most examples.

Fig. 15 The substituent topological distance map for an example molecule
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The process described thus far is sufficient to resolve 

the majority of cases, however, additional criteria are 

applied if required. The complete algorithm for resolv-

ing mappings onto the core is shown in the Supporting 

Information.

Results and discussion
The methods are demonstrated on a dataset of P2X7 

receptor antagonists that represents published lead opti-

misation studies conducted at GlaxoSmithKline [22]. The 

full dataset has been deposited in the ChEMBL database 

[23]. The P2X7 receptor is an ion channel that is activated 

by ATP and is involved in processes including inflam-

mation and neurological function. The discovery of the 

P2X7 receptor led to a number of drug discovery pro-

grammes and subsequent clinical trials with a resurgence 

in interest in the target in a diagnostic setting [24].

The dataset consists of 798 compounds obtained 

from ChEMBL by first downloading the P2X7 human 

dataset, ChEMBL target ID: CHEMBL4805, and 

then extracting compounds with the following Docu-

ment ID’s: CHEMBL1157114, CHEMBL1221272, 

CHEMBL1268987 and CHEMBL2218064, as these were 

known to be part of the LO programme carried out at 

GSK. The compounds were cleaned using the following 

protocol. Salts were removed using the RDKit function 

(SaltRemover) which extracts the largest fragment [25]. 

The molecules were then neutralised using the O’Boyle 

neutralisation function in RDKit [26]. Molecules without 

an associated pIC50 value were removed.

The first step was to generate RGs for the compounds. 

Table 2 shows the average number of atoms in the mole-

cules, the number of unique RGs generated, and the aver-

age nodes in the RGs, respectively. The average number 

of nodes per unique RG is 9.0 and each RG represents, on 

average, 3.6 molecules.

As discussed in the Methods section, the process for 

generating the RG cores is based on two user-defined 

parameters: the similarity threshold used to identify near 

neighbours in the first step of the algorithm; and the min-

imum number of nodes in an RG core. Table 3 shows the 

number of RG cores extracted as the similarity threshold 

is varied between 0.1 and 0.9 and the minimum core size 

is varied from 2 to 7.

In general, as the minimum core size increases there 

is an increase in the number of RG cores found. This is 

expected because typically the smaller the number of 

nodes in an MCS the more likely it is to be present in a 

molecule, for example, an MCS consisting of just two 

nodes such as an acyclic inert node connected to an 

aromatic inert node is likely to be present in many mol-

ecules. As the minimum core size is increased, the num-

ber of molecules that share an MCS is likely to decrease 

and, therefore, more RG cores are likely to be extracted. 

Varying the similarity threshold has little effect on the 

number of RG cores found. A minimum RG core size of 

five and a similarity threshold of 0.5 were chosen for this 

analysis which resulted in 13 RG cores.

The nine most populated RG cores are illustrated in 

Table  4. The most frequent RG core (RG core 1) repre-

sents 409 (> 50%) of the molecules and consists of five 

nodes which are: an aromatic inert node (labelled No) 

with two acyclic substituent nodes (Hg) and a further 

Table 2 The number of molecules, average number of heavy 

atoms, the number of unique RGs generated, and the average 

number of nodes per RG

Number of 
molecules

Average 
number 
of heavy 
atoms per 
molecule

Number of 
Unique RG

Average 
number of 
nodes in 
the RGs

Average 
number of 
nodes in the 
unique RGs

798 24.9 245 9.0 9.4

Table 3 The number of RG cores extracted as the similarity threshold and the minimum number of nodes are varied

Minimum RG core size

2 3 4 5 6 7

Similarity threshold 0.1 3 5 8 11 17 26

0.2 3 5 7 9 18 22

0.3 3 5 8 12 19 30

0.4 3 6 8 13 20 27

0.5 3 5 8 13 20 30

0.6 3 5 8 13 20 33

0.7 3 5 8 13 20 32

0.8 3 5 8 12 20 34

0.9 3 5 8 13 20 42
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inert acyclic node (Li) which is extended by a HBA-HBD 

acyclic node (Ge). The underlying substructures repre-

sented by each node are shown in Fig. 16. The aromatic 

node represents a phenyl ring in all the molecules and the 

five different segments in the node correspond to five dif-

ferent substitution patterns on the ring. The two acyclic 

Table 4 The nine most populated RG cores

RG Core No 

mols

Example Molecule

1

 

409

2

[Ca][Ge][Li][No][Hg]

302

3

[Li][Ge][Ca]([Li])[Ga]

266

4

[Ca][Ga][No]([Hg])[Hg]

200
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Table 4 (continued)

5

[Na][Li][Ge][Li][No]

133

6

[Ga][Ca]([Ga])[Li][No]

112

7

[Na][Na]=[Ca][Ga][No]

52

8

[Li][Na]([Li])([Li])[No]

46

9

[Hg][No][Ga][Ca]=[Na][No]

38

The number of molecules represented by each RG core is shown along with an example molecule where the substructures corresponding to nodes in the RG core 

highlighted
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nodes labelled Hg each represent halide groups or  CF3. 

The third acyclic inert node is a  CH2 group in all the mol-

ecules and is connected to an amide in all but one of the 

molecules where it represents urea. Further variation in 

the molecules exists at the substitution positions shown 

in the substructures, however, the substructures at these 

positions are not shown as they do not form part of the 

RG core. Although this RG core represents more than 

Fig. 16 Tabular displays of the substituents represented by each node of RG core 1: [Ge][Li][No]([Hg])[Hg]

Table 5 Overlap of molecules represented by the three most 

populated RG cores

RG core 2 is highlighted since this is most representative of the LO series

RG core 1 2 3

1 409 268 228

2 268 302 256

3 228 256 266
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50% of the molecules in the dataset, it does not include a 

key part of the molecules which is the heterocycle seen in 

the example molecule. It is therefore not very informative 

in terms of understanding the lead optimisation explora-

tion carried out in this dataset. Furthermore, there is a 

high degree of overlap of the molecules represented by 

the three most populated RG cores, as show in Table 5.

The second most populated RG core also consists of 

five nodes and represents 302 (38%) of the molecules. It 

is more informative in terms of capturing the LO series 

and the motivations behind the data exploration. These 

molecules are representative of structures derived from 

pyroglutamic acid amide as explored in Abdi et al. [27]. 

The underlying substructures explored in the molecules 

are shown in Fig.  17. Two of the nodes, the central 

acyclic nodes (Ge and Li), show no substructural vari-

ation and represent an acetamide group which is pre-

sent in all the molecules. The large Ca node (aliphatic 

HBA ring) indicates that a wide variety of alternative 

aliphatic ring systems with hydrogen bond acceptor 

character have been explored. There are 28 distinct 

rings that include a variety of five and six membered 

hetero rings which all contain nitrogen with some also 

containing oxygen or sulphur atoms. The most com-

mon ring is imidazole (94 molecules) followed by the 

pyrrolidine ring (71 molecules). As for the previous RG 

core, the No node represents a phenyl ring in all the 

molecules with seven different substitution positions 

on the ring having been explored. In this case, just one 

HG node has been identified which represents four dif-

ferent substructures: Cl, Br, F and  CF3.

The third most populated RG core (266 molecules) is 

related to the previous two but is focused on the central 

acetamide group and the heterocyclic ring; it does not 

capture the phenyl ring identified in the previous two 

RG cores. The substructures represented by each of the 

nodes are shown in Fig. 18. Most variation is seen for the 

aliphatic HBA ring node and many of the same substruc-

tures are present as seen for RG core 2.

The close relationship between the three most popu-

lated RG cores is evident when looking at the overlap in 

the molecules represented by each RG core, Table 5. All 

three RG cores consist of five nodes all of which contain 

the central acetamide group, however, RG core 2 is most 

representative of the series as it captures both the phenyl 

ring and the aliphatic HBA ring. The molecules repre-

sented by RG Core 1 and RG Core 3 which are not rep-

resented by RG Core 2, reveal some common substituent 

patterns on the phenyl ring and the aliphatic heterocycle, 

respectively.

The fourth most populated RG core represents com-

pounds where the acetamide central group has been 

replaced by a carbonyl group, which is represented by a 

single node (Ge) in the RGs. Although a relatively large 

number of molecules is represented by this RG core 

(200), there are just two variants of the aliphatic hetero-

cycle (Fig.  19) with example molecules for each variant 

shown in Fig.  20. The triazolopiperidines are the larger 

set (121 of 200) (on the right of Fig. 20) and they include 

compounds from the series reported by Dean et al. [28]. 

The piperazinones are the smaller set (79 of 200) (on the 

left of Fig.  20) and they include compounds from the 

series reported by Chambers et al. [29]. In this case, the 

RG core represents two different series of compounds 

which have been reported in two different patents.

The fifth RG core represents 133 compounds, as shown 

in Fig.  21. For this series, the central amide group is 

extended by a carbon on both sides and the heterocycle is 

now an aromatic HBA ring, rather than an aliphatic het-

erocycle. These compounds correspond to the 1H-pyra-

zol-4-yl) acetamides described Chambers et al. [22]. The 

aromatic heterocycle node represents eight different 

substructures that are all five membered rings consist-

ing of different nitrogen, oxygen and sulphur derivatives. 

The aromatic inert ring represents a phenyl ring (as in 

the previous two series) with six different substitution 

patterns.

The sixth RG core, Fig.  22, represents 112 molecules 

where the group linking the phenyl and heterocycle is 

now either a methylene (110 molecules) or an ethylene (2 

molecules) group. All the molecules associated with this 

RG core are reported in the Supplementary bioactivity 

data of Chambers et al. [22].

The seventh RG core represents 52 compounds, how-

ever, the majority of these molecules (44 molecules) are 

also represented by RG core 4. They contain the triazolo-

piperidines as covered by RG core 4 but the RG core has 

been extended to include a further heterocyclic node 

which is attached to the fused system. The extended node 

represents a variety of aromatic heterocycles.

The eighth RG Core represents 46 molecules of which 

42 are also represented by RG Core 5, i.e., they are a sub-

set of the 1H-pyrazol-4-yl) acetamides described Cham-

bers et  al. [22]. In this case, the RG Core is focused on 

just the heterocyclic ring and its substituents and does 

not include the central amide group or the phenyl ring.

The final RG core shown above represents 38 mole-

cules, of which 36 are already represented by the fourth 

most populated RG core, i.e. they are part of the carbonyl 

series.

In summary, the thirteen RG cores that were identified 

can be grouped according to the overlap of the molecules 

they represent. For one group (RG cores 1, 2 and 3) the 

RG cores focus on different aspects of one lead optimi-

sation series. For other groupings, the RG cores repre-

sent subsets of compounds identified by other cores, for 
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Fig. 17 Tabular displays of the substituents represented by each node of RG core 2: [Ca][Ge][Li][No][Hg]
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Fig. 18 Tabular displays of the substituents represented by each node of RG core 3: [Li][Ge][Ca]([Li])[Ga]
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example RG cores 7 are 9 are largely subsets of the mole-

cules represented by RG core 4; and similarly for RG core 

8 which represents a subset of the molecules covered by 

RG core 5. From this analysis, the most informative RG 

cores for this dataset are RG Cores 2, 4, 5 and 6 and these 

four successfully represent the four series of compounds 

explored by GSK in the extracted dataset.

The tabular displays of the substructures represented 

by the cores provide further information including 

the number of molecules that contain each substruc-

ture and the mean and median activities of those mol-

ecules. These tables allow the user to rapidly view the 

substructural variation that has been explored at each 

position in the series and can also give some clues to 

Fig. 19 Tabular displays of the substituents represented by each node of RG core 4: [Ca][Ga][No](Hg])[Hg]
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the structure–activity relationships that exist within a 

compound series. For example, considering the mole-

cules represented by RG core 2, those containing the R 

pyrrolidine ring (71 molecules) have median and mean 

activity of 7.50 and 7.39, respectively, compared to 7.00 

and 6.94 for the molecules containing the S pyrrolidine 

ring (27 molecules). By comparing across RG cores, it is 

immediately obvious that there has been less explora-

tion of the heterocycle in RG core 5 relative to RG core 

2 or RG core 6, so this could be an area of future focus.

The method presented here provides a visual represen-

tation that summarises the SAR of compound series. As 

noted above, the visualisation shows areas of chemistry 

that have been underexplored or where one substitu-

ent has dominated. The fact that the definition of series 

is automated, allows project teams to review the SAR 

in an unbiased manner, facilitating a review across all 

compounds in the project. This is the main intent of the 

study. A second utility is in helping to frame the output 

from design workflows, for example, from active learning 

approaches, where project teams can be provided with a 

Fig. 20 Example molecules which show the two different aliphatic heterocycles represented by the RG core in Fig. 19

Fig. 21 Tabular displays of the substituents represented by each node of RG core 5: [Na][Li][Ge][Li][No]]
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visual representation of the design in the context of the 

existing data and gain an understanding of why a particu-

lar region is being explored over another. A third utility is 

in the consistent representation of chemical series in an 

unbiased manner that can be useful in assessment of the 

predictivity of models on subclasses of compounds.

Conclusions
A methodology is described for organising compounds in 

a dataset into compound series, each of which is repre-

sented by what is referred to as an RG core. An RG core 

captures the common elements of the series as connected 

RG nodes in a similar way to a conventional Markush 

structure and associated SAR table, however, the use of 

RG representations allows molecules with different sub-

structures to be brought together, provided that those 

substructures have the same ring/acyclic structural forms 

and compatible hydrogen bonding characteristics. We 

have shown how the approach is able to group together 

molecules from the same series while taking account of 

small substructural differences in the compounds. We 

have also demonstrated the ability to extract different 

Fig. 22 Tabular displays of the substituents represented by each node of RG core 6: [Ga][Ca]([Ga])[Li][No]
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series from a dataset that represents different strands fol-

lowed in a LO programme. The RG cores can be visual-

ised using graphical elements that help the user to easily 

see the major points of variability within the compound 

series. The nodes are represented as pie charts which 

are sized according to the number of different substruc-

tures the node represents. The number of segments also 

reflects the number of underlying substructures and the 

size of a segment reflects the number of molecules that 

contain a particular substructure. The use of pie charts 

gives the user an immediate impression of the extent to 

which each region of the molecules has been under- or 

over-explored. The visualisation tool also allows the user 

to drill down to view the individual substructures in tab-

ular form along with mean and median activity values 

of the molecules in the dataset that are represented by a 

particular substructure.
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